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Introduction

3From NASA



Physical Model

• Large scientific background about natural phenomena modeling. 

• Rely on differential equations, discretizations, and data 
assimilation, which are mature fields. 

• Complex to develop. 

• A lot of hyper-parameters have to be manually selected. 

• Rely on prior knowledge of the natural process taking place. 

• Not an optimal exploitation of the data 
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Deep Learning

• Prior agnostic approach 

• Necessitates large amounts of data. 

• Models are easy to develop and implement due to widely used Deep 
Learning platforms ( Pytorch, Tensorflow,Keras). 

• Implementation is efficient, making use of parallel computing (GPUs).  

• Works very well for a wide range of tasks, state of the art in vision, 
translation, etc… 

• Not competitive for natural complex phenomena modeling. 

• Not an optimal exploitation of background scientific knowledge.
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Emergence of hybrid models ? 

Could we combine the physical and statistical paradigms 
to obtain the best of both worlds? 

A new field of research seems to be appearing, merging ideas 
from Deep Learning and Physical models for analyzing natural 
data (e.g. Deep Learning for Physical Sciences Workshop at 
NIPS 2017, today…)
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Case study : Sea 
Surface Temperature 
(SST) Forecasting

• Forecasting SST is critical in 
various applications, such as 
weather forecasting, of planning 
of coastal activities


• Large scale SST acquisitions are 
made possible with satellites.


• The problem is complex and high 
dimensional.
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Model
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Advection Diffusion Equation

@I

@t
+ (w.r)I = Dr2I

9



Advection Diffusion Equation

@I

@t
+ (w.r)I = Dr2I

Advective Term

Responsible for the 
transport of I by the 
bulk motion w.
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Advection Diffusion Equation

@I

@t
+ (w.r)I = Dr2I

Diffusive TermAdvective Term

Responsible for the 
transport of I by the 
bulk motion w.

R e s p o n s i b l e f o r 
movement of particles 
from high concentration 
to reg ions w i th low 
concentration.
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Advection Diffusion Equation

@I

@t
+ (w.r)I = Dr2I

It(x) =

Z

⌦
k(x� w(x), y) I0(y) dy

Where I0 corresponds to the initial condition of I and

k(x� w, y) = N (y |x� w, 2Dt)

Close form solution

k

is an RBF kernel : 
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Motion estimation using a CNN

How do we estimate the motion field ?

• In data assimilation, a model on the motion field and a tracer equation on 
temperature is given and an energy functional is minimized. 

• Here, we do not use any prior model for the motion field, but  rather estimate it  
from the data. 

• We choose to predict the motion field using a Convolutional Neural Network (CNN) 
directly :  
• Difficulty : no direct supervision 
• requires the real motion field as target. 

CNN
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Convolutional Neural Network

• Classical CNN : Take images as input, output a vector via 
dense  layers. 

•  Useful for predicting a label, or a vectorial attribute.
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Convolution - Deconvolution

• Convolution Deconvolutional NN : Take images as input 
and output an images. 

•  Useful for forecasting, segmentation, etc… 
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Our architecture

It�k�1:t
Convolution

Deconvolution

64⇥ 64⇥ k

64⇥ 64⇥ 2
64⇥ 32⇥ 32

128⇥ 16⇥ 16
256⇥ 8⇥ 8

512⇥ 4⇥ 4
386⇥ 8⇥ 8

194⇥ 16⇥ 16

98⇥ 32⇥ 32

Skip Connections

ŵt
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It�k�1:t
Convolution

Deconvolution

64⇥ 64⇥ k

64⇥ 64⇥ 2
64⇥ 32⇥ 32

128⇥ 16⇥ 16
256⇥ 8⇥ 8

512⇥ 4⇥ 4
386⇥ 8⇥ 8

194⇥ 16⇥ 16

98⇥ 32⇥ 32

Skip Connections

ŵt

• We input past concatenated temperature images. 
• The neural network estimates the displacement induced by 

the observation. 

To train our NN motion estimator, we need the target motion 
field, which we usually don't have...
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Supervision

Model

It�k�1:t

ŵt

Ît+1 It+1

Motion Field

CNN

Warping
Scheme
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• We predict the next image with the motion field via a 
differentiable warping scheme 

•  The model is then supervised by the target image.



