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Fig. 3 Sketch of the gravitational lensing signal and its intrinsic alignment contamination. Light travels
from the top of the sketch downwards, from the source plane via the lens plane to the plane at the bottom
containing the images as seen by an observer. The matter structure (green ellipsoid) deflects the light from
the background source galaxies (blue discs) and distorts their images tangentially with respect to the apparent
centre of the lens (as seen in the bottom plane). As a consequence, the galaxy images become aligned (GG
signal). Galaxies which are physically close to the lens structure (red ellipsoids) may be subjected to forces
that cause them to point towards the structure, which results in the alignment of their images (II signal).
Images of galaxies close to the lens are then preferentially anti-aligned with the gravitationally sheared images
of background galaxies (GI signal)

They come in principle with their own intrinsic correlations of galaxy observables, which
we will not discuss further here.

Galaxies as light sources are intrinsically non-circular in general, and the deviation from
a circular image can to first order be described by an intrinsic ellipticity ϵs. This ellipticity
is intrinsic in the sense that it is a property of the galaxy itself rather than induced by gravi-
tational deflection as the light travels to the observer, after leaving the galaxy. The observed
ellipticity under the gravitational lens mapping is then given by (Seitz and Schneider 1997)

ϵ = ϵs + g

1 + ϵsg∗ ≈ ϵs + γ with g ≡ γ

1 − κ
, (2)

where g is called the reduced shear. Both ellipticities and shear are understood as complex
numbers in this equation (with the complex conjugate denoted by a star), encoding the shape
in the absolute value and the orientation with respect to some reference axis in the phase,
e.g. ϵ = |ϵ| e2iϕ . The simple summation of shear and ellipticity in the second equality of
Eq. (2) only holds in the limit of very weak lensing effects,2 i.e. |γ |,κ ≪ 1. It is important
to note that the term ‘ellipticity’ is not uniquely defined in general and, even if galaxy images
were simple solid ellipses with semi-minor to semi-major axis ratio b/a, could correspond

2There is a subtlety involved in this approximation: for an individual galaxy, as Eq. (2) has been written, the
expansion produces another term that is first order in the shear and proportional to g∗(ϵs)2. However, since
the relation is only considered in practice when averaging over large numbers of galaxies, this term (as well
as all higher-order terms) becomes negligible if the intrinsic galaxy shapes are uncorrelated, or only weakly
correlated, with the shear acting on them.

(Joachimi et al. 2015)

Galaxy shapes are correlated with
surrounding tidal density field, due to
coupling of spins for spiral galaxies,
tidal stretching for elliptical galaxies.
Shape of galaxies is sum of shear (G)
and intrinsic (I) shape (remember
" ⇡ "s + �).
So, with intrinsic alignment, the
correlation of galaxy shapes is not only
shear-shear (GG), but also
intrinsic-intrinsic (II) and
shear-intrinsic (GI; (Hirata &
Seljak 2004)).

Contamination to cosmic shear at ⇠ 1 - 10%.
Need to model galaxy formation.
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IA measurement: Ellipticity - density correlations
With (spectroscopic) data measure �t around massive galaxies (= centres of
halos): shape - density correlations.
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Figure 1. The GI correlation functions for the SDSS Main sub-
samples, split into colour and luminosity bins.

Figure 2. Confidence contours for power-law fits to wg+(rp) for
Main sample galaxies. Contours are shown for various subsets of
data labelled on the plots; in each case, 1�, 2�, and 3� contours
are shown.

and to place constraints if there is no detection. The GI
signal wg+(rp) for each of the eight subsamples is shown
in Figure 1. Figure 2 shows the confidence contours for
fits to a power law, wg+(rp) = Ar��

p as discussed in
Mandelbaum et al. (2006a).

As shown, for both colour subsamples there is hardly
any detection in L3 and L4, consistent with previous works.
There is a hint of a signal in L3 for the red sample: when
we fit the whole range of scales to an arbitrary power law
there is no detection, however as we will see in Section 7

Figure 3. The density-shape correlation function wg+(rp) from
1–60 h�1 Mpc with the full spectroscopic LRG sample and various
subsamples as labeled on the plot. Errors are 1� but are somewhat
correlated on large scales.

if we fit to large scales (rp > 4.7h�1 Mpc) where the bias
is expected to be roughly linear, and restrict to the power
law � = �0.73 observed for the LRGs, there is a marginal
(2.4�) detection. For L5, the detection with the red sub-
sample is robust whereas there is no detection with the blue
subsample. For L6, the constraints are weak with the blue
sample due to its small size, so while the magnitude of the
alignments are consistent with the red subsample, they are
also marginally consistent with zero. The rest-frame colour
distribution of the L6 blue sample, and the distribution of
Photo pipeline output frac deV (a measure of the degree
to which a galaxy profile is closer to an exponential or de
Vaucouleur profile), suggest that this small L6 blue sample
may contain galaxies that are on the edge of the blue vs.
red galaxy distinction, which could explain this consistency
of results.

