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Dictionary Learning
Usual linear case

Data X ∈ RN×M , dictionary D ∈ RN×S, codes Λ ∈ RS×M

Learn D and Λ such that X ≈ DΛ

Throw in whichever requirements suits you:
Compact representation? Take S < N (dimensionality
reduction)
Sparsity? Add l0 or l1 constraint
Positivity? Add a constraint! (NMF)

Ultimately, data is reconstructed through linear
combinations of dictionary atoms
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Dictionary Learning
Toy example
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Optimal Transport
Overview

Figure: Graphical representation of the mass transportation problem:
find the optimal way of moving a heap of sand µ into a hole ν knowing
the cost of moving grains of sand to and from any position
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Wasserstein Distances
Discrete setting

Knowledge of the cost of moving: cost matrix C ∈ RN×N

Optimal Transport distance defined as:

W (µ, ν) = min
T∈Π(µ,ν)

〈T ,C〉

Where Π(µ, ν) :=
{

T ∈ RN×N
+ ,T1N = µ,T>1N = ν

}
is the

set of acceptable transport plans
Recent numerical schemes allow for fast computation of
(approximate) Wasserstein distances1

1Cuturi, 2013
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Barycenters
Euclidean case

Inputs D = (d1, . . . ,dS) and weights λ = (λ1, . . . , λS)

Euclidean barycenter:

B(D, λ) := argmin
u∈RN

S∑
s=1

λs‖u − ds‖22 =
S∑

s=1

λsds

Figure: Euclidean simplex
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Barycenters
Wasserstein case

Similarly, define Wasserstein barycenters as:

P(D, λ) = argmin
u

S∑
s=1

λsWγ(u,ds) = . . .?

Iterative scheme to compute approximate Wasserstein
barycenter: P(L)(D, λ) ≈ P(D, λ) after L iterations

Figure: Wasserstein simplex
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Barycenters
Simplices comparison

(a) Euclidean simplex (b) Wasserstein simplex
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Wasserstein Dictionary Learning

Idea: instead of X ≈ DΛ, how about X ≈ P(D,Λ)?
Optimization problem:

argmin
D,Λ

E(D,Λ) :=
M∑

i=1

L(xi ,P(D, λi))

Gradient descent in both dictionary and weights: need
∂DP, ∂λP
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WDL & deep learning
Automatic differentiation

Automatic differentiation: differentiate algorithm instead of
analytical operator
WDL: gradients are obtained by automatic differentiation of
iterative scheme to compute Wasserstein barycenters
Deep learning: gradients are obtained by backprop!
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WDL & deep learning
WDL & autoencoders

Autoencoders: learn both encoder and decoder nets
Learning a Wasserstein dictionary similar to learning one
very specific such pair:

Encode new datapoint through its barycentric weights in the
atoms’ simplex;
The Wasserstein barycenter operator P(L)(D, .) is the
decoder.
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Toy examples
Translated gaussians
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Toy examples
Handwritten digits

WDL recovers Principal Wasserstein Geodesics2!
2Seguy & Cuturi 2015
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Chromatic variation of the PSF
Motivation

Figure: Simulated Euclid-like PSF variation for different wavelengths
(400 to 900nm)

Figure: Euclidean barycenters

Figure: Wasserstein displacement interpolation
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Chromatic variation of the PSF
Setting

Training data: set of simulated Euclid-like PSFs at different
wavelengths
Learn 2 atoms on a set of monochromatic PSFs, initialize
as constant images
Initialize weights as projected wavelength
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Chromatic variation of the PSF
Atoms learned
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Chromatic variation of the PSF
Reconstruction

Figure: Original PSFs (top row) and their reconstruction with our
method (bottom row)
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Toward chromatic decomposition of star images
Real-life setting

Stars give measurement of the PSF integrated with their
own SED S∗
Our objective is to obtain the integrated PSF for a given
galaxy’s SED S• 6= S∗
Need to decompose PSF into ‘monochromatic’
components:

Y =
n∑

i=1

S∗(λi)Hi

Y : observed star image;
S∗(λ1), . . . ,S∗(λn): discretized star SED;
H1, . . . ,Hn: monochromatic PSFs.
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Toward chromatic decomposition of star images
λRCA

Use Optimal Transport to break degeneracy
Reconstruct star image as weighted sum of intermediary
steps (Wasserstein barycenters) in the transportation of
extreme-wavelengths PSFs
Use whole field of stars to learn basis set of transport plans
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Toward chromatic decomposition of star images
λRCA (preliminary results)

Figure: From top to bottom: observed polychromatic PSF, true
monochromatic PSFs, reconstructed monochromatic PSFs
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Summary

Wasserstein Dictionary Learning: a new, Optimal
Transport-based representation learning method
Acknowledgements and funding:
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Optimal Transport - WDL
Graphical representation

Figure: Graphical representation of the WDL approach. Source:
Bonneel et al, 2016
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Wasserstein Distances
Continuous setting

The optimal cost achieved in the mass transportation
problem defines an Optimal Transport distance between
any two measures µ, ν on some space Ω:

W (µ, ν) := min

{∫
Ω×Ω

c(x , y)dπ(x , y), π ∈ Π(µ, ν)

}
Where Π(µ, ν) is the set of bivariate measures with
marginals µ, ν:∫

Ω
π(x , y)dx = ν(y)∫

Ω
π(x , y)dy = µ(x)
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Wasserstein Distances
Discrete setting

Discrete case: if |Ω| = N, c reduces to C ∈ RN×N and:

W (µ, ν) = min
T∈Π(µ,ν)