Warping

It It+1

x

x− w

w

b
It+1(x) =

Z

⌦
k(x� ŵ(x), y) It(y) dy

⇡
X

y2⌦\Z2

k(x� ŵ(x), y) It(y)

This formulation is similar to the one of the  Differentiable 
Image Sampling Scheme of the Spatial Transformer 
Network (Jadelbers, 2015)  19

k(x� w, y) = N (y |x� w, 2Dt)With



Our model

Supervision

Model

A-D

solution

It�k�1:t

ŵt

Ît+1 It+1

Motion Field

CNN
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Adding more Prior Knowledge

L

t

=
X

x2⌦

(Î
t+1(x)� I

t+1(x))
2

L

t

= L

t

+
X

x2⌦

�div(r. ŵ

t

(x))2 + �grad krŵ

t

(x)k2 + ...

Cost Function for a single example : 

It is possible to add specific weighted penalties to the cost 
function representing our prior knowledge about w  ( divergence, 
smoothness, magnitude ) :
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Recap

@w

@t
= F (w)

@I

@t
+ (w.r)I = Dr2I

r.w = 0

...
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Recap

@w

@t
= F (w)

@I

@t
+ (w.r)I = Dr2I

r.w = 0

...

Directly integrated in 
the NN architecture.
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Recap

@w

@t
= F (w)

@I

@t
+ (w.r)I = Dr2I

r.w = 0

...

Directly integrated in 
the NN architecture.

F is approximated 
with a CDNN
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Recap

@w

@t
= F (w)

@I

@t
+ (w.r)I = Dr2I

r.w = 0

...

Directly integrated in 
the NN architecture.

F is approximated 
with a CDNN

Integrated in the cost 
f u n c t i o n w i t h a 
penalty term. 
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Experiments
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Data
• Synthetic (analyzed) data from the NEMO 

engine (Madec, 2008) 
• We concentrate on 64 x 64 pixels 

subregions 
• We use 2006-2015 for training and 

validation, and 2016 to 2017 for testing.
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Baseline

• Bereziat and Herlin (2015) is a numerical assimilation 
model which relies on data assimilation (shallow water 
equations). It is is a state of the art assimilation model for 
predicting ocean dynamics, here SST. 

• Autoregressive CNN : an autoregressive convolutional-
deconvolutional NN (ACNN), with an architecture similar 
to our Convolutionnal Deconvolutional module. 

•  ConvLSTM (Shi, 2015), a Recurrent Neural Network 
which uses convolutional transitions in the inner LSTM 
module.
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It It+1 It+3 It+6

Results
Model Average Score (MSE) Average Time

Numerical model (Bereziat) 1.99 4.8 s

ConvLSTM 5.76 0.018 s

ACNN 7.84 0.05 s

Proposed model with regularization 1.42 0.040 s

Proposed model without regularization 2.01 0.040 s
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Our model

Ground truth



Results

It It+1 It+3 It+6
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Numerical 
Model

ConvLSTM

CDNN



Conclusion

Two approaches 


• Physical Method :  can offer 
valuable intuitions for constructing 
Neural Network architectures.


• Deep Learning , is an efficient 
data processing algorithm, with 
fast implementations, that allows 
us to develop and test new ideas 
quickly.


The interaction between the 
physical and the statistical paradigm 
for designing hybrid models is an 
interesting area of research to 
develop.

for more, see: arxiv.org/abs/1711.07970 32



But how can we estimate the motion field? w
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But how can we estimate the motion field? w

Our approach

• Similar to the physical approach 
• We model the motion vector field 

explicitly. 
• If we have an estimate of the 

motion vector, we can displace 
the temperatures along the 
motion estimate to forecast the 
temperatures. 
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Warping

It It+1

x

x− w

w

The Advection-Diffusion Equation solution gives us a way to 
calculate the future images from past observation and the motion 
vector field :

b
It+1(x) = [f ⇤ It](x� ŵ(x))

ffWhere is a Gaussian pdf
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f = N (x | 0, 2D)