5.2 SDSS LRGs

Here we present results of the measurements of density-
shape correlations for the SDSS spectroscopic LRGs
(the measurement is otherwise similar to that of
Mandelbaum et al. 2006a). The plots of wg+(rp) in Figure 3
are in the same form as in that paper, including 1� errors.
Figure 4 shows the confidence contours for fits to a power-
law, wg+ = Ar�

p .
In the top panel of Figure 3, we show wg+(rp) for the full

spectroscopic LRG sample, and the BG and non-BG sub-
samples. As shown, the full sample and the BG subsamples
are robustly detected on all scales, out to 60 h�1 Mpc. The
non-BG subsample has a significantly lower signal to noise
due to its small size, but the amplitude appears roughly
comparable to that of the BG subsamples. In Figure 4, the
contours for the full LRG sample are shown in the upper
left panel, and for BGs and non-BGs separately in the lower
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IA measurement: Ellipticity - ellipticity correlations
With photometric data measure sum of GG, GI, and II.

10 C. Heymans et al.

Figure 2. The observed two-point correlation function �̂ij
+ (�). The panels show the different ij redshift bin combinations, ordered with increasing redshift bin

i from left to right, and increasing redshift bin j from lower to upper. Refer to table 1 for the redshift ranges of each tomographic bin. The errors are estimated
from an analysis of N-body lensing simulations as discussed in Section 3.3. The theoretical curves show our fiducial total GG+GI+II signal as a solid line.
When distinguishable from the total, the GG only signal is shown dashed. The magnitude of the GI signal is shown dot-dashed (our fiducial GI model has
a negative anti-correlated signal) and the II signal is shown dotted, where the amplitude is more than 10�7. The results of the broad two-bin tomographic
analysis of Benjamin et al. (2012) are shown in the lower right corner.

correspondingly large covariance matrix, that we use in the likeli-
hood analysis. Purely for improving the visualization of this large
data set, however, we propose the following method to compress
the data, motivated by the different methods of Massey et al. (2007)
and Schrabback et al. (2010).

To compress angular scales, we first calculate a WMAP7 cos-
mology GG-only theory model �ij

fid for each redshift bin combina-
tion ij and each statistic (+/�). We then define a free parameter
�ij

± which allows the overall amplitude of the model to vary, but
keeps the angular dependence fixed. The best-fitting amplitude �ij

±
is then found from a �2 minimization of �ij

±�ij
fid(�) to the shear

correlation functions measured at 5 angular scales in each ij bin
and each statistic. A best-fitting value of �ij

± = 1 implies the data
in bin ij are well-fit by a WMAP7 GG-only cosmology. Each bin is
then assigned a single value of �ij �̂ij

fid(� = 10) which can be inter-
preted as the amplitude of the two-point shear correlation function
measured in bin ij at an angular scale of � = 1 arcmin.

To compress the information in the redshift bin combination,
we calculate the lensing efficiency function qi(w) (equation 7) for
each redshift bin i, and then determine the peak redshift zpeak of
the combined lensing sensitivity qi(w)qj(w) for each redshift bin
ij combination. This peak redshift locates the epoch that is the
most efficient at lensing the two galaxy samples in the redshift
bin combination ij, but we note that these distributions are very
broad, particularly for the redshift bins with a significant fraction
of catastrophic outliers in the photometric redshift distribution (see
Figure 1).

Figure 3 shows the resulting compressed 21 data points for
each statistic, �+ (circles) and �� (crosses), plotting �ij �̂ij

fid(� =
10) against zpeak. This can be compared to the fiducial cosmol-
ogy prediction (shown dotted, by setting � = 1). To recover �ij

from this figure, one simply divides the value of each data point
by the value of the fiducial model, shown dotted, at that zpeak. We
find a signal that rises as the peak redshift of the lensing efficiency
function increases; the more large scale structure the light from our
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Table 1. Tomographic redshift bin selection. Galaxies are selected based on
their maximum posterior photometric redshift estimate zBPZ. The median
redshift zm and mean redshift z̄ for each bin is calculated from the effective
redshift distribution as measured by the weighted sum of the photometric
error distributions P (z).

