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Exercises

Coding
Limber equation (cycle 1)

Data analysis
Compute the shear two-point correlation function (2PCF) (cycle 1+2)

Calculations
Effect of convergence and shear (cycle 1)
Convergence and shear power spectra (cycle 1)
Galaxy-galaxy lensing (cycle 2)
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Coding Limber equation (cycle 1)

Code up Limber equation in python I
Getting the 3D power spectrum

Run CLASS to get 3D power spectrum at various redshifts:

> mkdir output

> /path/to/class lcdm.ini

This creates files output/test z<N> pk nl.dat, where <N> corresponds to redshift 0.1×N ,
due to the definition of the redshift keyword in lcdm.ini:

z_pk = 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0, 1.1

Run python program:

> ./ limber.py

This reads in CLASS output Pδ files, creates splines to interpolate to arbitrary k and stores
them in an array (for the redshift).
It produces a test message:

Test: P_delta(k=0.5 h/Mpc , z=0.3) = 600.998245036

Check in the corresponding Pδ file whether this value makes sense.
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Coding Limber equation (cycle 1)

Code up Limber equation in python II

Here is the code snippet:

from astropy.io import ascii

p_delta = []

for iz in range(nz):

p_delta_name = ’{0}z{1} _pk_nl.dat’.format(root , iz+1)

print(p_delta_name)

dat = ascii.read(p_delta_name)

if iz == 0:

k = dat[’col1’]

pk = dat[’col2’]

this_p_delta = \

interpolate.InterpolatedUnivariateSpline(k, pk)

p_delta.append(this_p_delta)

If astropy is not installed, use instead:

dat = np.loadtxt(p_delta_name)

k = dat[:,0]

pk = dat[:,1]
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Coding Limber equation (cycle 1)

Code up Limber equation in python III

Writing down Limber equation for a simple case

Now, let’s look at the Limber equation, as shown in the lecture before:

Pκ(`) =

∫
dχG2(χ)Pδ

(
k =

`

χ

)
G(χ) =

3

2

(
H0

c

)2
Ωm

a(χ)

∫ χlim

χ

dχ′ p(χ′)
χ′ − χ
χ′

First, to simplify, let’s assume all galaxies are at a single redshift z0, or
comoving distance χ0.
The pdf becomes a Dirac delta function, p(χ′) = δD(χ′ − χ0).
Solve the integral in G.
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Coding Limber equation (cycle 1)

Code up Limber equation in python IV

Next, since CLASS outputs Pδ as function of redshift and not comoving
distance, we have to change variables from χ to z.

Start with the FLRW metric and the equation for geodesics, ds = 0 (see TD
by M. Kunz):

ds2 = 0 = c2dt2 − a2dχ2

and write dχ as function of dz.

You will need the Hubble expansion rate H(z). Assume a flat ΛCDM model.

Finally, write down Pκ as integral over z over the density power spectrum.
Check the units of the involved quantities.
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Coding Limber equation (cycle 1)

Code up Limber equation in python V
Numerical integration of the Limber equation

Discretise the above integral. In python, write a function that performs this
discrete sum, evaluating Pδ at the redshifts that are output by CLASS.
To get the comoving distance as function of redshift, use the code from the
general cosmolgy TD, or a package such as astropy:

def chi(z, Omega_m , h):

""" Return comoving distance in units of Mpc/h

"""

from astropy import cosmology

cosmo = cosmology.FlatLambdaCDM(H0=100*h, Om0=Omega_m)

# Multiply with h to go from Mpc to Mpc/h

chi = cosmo.comoving_distance(z).value * h

return chi

(Note that CLASS output units are k [h/Mpc] and Pδ(k) [(Mpc/h)3], so for
consistency we want to deal with χ in units of [Mpc/h].)
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Coding Limber equation (cycle 1)

Code up Limber equation in python VI
Plot and compare

Make a plot of Pκ, using the function in limber.py or writing your own.