〈T ,C〉

Where Π(µ, ν) :=
{

T ∈ RN×N
+ ,T1N = µ,T>1N = ν

}
is the

set of acceptable transport plans
Recent numerical schemes allow for fast computation of
(approximate) Wasserstein distances3

3Cuturi, 2013
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Numerical Optimal Transport
Entropic penalty

Adding an entropy penalty term:
Wγ(µ, ν) := minT∈Π(µ,ν)〈T ,C〉+ γH(T )

Leads to the Sinkhorn algorithm being useable for linear
convergence to Wγ :

b(0) := 1N
a(l) := ν

K>b(l−1)

b(l) := µ
Ka(l)

T (L) := ∆
(
b(L)

)
K ∆

(
a(L)
)

Where K = exp(−C/γ)
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Numerical Optimal Transport
Entropic penalty & barycenter computation

Generalized Sinkhorn algorithm for barycenter
computation:

P(l) (D, λ) =
∏S

s=1

(
K>a(l)

s

)λs

a(l)
s = ds

Kb(l−1)
s

b(l)
s = P(l)(D,λ)

K>a(l)
s

Where K = exp(−C/γ)
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Wasserstein simplices
Effect of γ

(a) γ = 8 (b) γ = 1

Figure: Wasserstein simplices for different γ values
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Chromatic variation of the PSF
PCA components
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Chromatic variation of the PSF
Weights

Figure: Left-hand side: weights reached by our method at
convergence. Right-hand side: PCA-learned codes corresponding to
the first two principal components
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Chromatic variation of the PSF
NMF atoms

Back to PSF Application
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Cardiac sequence

Figure: Left: True frames (bottom row) and reconstructions after
application of our method. Right: Projection of the weights in the 4
atom basis.
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Face editing
MUG Dataset

Figure: Top row: isobarycenter of 5 learnt atoms. Bottom row:
extrapolation giving 30% weight importance to each of the 5.
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Wasserstein Dictionary Learning
Automatic differentiation

Differentiating true P operator impossible and/or comes at
prohibitive cost
P(L) is what we are going to use in practice, and is just the
result of iteratively applying simple mathematical
operations:

P(L) = f (f ( . . . (f (1N ,D, λ)),D, λ),D, λ)

Automatic differentiation4: differentiate algorithm by
applying chain rule
Can be done by specialized libraries5 or ‘by hand’

4Griewank & Walther, 2008
5http://deeplearning.net/software/theano/
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Handmade automatic differentiation
Definitions

P(l)(D, λ) = Ψ(b(l−1)(D, λ),D, λ) (1)

b(l)(D, λ) = Φ(b(l−1)(D, λ),D, λ) (2)

where:

Ψ(b,D, λ) :=
∏

s

(
K>

ds

Kbs

)λs

Φ(b,D, λ) :=

(Ψ(b,D, λ)

K> d1
Kb1

)>
, . . . ,

(
Ψ(b,D, λ)

K> dS
KbS

)>>
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Handmade automatic differentiation
Notations

Introduce:

ξ
(l)
y :=

[
∂yξ(b(l),D, λ)

]>
B(l)

y :=
[
∂yb(l)(D, λ)

]>
where ξ can be Ψ or Φ, y can be D or λ
And denote:

v (L−1) := Ψ
(L−1)
b

(
∇L(P(L)(D, λ), x)

)
(3)

∀l < L− 1, v (l−1) := Φ
(l−1)
b

(
v (l)
)

(4)

Morgan A. Schmitz et al. CosmoStat Day on Machine Learning in Astrophysics



44/25

Entropy parameter Additional results Automatic differentiation Going further: unbalanced WDL

Handmade automatic differentiation
Derivations

Then by total differentiation and the chain rule, differentiating
(1) yields:

[
∂DP(l)(D, λ)

]>
= Ψ

(l−1)
D + B(l−1)

D Ψ
(l−1)
b (5)

And, differentiating (2):

B(l)
D = Φ

(l−1)
D + B(l−1)

D Φ
(l−1)
b (6)
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Handmade automatic differentiation
Derivations

We then have, by definitions (3)-(4) and by (5) and (6):

∇DEL(D, λ) = Ψ
(L−1)
D

(
∇L(P(L)(D, λ), x)

)
+ B(L−1)

D v (L−1)

= Ψ
(L−1)
D

(
∇L(P(L)(D, λ), x)

)
+ Φ

(L−2)
D

(
v (L−1)

)
+

B(L−2)
D

(
v (L−2)

)
= . . .

∇DEL(D, λ) = Ψ
(L−1)
D

(
∇L(P(L)(D, λ), x)

)
+

L−2∑
l=0

Φ
(l)
D

(
v (l+1)

)
where the sum starts at 0 because B(0)

D = 0 since we initialized
b(0) as a constant vector
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Going further: unbalanced WDL
Overview

Recall discrete Wasserstein distance definition:

W (p,q) := min
T∈Π(µ,ν)

〈T ,C〉

Π(µ, ν) :=
{

T ∈ RN×N
+ ,T1N = µ,T>1N = ν

}
Identical to:

W (p,q) := min
T∈RN×N

+

〈T ,C〉+ ι{µ}(T1N) + ι{ν}(T>1N)

Unbalanced Optimal Transport: relaxation by replacing ι
with other similarity criterion, e.g.:

WKL(p,q) := min
T∈RN×N

+

〈T ,C〉+ KL (µ|T1N) + KL
(
ν|T>1N

)
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Going further: unbalanced WDL
Application

Figure: Example datapoints from set of bimodal Gaussians (in blue)
and reconstructions from our method (in yellow) in both the balanced
and the unbalanced cases
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