Bin zBPZ zm z̄

1 0.20 � 0.39 0.28 0.36

2 0.39 � 0.58 0.48 0.50

3 0.58 � 0.72 0.62 0.68

4 0.72 � 0.86 0.82 0.87

5 0.86 � 1.02 0.93 1.00

6 1.02 � 1.30 1.12 1.16

inverse covariance matrix C�1 that sets the maximum number of
data points p in our analysis. The number of tomographic bins Nt

and angular scales N� is therefore set by the number of N-body
simulations that we have at our disposal. For p/nµ <

� 0.12, and
nµ = 1656, (see Section 3.3), we should therefore limit our analy-
sis to p <

� 200.

3.4 Tomographic analysis and redshift distributions

In a tomographic weak lensing analysis there is always a choice
to be made for the number of tomographic redshift bins, Nt, and
the number of scales probed, in our case angular scales, N� . As
the number of redshift and angular bins is increased, the amount of
information increases. A saturation limit is eventually reached be-
yond which the data points become so correlated that the extra in-
formation gained with each incremental increase in the number of
bins becomes marginal. With an unlimited number of N-body lens-
ing simulations from which to make an unbiased covariance matrix
estimate, the optimal number of tomographic bins will depend on
the photometric redshift accuracy of the survey, and the method by
which the contamination from intrinsic galaxy alignments is miti-
gated in the analysis. Bridle & King (2007) show that for a survey
with a photometric redshift scatter of �z = 0.05(1 + z), using
Nt � 8 brings the cosmological parameter constraints to within 20
per cent of the best attainable with a fully 3D approach. This is in
contrast to the conclusions of earlier cosmic-shear only optimiza-
tions, which found Nt � 3 to be optimal (Simon et al. 2004; Ma
et al. 2006). This difference indicates the importance of using finely
binned tomographic redshift slices when mitigating intrinsic align-
ment effects. Grocutt (2012) investigate the dependence of cosmo-
logical parameter constraints when varying the number of tomo-
graphic redshift bins, Nt, and the number of angular scales probed,
N� , simultaneously. A non-linear intrinsic alignment model was
assumed for the II and GI contamination (see Section 3.2). In this
analysis the cosmological parameter constraints were found to be
less sensitive to increases in N� , in comparison to increases in
Nt. This is expected for the single-parameter non-linear intrinsic
alignment model, as the cosmic shear, GG, and non-linear intrinsic
alignment II and GI power spectrum, vary smoothly with scale and
the relative amplitude between the II, GI and GG power for each
redshift bin is fixed as a function of scale. As the number of data
points p scales as Nt(Nt +1), however, even small increases in Nt

can quickly lead to an unstable covariance matrix.
Motivated by the findings of Bridle & King (2007) and Gro-

Figure 1. Tomographic redshift distribution. The upper panel shows the
effective weighted number of galaxies as a function of their maximum pos-
terior photometric redshift estimate, separated into six tomographic bins
between 0.2 < zBPZ < 1.3. The effective weighted number of galaxies in
each redshift bin is constant. The lower panel shows the redshift distribution
for each selected bin as estimated from the weighted sum of the photometric
redshift probability distributions P (z).

cutt (2012), and with the limitation that the total number of data
points p <

� 200 (see Section 3.3.1), we choose to use Nt = 6 red-
shift bins and N� = 5 angular bins such that our total number of
data points p = 210. The angular range is chosen to be spaced
equally in log(�) between 1.5 < � < 35 arcmin, where the maxi-
mum angular scale is determined by the limitations of the N-body
lensing simulations used to determine the covariance matrix. We
select the Nt = 6 redshift bins to span our high confidence red-
shift range 0.2 < zBPZ < 1.3 such that the effective surface num-
ber density of galaxies in each redshift bin is equal. The effective
number density includes the shear measurement weights w such
that the intrinsic ellipticity noise in each bin is equal. This choice
is in contrast to a cosmic shear signal-to-noise optimised redshift
bin selection which would lead to much broader bins at low red-
shift. Such optimization is undesirable for our purposes, as it is
the lowest redshift bins where the presence of intrinsic alignments
is most prominent. Table 1 lists the resulting redshift selection for
each tomographic bin. The median redshift zm and mean redshift
z̄ is calculated from the effective redshift distribution as measured
by the weighted sum of the photometric error distributions P (z).
These error distributions extend out to zBPZ = 3.5 which skews
the mean redshift measurement, relative to the median, particularly
in the lowest redshift bin.