Compare with Fig. 8 from (Alsing et al. 2016). They measured Pκ on
CFHTLenS from the two redshift bins from (Benjamin et al. 2013), with mean
redshifts 0.7 and 1.05, respectively. Use one of those values as the single
redshift z0.
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Coding Limber equation (cycle 1)

Code up Limber equation in python VII14 J. Alsing, A. Heavens, A. Ja↵e

Figure 8. Recovered posteriors for the E- and B-mode tomographic power spectra from CFHTLenS, summarised by 68% (orange)
and 95% (grey) credible intervals. The best-fit (maximum posterior) ⇤CDM model is shown in red (obtained from the map-cosmology
sampling scheme applied to the CFHTLenS data, c.f., §6.4).

thorough analysis of the B-mode posteriors should perform
model-selection on E- and B-mode models versus E-mode
only, with an appropriately motivated or uninformative prior
on the B-modes. Alternatively, one could fit the recovered
B-mode power spectra with a parametrised model (along-
side the cosmological parameters), if a well-motivated model
was available. We leave detailed analysis of the cosmic shear
B-modes in a Bayesian context to future work.

The correlation matrix of the poste-
rior samples organised into a vector C =
(CEE

B,11, C
EE
B,12, C

EE
B,22, C

BB
B,11, C

BB
B,12, C

BB
B,22, . . . ) is shown in

Fig. 9, where the grid indicates the ten band-powers.
The 3 ⇥ 3 highly correlated blocks along the diagonal
represent strong correlations between the three E-mode
tomographic cross power spectra within each band, as we
would expect. There is little (. 0.1) correlation between the
band powers, so a cosmological analysis of the band-powers
(not attempted here) could take the band-powers as being
independent to a reasonably good approximation. The
correlation between E- and B-modes is also very small
– this indicates that whilst the presence of B-modes on
large scales might be alarming (indicating residual unac-
counted for systematics in the CFHTLenS data), formally
marginalizing over B-modes should have a negligible e↵ect
on the final parameter inference. Therefore, we are justified
(to a good approximation) in ignoring B-modes in the
map-cosmology inference scheme implementation in this
work.

6.3 CFHTLenS shear maps

The recovered shear maps for the four CFHTLenS fields are
shown in Fig. 10-11 – these figures show the posterior means

Figure 9. Correlation matrix of the posterior band power sam-
ples from CFHTLenS. E/B-mode band powers are organized into
a vector: C = (CEE

B,11, CEE
B,12, CEE

B,22, CBB
B,11, CBB

B,12, CBB
B,22, . . . ). The

correlations between adjacent E-mode band powers are typically
. 0.1 and the correlations between the E- and B-mode inferences
are small.

and variances for the �1 and �2 components respectively. For
the first time, we are able to obtain full posterior inference
of shear maps from a weak lensing survey. Furthermore, the
inferred maps are cosmology independent (notwithstand-
ing the band-power approximations that can be straightfor-
wardly lifted in future analyses) and formally marginalised
over our a priori uncertainty in the shear power spectrum.
The Bayesian inference schemes implemented in this work

c� 0000 RAS, MNRAS 000, 000–000

Figure 8 from (Alsing et al. 2016), E-mode power spectra from CFHTLenS.

Bonus: Use CLASS to produce the Pκ using the exact (non-Limber)
expression, or other codes (e.g. nicaea, CLASS, CosmoSIS). Compare.
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Data analysis
Compute the shear two-point correlation function

(2PCF) (cycle 1+2)

Weak-lensing statistics on a CFHTLenS field I

This exercise will show you how to estimate second-order shear statistics
(2PCF, aperture-mass dispersion, band-power spectrum) and their errors, and
how to compare these estimates with theoretical predictions.