Figure 1 compares the effective redshift distribution for each
tomographic bin as determined from the maximum posterior red-
shift zBPZ (upper panel) and by the weighted sum of the photomet-
ric error distributions P (z) (lower panel). The binning in the upper
panel is significantly finer than the typical CFHTLenS photometric
redshift error �z � 0.04(1 + z) (Hildebrandt et al. 2012). The fine
structure revealed by this binning therefore illustrates redshift fo-
cusing effects arising from the photometric redshift measurement,
not true physical structures. Accurate measurements of P (z) for
each galaxy allows us to fully account for these focussing effects,
in addition to overlapping redshift distributions and catastrophic
redshift outliers in our analysis (see Benjamin et al. 2012, for de-
tailed analysis of the P (z) used in this analysis). It is therefore the
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Intrinsic alignment

CFHTLenS: Tomographic weak lensing 17

Figure 11. Joint parameter constraints on the amplitude of the intrinsic alignment model A and the matter density parameter ⌦m from CFHTLenS combined
with WMAP7, BOSS and R11. In the left panel the constraints can be compared between two galaxy samples split by SED type, (early-type in red and late-type
in blue). In the right panel we present constraints from a optimised analysis to enhance the measurement of the intrinsic alignment amplitude of early-type
galaxies (pink). The full sample, combining early and late-type galaxies, produces an intrinsic alignment signal that is consistent with zero (shown purple). A
flat �CDM cosmology is assumed.

Figure 10. Compressed CFHTLenS tomographic data for an optimised
early-type galaxy intrinsic alignment measurement with auto-correlated
redshift bins containing only early-type galaxies (circles) and cross-
correlation redshift bins containing early-type galaxies in the low redshift
bin and all galaxy types in the high redshift bin (filled). Different tomo-
graphic bin combinations ij are indicated by zpeak, the peak redshift of the
lensing efficiency for that bin. The best-fitting amplitude �ij of the data
relative to a fixed fiducial GG-only cosmology model is shown, multiplied
by the fiducial model at � = 1 arcmin for �+. The error bars show the 1�

constraints on the fit. The data can be compared to the fiducial GG-only
model, shown dotted.

Aopt
early = 4.26+1.23

�1.39 , (19)

Aall = �0.48+0.75
�0.87 . (20)

We find the intrinsic alignment amplitude of the late-type sample
is consistent with zero. In contrast, the amplitude of the intrinsic
alignment model for the early-type sample is detected to be non-
zero with close to 2� confidence. When we consider the optimised
analysis, we find an even stronger detection, with an intrinsic align-
ment amplitude of A = 0 for early-type galaxies ruled out with
3� confidence. The optimised early-type analysis should be con-
sidered with some caution, however, as the tomographic redshift
bins do overlap and as such a small fraction of late-type with early-
type II correlation will be included in the measurement. The mea-
surement of Aearly should therefore be considered as our cleanest
measurement of the early-type galaxy intrinsic amplitude with the
optimised Aopt

early analysis providing us with the strongest evidence
for intrinsic galaxy alignments between early-type galaxies.

Our constraints show the same broad findings as other stud-
ies; intrinsic alignments are dependent on galaxy type. As previous
studies have focused on specific galaxy samples at fixed redshifts,
however, it is difficult to compare our constraints directly. With that
caveat we can, however, comment on literature results from galaxy
samples that are the most comparable. Our late-type sample is most
similar in its properties to the blue galaxies from the WiggleZ sur-
vey analysed in Mandelbaum et al. (2011). Their null detection is in
agreement with our late-type galaxy results. Our early-type sample
is most similar in terms of luminosity and redshift to the MegaZ-
LRG sample analysed in Joachimi et al. (2011). The best-fit values
4 <

� A <
� 6 for a range of different types of LRG galaxy selection

with an error of � 1, are in very good agreement with our early-
type galaxy results.

For the full galaxy sample, there is an indication that negative
values of A are preferred. For flat cosmologies, A is negative at
the 1.4� level when the CFHTLenS data are combined only with
WMAP7 and R11 (see table 3 for constraints on A for the full
galaxy sample for different cosmologies and data combinations).
Whilst we emphasize that this result is not statistically significant
it is however worth commenting on what this finding could mean.
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Simple intrinsic alignment model:!
Galaxy ellipticity linearly related to tidal field 
[Hirata & Seljak 2004, Bridle & King 2007].!
!
One free amplitude parameter A, 
fixed z-dependence.  

A = 1: reference IA model.!
A = 0: no IA
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Figure 8. Joint parameter constraints on the dark energy equation of state parameter w0 and the matter density parameter ⌦m, and curvature parameter ⌦K

for a curved wCDM cosmology from WMAP7-only (blue), BOSS combined with WMAP7 and R11 (green), CFHTLenS combined with WMAP7 and R11
(pink) and CFHTLenS combined with BOSS, WMAP7 and R11 (white).

Figure 9. Compressed CFHTLenS tomographic data for two galaxy sam-
ples; early-type (circles) and late-type (cross) galaxies. As in Figure 3, each
point represents a different tomographic bin combination ij as indicated
by zpeak, the peak redshift of the lensing efficiency for that bin. The best-
fitting amplitude �ij of the data relative to a fixed fiducial GG-only cos-
mology model is shown, multiplied by the fiducial model at � = 1 arcmin
for �+. The error bars show the 1� constraints on the fit. The data can be
compared to the fiducial GG-only model, shown dotted.

the data. The resulting best-fitting amplitude �ij is shown, multi-
plied by the fiducial model at � = 1 arcmin for �+. With only 20 per
cent of the data contained in the early-type sample, it is unsurpris-
ing that the measured signal to noise is significantly weaker than
for the late-type sample which are well fit by the fiducial GG-only
model, shown dotted. We can, however, optimise the measurement
of the intrinsic alignment signal from early-type galaxies, to get a
clearer picture, if we assume the II contribution to cross-correlated
bins is small in comparison to the GI signal. If this is the case, we
can decrease the noise on the GI measurement by using the full

galaxy sample as background galaxies to correlate with the early-
type galaxies in the foreground bin. The result of this optimised
analysis is shown, in compressed tomographic data form, in Fig-
ure 10. The open circles show the tomographic signal measured in
the auto-correlated redshift bins between early-type galaxies (these
auto-correlation bins are also shown in Figure 9). The closed sym-
bols show the tomographic signal in the cross-correlated redshift
bins where early-type galaxies populate the foreground bin and the
full galaxy sample populates the background higher redshift bin.
The data can be compared to the fiducial GG-only model, shown
dotted. What is interesting to note from this Figure is that at low
redshifts, where the intrinsic alignment signal is expected to be
the most prominent, the auto-correlated bins tend to lie above the
GG-only model. We expect this from the II term. For the cross-
correlated bins, however, the measured signal tends to lie below
the GG-only model. We expect this from the GI term.

Figure 11 combines the CFHTLenS data split by galaxy type,
and our optimised early-type galaxy tomography analysis, with
auxiliary data from WMAP7, BOSS and R11 to constrain the am-
plitude of the intrinsic alignment model A. Assuming a flat �CDM
model, the resulting 68 per cent and 95 per cent confidence limits
on A and the matter density parameter �m can be compared4. In
the left panel we show constraints from the two galaxy samples
split by SED type. The early-type galaxy constraints are shown
in red and the late-type galaxy constraints are shown in blue. In
the right panel, constraints are shown for the full galaxy sample
in purple and the optimised early-type intrinsic alignment analysis
in pink. The marginalised 68 per cent confidence errors on A, from
the combination of CFHTLenS data with WMAP7, BOSS and R11,
for the four different measurements are

Alate = 0.18+0.83
�0.82 , (17)

Aearly = 5.15+1.74
�2.32 , (18)

4 Note that the constraints on cosmological parameters other than A are
consistent between the early-type and late-type analysis, and that both sets
of parameter constraints, with the exception of A, are consistent with the
full galaxy sample analysis reported in table 3.
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Baryons in the LSS
On small (halo) scales, dark-matter only models do not correctly reproduce
clustering:

• R ⇠ 1 - 0.1 Mpc: gas pressure ! suppression of structure formation, gas
distribution more di↵use wrt dm

• R < 0.1 Mpc (k > 10/Mpc): Baryonic cooling, AGN+SN feedback !
condensation of baryons to form stars and galaxies, increase of density,
stronger clustering

The effect of baryon physics on weak lensing tomography 3

hydrodynamic simulations run with a modified version of the SPH
code Gadget (last described in Springel 2005). A range of physical
processes was considered, as well as a range of model parameters.
In this paper we use a subset of OWLS for which we will give a
brief description, inviting the reader to find more details in the pa-
pers where the simulations are presented. Note that all simulations
have been performed with the same initial conditions1. The sim-
ulations considered here are (following the naming convention of
Schaye et al. 2010):

• DMONLY: a dark matter only simulation, of the kind com-
monly used to compute the non-linear power spectrum which is
needed in weak lensing studies. It is therefore the reference to
which we compare the other simulations.