1. Download shear catalogue
Note: The catalogue size is 158 Mb, so this might take a while. So do this step
well before the start of the TD, or use the downloaded catalogue on the
common disk.
Go to http://cfhtlens.org → Fellow astronomers → Quick link: Access
the CFHTLenS Shear and Photometric Redshift catalogues.
This brings you to the catalogue query page on CADC
http://www.cadc-ccda.hia-iha.nrc-cnrc.gc.ca/en/community/

CFHTLens/query.html.
We will download the shear data from the W1 field (but feel free to use
another field — check the coordinates in (Erben et al. 2013)). The following
steps are advised (for some of these you have to edit the string in the query
field):
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Data analysis
Compute the shear two-point correlation function

(2PCF) (cycle 1+2)

Weak-lensing statistics on a CFHTLenS field II

• Un-select id

• Select ALPHA J2000, DELTA J2000, e1, e2, weight. These are the x-
and y-coordinates, the two ellipticity components, and the galaxy weight.

• Choose the ranges ALPHA J2000≥ 25, ALPHA J2000≤ 45,
DELTA J2000≥ −20, and DELTA J2000≤ 0. This selects coordinates in
the W1 field (you can double-check in (Erben et al. 2013)).

• Choose weight> 0, the code athena that computes the 2PCF does not
like objects with zero weight.

• Choose the range ≥ 0.0 and ≤ 0.0, but do not select fitclass. This flag is
zero for galaxies, one for stars, and negative for other detections. We only
want galaxies, but do not need this flag in our catalogue.

• If you like you can do a test by clicking on ”submit query” to see the first
10 objects. If you are happy with the result, choose “Asynchronous” as
submission method, ”Tab Separated Values”, and delete “top 10” from
the query field (we don’t only want 10 objects)
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Data analysis
Compute the shear two-point correlation function

(2PCF) (cycle 1+2)

Weak-lensing statistics on a CFHTLenS field III

The text in the query field should now look something like the following:
SELECT

ALPHA J2000, DELTA J2000, e1, -1*e2, weight

FROM

cfht.clens

WHERE

ALPHA J2000>=25

AND ALPHA J2000<=45

AND DELTA J2000>=-20

AND DELTA J2000<=0

AND fitclass>=0.0

AND fitclass<=0.0

AND weight>0

I recommend to flip the ε2-coordinate, by placing a minus sign in front of e2 in
the second line. The original coordinates have North and East defined such
that (x, y) have a left-handed orientation. The ε2 flip accounts for that (why?).
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Data analysis
Compute the shear two-point correlation function

(2PCF) (cycle 1+2)

Weak-lensing statistics on a CFHTLenS field IV
• Submit query and wait. The processing of the query can take a few

minutes up to several hours! After it is done the web page will show a
link, from where you can download the catalogue.

Once the catalogue is downloaded, check whether it contains five columns that
make sense. You can for example make a scatter plot of α and δ to see
whether the selected galaxy coordinates are as desired.
Before proceeding, remove the first (header) line.

2. Use athena to get the 2PCF ξ+ and ξ−.
If athena is not installed, download version 1.7 from
www.cosmostat/athena.html, and compile.
First, create a config file. The easiest is to copy the example file from
/path/to/athena/test/test xi/config tree and modify it to set the
following entries:

• GALCAT1 to the name of the catalogue you downloaded, GALCAT2
either the same or “-”.

• SCOORD INPUT to “deg”
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Data analysis
Compute the shear two-point correlation function

(2PCF) (cycle 1+2)

Weak-lensing statistics on a CFHTLenS field V

• THMIN, THMAX to whatever you like; Note that the shear correlation
function is very noisy on scales smaller than 0.1 arcmin due to a very
small number of galaxy pairs at such small distances; on scales larger
than a few degrees it is more or less consistent with zero for the survey
area in consideration.

• RADEC to 1

• OATH: the smaller, the more precise but also the slower the calculation.
For testing you can put it to 0.2; for serious calculations it should be 0.05
or smaller.