• REF: although it is not the reference simulation for the study
presented here, this simulation includes most of the mechanisms
which are thought to be important for the star formation history (see
Schaye et al. 2010 for a detailed discussion) but not AGN feedback.
The implementation of radiative cooling, star formation, super-
novae driven winds, and stellar evolution and mass loss have been
described in Wiersma, Schaye & Smith (2009), Schaye & Dalla
Vecchia (2008), Dalla Vecchia & Schaye (2008), and Wiersma et
al. (2009), respectively. This simulation represents a standard sce-
nario assumed in cosmological hydrodynamic simulations.

• DBLIMFV1618: this simulation has been produced using the
same mechanisms as REF. The only difference between the two
simulations is that in this simulation the stellar initial mass func-
tion (IMF) was modified to produce more massive stars when the
pressure of the gas is high, i.e. in starburst galaxies and close to
galactic centres. This is obtained by switching from the Chabrier
(2003) IMF assumed in the REF model to a Baugh et al. (2005)
IMF in those regions. There are both observational and and the-
oretical arguments to support a top-heavy IMF in those extreme
conditions (e.g. Padoan et al. 1997; Baugh et al. 2005; Klessen et
al. 2007; Maness et al. 2007; Dabringhausen et al. 2009; Bartko et
al. 2010; Weidner et al. 2010). The IMF change causes the number
of supernovae and the effect of stellar winds to increase resulting in
a suppression of the SFR at smaller redshifts. However, this mech-
anism alone is not able to reproduce the observed SFR (see Schaye
et al. 2010).

• AGN: a hydrodynamic simulation which differs from REF
only by the inclusion of AGN. The AGN feedback has been mod-
elled following Booth & Schaye (2009). In this approach AGN
transfer energy to the neighbouring gas, heating it up and driv-
ing supersonic outflows which are able to displace a large quan-
tity of baryons far from the AGN itself. Among the three simula-
tions considered here, it is arguably the most realistic, as it is able
to reproduce the gas density, temperature, entropy, and metallic-
ity profiles inferred from X-ray observations, as well as the stel-
lar masses, star formation rates, and stellar age distributions in-
ferred from optical observations of low-redshift groups of galaxies
(McCarthy et al. 2010).

To forecast the cosmic shear signal for the four different sce-
narios, we make use of the results of van Daalen et al. (2011), who
tabulated the power spectra of matter fluctuations P (k, z) in red-
shift slices over the redshift range 0 � z � 6 for a number of
OWLS runs. A detailed discussion of the procedure to compute the

1 The cosmology used to realise the simulations is the best-fit to
the WMAP3 data (Spergel et al. 2007): {⌦m,⌦b, ⌦�, �8, ns, h} =
{0.238, 0.0418, 0.762, 0.74, 0.951, 0.73}.
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Figure 1. Ratio between the power spectrum of matter fluctuations mea-
sured from the simulations with baryons and the one measured from the
DMONLY simulation. The ratio for the REF simulation is shown in green,
the one for the AGN simulation is shown in blue, and the one for the
DBLIMFV1618 model is shown in pink. Since the simulations have been
carried out using the same initial conditions, deviations of the ratio from
unity are due to the differences in baryon physics.

power spectrum and its accuracy can be found in van Daalen et al.
(2011). Their convergence tests and noise estimations suggest that
the power spectra estimated from OWLS are reliable up to at least
k � 10 h Mpc�1 over the range of redshifts we are interested in
(i.e. z � 1, as the lensing signal is most sensitive to structures that
are halfway between the observer and the source). At small k, the
estimate of the power spectrum is affected by the finite size of the
simulation box (100 h�1 Mpc on a side). This is not a concern, be-
cause on these scales baryonic effects are very small and density
fluctuations are in the linear regime, so that we can compute the
power spectrum from theory instead.

Figure 1 shows the power spectrum measured for each simula-
tion in three redshift bins normalised by the power spectrum of the
dark matter simulation (DMONLY) at the same redshift. In the REF
scenario (green), the presence of the baryons slightly suppresses the
power spectrum at intermediate scales, due to the pressure of the
gas. At smaller scales where baryons cool, the power spectrum is
enhanced as the baryons fall into the potential wells. For this model,
only the small scales are affected in an almost redshift indepen-
dent way. The effect of baryon physics is more pronounced for the
DBLIMFV1618 model, and depends on redshift. The AGN model
leads to the largest difference compared to the DMONLY simula-
tion. The amplitude of the power spectrum is strongly reduced on
scales of � 1� 10 h�1 Mpc and the effect increases as the redshift
decreases; this is in agreement with the results by McCarthy et al.
(2011) who showed that because AGN remove low-entropy gas at
early stages (2 � z � 4), the high-entropy gas left in the haloes
does not cool down and form stars and the suppression of power
becomes more and more accentuated at small scales.

The latter two scenarios are qualitatively similar, although
the mechanisms are different: in the DBLIMFV1618 simulation
baryons are removed due to the enhanced supernova feedback,
whereas in the AGN scenario they are removed mostly by AGN
feedback, at least for the more massive and thus strongly clustered
haloes. Thus, the fraction of baryons which is removed is different,

(Semboloni et al. 2011)
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Figure 3. Top panel: ratio of the correlation function �+(�) for
REF/DMONLY (green), DBLIMFV1618/DMONLY (pink) and
AGN/DMONLY (blue) . The notation binij indicates the correlation
of sources from redshift bin i with sources from redshift bin j. Here, we
show only results from the bins with i = j. Bottom panel: same as the
upper panel but for the correlation function ��(�).

case one can show that the value of P(s) depends mostly on the
density fluctuations with comoving wave numbers � s/fK(wmax)

with fK(wmax) maximising the ratio fK(ws�w)fK(w)
fK(ws) . In the top

panel of Figure 2, we show, for various source redshifts zs, the re-
lation between the angular wave number s and the wave number
s/fK(wmax) using the adopted WMAP3 cosmology. It shows, for
example, that measuring the power spectrum P(s) at s � 1� 104

of galaxies with redshifts � 0.8, probes density fluctuations at
scales k � 10h Mpc�1, where baryon physics is important.

However, one might wonder if the signal at arcminute scales
is statistically important. To examine this, the bottom panel of Fig-
ure 2 shows a typical signal-to-noise ratio of P(s). The signal
has been computed assuming a WMAP3 cosmology. The noise ac-
counts for sampling and statistical noise, assuming a WMAP3 cos-
mology and a survey area A = 20000 deg2, a number density
of galaxies of n = 30 gal/arcmin2 all placed at the same red-
shift zs and with intrinsic ellipticity dispersion �e = 0.33 (see sec-
tion 4 for more details on the noise computation). As one can see,
the signal-to-noise ratio peaks at scales between 2 and 10 arcmin,
where baryon physics is important.

Having established that cosmic shear studies are sensitive to

the scales where baryon physics modifies the power spectrum, we
now want to quantify how various scenarios change the two-point
shear statistics. For that we adopt a source redshift distribution that
is representative of the CFHTLS-Wide (Benjamin et al. 2007) and
a fair approximation for Euclid (Laurejis et al. 2009). We adopt the
following parametrisation:

p(z) =
�

(z + z0)�
, (6)

with � = 0.836, � = 3.425, and z0 = 1.171. We divide the
source galaxies in three tomographic bins with limits [0, 0.6, 1.2,
3.4], which yields six cross-power spectra.

The top panel of Figure 3 shows the value of �+(�) measured
for the various feedback scenarios, normalised by the results for
DMONLY. The effect of baryons is small and limited to very small
scales for the REF scenario. However, for DBLIMFV1618, and in
particular for the AGN model, the difference with the DMONLY
result is large and increases when the redshift of the sources de-
creases. The redshift dependence is the result of two effects. The
first is a geometric one: when the redshift of the sources decreases,
the physical scales probed by the lensing signal become smaller
(see Figure 2). The second reason is the suppression of the ampli-
tude of the power spectrum due to feedback, which becomes larger
at late times (see Figure 1). The bottom panel of Figure 3 shows
the value of ��(�) measured for the various feedback scenarios,
normalised by the results for DMONLY. Notice that the bias for
�� is more pronounced out to larger scales. This is because �� is
much more sensitive to small-scale structures (i.e. to the shape of
the power spectrum P(s) for large s).

3.2 Effect on cosmological parameter estimation

It is clear from Figure 1 that the change in the power spectrum
is large in the case of the AGN and DBLIMFV1618 scenarios.
The modification is, however, scale-dependent, which may help to
ameliorate the problem, since this cannot be reproduced by vary-
ing cosmological parameters which predominantly affect the over-
all amplitude of the weak lensing power spectrum. In other words,
it might be possible to separate the effects of baryonic feedback, or
at least to identify them: the inferred values for cosmological pa-
rameters from weak lensing statistics are scale-dependent for the
AGN and DBLIMFV1618 scenarios.