We will perform two runs: (A) to compute and plot the 2PCF in a few coarse
bins; (B) to compute the 2PCF in many narrow bins that then will be
integrated to get aperture-mass and band-power spectrum.
The settings in the config file for the two cases:

A B
NTH ∼ 20 ∼ 1000 or more
BINTYPE LOG LIN (recommended) or LOG
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Data analysis
Compute the shear two-point correlation function

(2PCF) (cycle 1+2)

Weak-lensing statistics on a CFHTLenS field VI

Run athena with the correct config file for case A or B. You can make sure
that the output from another case is not overwritten by running them in
different subdirectories, or by using specific suffixes with option (--out suf).

> /path/to/athena/bin/athena -c config_tree_A --out_suf _A

The run will take around 10-20 minutes.

athena implements the pairwise galaxy sum estimator of the 2PCF, see Part I:

ξ̂±(θ) =

∑
ij wiwj (εt,iεt,j ± ε×,iε×,j)∑

ij wiwj

with a tree code algorithm.
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Data analysis
Compute the shear two-point correlation function

(2PCF) (cycle 1+2)

Weak-lensing statistics on a CFHTLenS field VII

athena - configuration file

open
angle

[The official Euclid OU-LE3 PF WL-2PCF software is the C++ version of
athena (written by Bertrand Morin, Florent Sureau).]

3. From run (A) plot ξ+, ξ−.
The file xi<suffix> contains as columns:
angular bin center ϑ , ξ+, ξ−, ξ×, weight w, raw Poisson error

√
D, corrected

Poisson error
√
Dcor.

Plot ξ+, ξ− with error bars
√
Dcor versus θ.

The file xi.resample<suffix> contain mean and rms of the resampled ξ+
and ξ−, in our case (default config file) from the Jackknife method. Plot the
ξ+ and ξ− with resampled error bars, and compare mean and error bars.
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Data analysis
Compute the shear two-point correlation function

(2PCF) (cycle 1+2)

Weak-lensing statistics on a CFHTLenS field VIII
4. Use pallas.py to get derived second-order statistics: aperture-mass
dispersion and band-power spectrum

> /path/to/athena/bin/pallas.py -i xi<suffix >

The resulting important output files are:

• output map2 poly.txt, columns: smoothing scale/circle radius θ,
〈M2

ap〉(θ), 〈M2
×〉(θ), 〈MapM×〉(θ).

• output pkappa band.txt, columns: 2D Fourier mode bin center `, PE
κ (`),

PB
κ (`), PEB

κ (`), lower bin limit `lo, upper bin limit `hi.

Plot E-, B-, and mixed EB-modes of both quantities in separate plots.
Note: If you find B-mode amplitudes comparible to the E-mode, you might
have done the ε2-flip incorrecly.
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Data analysis
Compute the shear two-point correlation function

(2PCF) (cycle 1+2)

Weak-lensing statistics on a CFHTLenS field IX

5. Use the Limber code from cycle I, or nicaea, or CLASS to create theoretical
prediction of the power spectrum.

Use z̄ = 0.75 (Kilbinger et al. 2013) for the mean redshift. Add the resulting
convergence power spectrum Pκ to the previous plot, by plotting on the y-axis
`(`+ 1)/(2π)Pκ(`).
Note that the shear catalogue is not calibrated. The calibration for the
multiplicative shear bias m is around 6% on average, that makes around 12%
in amplitude for the 2PCF.

Additional bonus exercises

1. Download the catalogue again with additional fields. Note that if you
want to re-run athena, you have to create a copy of the catalogue without
those additional fields, since for ascii catalogues only 5 input columns are
accepted.
Extra catalogue on USB sticks.
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Data analysis
Compute the shear two-point correlation function

(2PCF) (cycle 1+2)

Weak-lensing statistics on a CFHTLenS field X

• Redshift distribution. Select Z B, photometric redshift. From this, create a
histogram that you can use as redshift distribution n(z) for the theoretical
prediction, instead of placing all galaxies at one single redshift.
Extra-bonus if you make a weighted histogram using the weights w.
Special extra bonus if you download the full pdf information, PZ full, and
create the n(z) from the sum of weighted pdf’s.

• Shear calibration. Select SNratio, signal-to-noise ratio, and scalelength

for galaxy size.

• Additive shear bias c: The correction for c can be done for each galaxy. Use
eq. (19) of (Heymans et al. 2012) for c2; note that scalelength is in pixels,
with one pixel being 0.187 arc seconds. On average, c2 should be of order
0.002.
The 1-component of the additive bias, c1, was measured to be consistent
with zero, and no calibration is required.
Subtract c2 from ε2 for each galaxy. This should be done before the ε2 flip.
Note that a constant additive bias shows up in the 2PCF, but not the
aperture-mass dispersion. (Why?)
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Data analysis
Compute the shear two-point correlation function

(2PCF) (cycle 1+2)

Weak-lensing statistics on a CFHTLenS field XI

• Multiplicative shear bias m: Correction for m should not be done on
individual galaxies. This might introduce correlations between their weights
w and m, and could up-weigh badly measured galaxies if they have a large
|m|. Instead, we need to compute a total calibration correction for the
entire galaxy sample. For the 2PCF, this is the expression (16) in (Miller
et al. 2013), or (14) in (Kilbinger et al. 2013),

The 2PCF is then globally calibrated by

ξcal± (ϑ) =
ξ±(ϑ)

1 +K(ϑ)
.

We can use athena to compute the two-point correlation function of m,
1 +K(ϑ). Since m is a scalar and not a spin-2 quantity like ellipticity, we
can to the following trick: In the original shear catalogue, we replace ε1
with 1 +m, and ε2 with 0. The output ξ+ = 〈ε1ε1〉+ 〈ε2ε2〉 of athena then
results in 〈(1 +m)(1 +m)〉, which corresponds to 1 +K. (ξ− will not be a
meaningful output.)
Use (17) of (Heymans et al. 2012) to compute m for each galaxy. In this
equation, log = log10, and α is in inverse pixel. Do the replacement in the
catalogue as descibed above. The modified catalogue should now contain
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Data analysis
Compute the shear two-point correlation function

(2PCF) (cycle 1+2)

Weak-lensing statistics on a CFHTLenS field XII

the 5 columns ALPHA J2000, DELTA J2000, 1 +m, 0, w. and run athena

with the modified catalogue.
Plot the calibrated 2PCF ξcal and compare to the previous result.

2. Code up the Hankel transform to obtain ξ+ and ξ− from the theoretical
model,

ξ+(ϑ) =
1

2π

∫ ∞
0

d` `J0(`ϑ)Pκ(`)

ξ−(ϑ) =
1

2π

∫ ∞
0

d` `J4(`ϑ)Pκ(`),

Plot together with the data.

3. Plot theoretical power spectrum for different values of σ8.
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Data analysis
Compute the shear two-point correlation function

(2PCF) (cycle 1+2)

Weak-lensing statistics on a CFHTLenS field XIII

4. Error bars for 〈Map〉 and Pκ(`).
Re-run athena with the options --out ALL xip resample XIP NAME

--out ALL xim resample XIM name. This outputs all resampled
realisations of ξ+ and ξ− into the files XIP NAME and XIM name,
respectively.
There are two options to proceed:

4.1 Bring these files into the format of athena output file xi. Use dummy
values for columns xi x, w, sqrt D, sqrt Dcor, n pair (for example
copy the ones from xi. Create a different new xi file for each of the
NRESAMPLE resample realisation.
Run pallas.py with each of the resample xi files. This should provide
NRESAMPLE output files; make sure they have unique names or are
stored in different sub-directories.
The errors bars on 〈Map〉 and Pκ(`) are then simply the rms between the
different realizations (the errors on ξ± have been properly propagated to
the derive quantities).
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Data analysis
Compute the shear two-point correlation function

(2PCF) (cycle 1+2)

Weak-lensing statistics on a CFHTLenS field XIV

4.2 Reading resampled input and computing resample errors bars for 〈Map〉
and Pκ(`) is already implemented for FITS format, in a new version of
pallas.py. See function read xi resample.

Download this new version and implement resampling for ASCII format.

Compare to option 1.

5. Extend the computation of the jackknife variance (see previous point) to
the co-variance.
Code up a simple Gaussian likelihood function with the inverse of this
covariance.
Compute the likelihood for various values of σ8, and make a plot.
Special extra super bonus: Use this likelihood in a sampler,
e.g. MontePython. Do an MCMC and plot parameter constraints.
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Calculations Effect of convergence and shear (cycle 1)

Convergence and shear I
Calculate the effects of κ and γ on a circular image, using the linearized lens
equation,

I(θ) = Is(β(θ)) ≈ Is(β(θ0) +A(θ − θ0)),

with the Jacobi matrix

A =

(
1− κ− γ1 −γ2
−γ2 1− κ+ γ1

)
.

1. Convergence

Set shear to zero.
Parametrize a circular isophote (line of constant surface brighness I) in
the 2D image coordinates θ = (θ1, θ2).
Set θ0 = 0 and β(θ0) = 0, these are just arbitrary translations in the
coordinate system. Compute the source coordinates β(θ) from the
linearized lens equation.
Show that a positive (negative) κ results in a magnified (demagnified)
image compared to the source.
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Calculations Effect of convergence and shear (cycle 1)

Convergence and shear II

2. Shear
For simplicity, set γ2 = 0, and κ 6= 0. Repeat the calculation from above
and show that the transformed image is an ellipse.
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Calculations Convergence and shear power spectra (cycle 1)

Convergence and shear power spectra I

Show that the power spectra of the convergence and the shear are equal.

1. Write the relations between κ, γ and ψ in Fourier space, and express γ̂ as
a function of κ̂.

2. Now show that Pκ = Pγ
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Calculations Galaxy-galaxy lensing (cycle 2)

Tangential shear and projected overdensity I

Exercise:
Show that the average tangential shear around a point at an angular radius θ
is equal to the projected mass overdensity within θ, minus a boundary term.

〈γt〉 (θ) = κ̄(≤ θ)− 〈κ〉 (θ).

The projected mass overdensity κ̄(≤ θ) averaged over the disk with radius θ,
Dθ, is given by (Miralda-Escude 1991, Squires & Kaiser 1996)

κ̄(≤ θ) :=
1

πθ2

∫
Dθ:|θ′|<θ

d2θ′κ(θ′).

1. First, use the Poisson equation to relate the convergence to the lensing
potential ψ. Apply Gauss’ law to replace the ‘volume’ integral over the
disk Dθ by a ‘surface’ integral over the boundary of the disk, ∂Dθ, which
is the circle at radius θ.
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Calculations Galaxy-galaxy lensing (cycle 2)

Tangential shear and projected overdensity II
2. Replace the integration over the line element along the circle with an

integral over the polar angle ϕ, accounting for the circle length 2πθ.
Convince yourself that the gradient of the potential ψ is projected to the
radial direction êθ normal to the circle; the tangential derivative is
projected out by the scalar product.

3. To further evalute the lensing potential, we need its second derivatives.
Multiply the last result with θ, and take the derivative with respect to θ.
The term ∂θ∂θψ can be expressed in terms of convergence and tangential
shear using the relations derived earlier in the lecture. Do this in a local
Cartesian coordinate system (êθ, êϕ). What is the interpretation of the
second shear component in this system when seen from the canonical
coordinate system?
Define circularly averaged quantities

〈a〉(θ) :=
1

2π

∫ 2π

0

dϕa(θ, ϕ).

and express ∂[θκ̄(≤ θ)]/∂θ in terms of circularly averaged convergence
and tangential shear.
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Tangential shear and projected overdensity III

4. Write κ̄(≤ θ) of eq. (27) as function of 〈κ〉.
Multiply by θ and take the derivative with respect to θ, as with the
equation before.
Equate this with the previous expression to get the final result.

5. In addition (for relation between aperture-mass filters U and Q):
Express ∂κ̄(θ) as function of 〈γt〉(θ).
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