We first investigate the effect on the recovered value of �8, the
rms fluctuation of matter in spheres of size 8 h�1Mpc. A compli-
cation to our analysis is the limited accuracy of the prescriptions
for the non-linear power spectrum, be it Peacock & Dodds (1996)
or the halofit approach (Smith et al. 2003) used here. We therefore
cannot predict �+,DMONLY(�, zs) directly, but the procedure out-
lined below is accurate as the predictions should have the correct
scaling as a function of �8. For the various feedback models we
first define the ratio

R+,hydro(�, zs) =
�+,hydro(�, zs)

�+,DMONLY(�, zs)
, (7)

as a function of source redshift zs and angular scale �. Here
�+,hydro(�, zs) is the correlation function measured for REF,
DBLIMFV1618 or AGN, whereas �+,DMONLY(�, zs) is the
DMONLY correlation function. We use the halofit prescription
(Smith et al. 2003) to compute �+,halofit(�, zs; �8), keeping all
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CFHTLS/CFHTlenS

Groundbreaking for weak cosmological lensing:

• MegaCam 1 deg2 fov (@ 3.6m CFHT)

• Multiple optical bands ! photometric redshifts, tomography

• Large team (> 20; led by Yannick Mellier, Catherine Heymans, Ludovic
van Waerbeke), thorough testing, multiple pipelines

• Public release of all data and lensing catalogues (www.cfhtlens.org)
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CFHTlenS cosmological constraints
CFHTLenS: cosmological model comparison using 2D weak lensing 15
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Figure 10.Marginalised posterior density contours (68.3%, 95.5%, 99.7%)
for CFHTLenS (blue contours), WMAP7 (green), CFHTLenS+WMAP7
(red) and CFHTLenS+WMAP7+BOSS+R09 (black). The model is flat
�CDM (left panel) and curved �CDM (middle and right panel), respec-
tively.
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Figure 11.Marginalised posterior density contours (68.3%, 95.5%, 99.7%)
for CFHTLenS (blue contours), WMAP7 (green), CFHTLenS+WMAP7
(magenta) and CFHTLenS+WMAP7+BOSS+R09 (black). The model is
flat wCDM.

the convergence bispectrum, is very time-consuming and unfeasi-
ble for Monte-Carlo sampling, requiring the calculation of tens of
thousands of different models.

Instead, we explore the fitting formulae from Kilbinger (2010)
as a good approximation of reduced-shear effects. For a WMAP7
�CDM cosmology, the ratio between the 2PCFs with and without
taking into account reduced shear is 1 per cent for �+ and 4 per cent
for �� at the smallest scale considered, � = 0.8 arcmin. Since the
fitting formulae are valid within a small range around the WMAP7
cosmology, we use them for the combined Lensing+CMB parame-
ter constraints. The changes in �m and �8 for a �CDM model are
less than a per cent.

Number of simulated lines of sight Following Huff et al. (2011),
we examine the influence of the number of simulated lines of sight
on the parameter constraints. We calculate the covariance of �M2

ap�
from 110 instead of 184 lines of sight (Sect. 3.3.4). Using the cor-
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tively.
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the convergence bispectrum, is very time-consuming and unfeasi-
ble for Monte-Carlo sampling, requiring the calculation of tens of
thousands of different models.

Instead, we explore the fitting formulae from Kilbinger (2010)
as a good approximation of reduced-shear effects. For a WMAP7
�CDM cosmology, the ratio between the 2PCFs with and without
taking into account reduced shear is 1 per cent for �+ and 4 per cent
for �� at the smallest scale considered, � = 0.8 arcmin. Since the
fitting formulae are valid within a small range around the WMAP7
cosmology, we use them for the combined Lensing+CMB parame-
ter constraints. The changes in �m and �8 for a �CDM model are
less than a per cent.

Number of simulated lines of sight Following Huff et al. (2011),
we examine the influence of the number of simulated lines of sight
on the parameter constraints. We calculate the covariance of �M2
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from 110 instead of 184 lines of sight (Sect. 3.3.4). Using the cor-
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ble for Monte-Carlo sampling, requiring the calculation of tens of
thousands of different models.

Instead, we explore the fitting formulae from Kilbinger (2010)
as a good approximation of reduced-shear effects. For a WMAP7
�CDM cosmology, the ratio between the 2PCFs with and without
taking into account reduced shear is 1 per cent for �+ and 4 per cent
for �� at the smallest scale considered, � = 0.8 arcmin. Since the
fitting formulae are valid within a small range around the WMAP7
cosmology, we use them for the combined Lensing+CMB parame-
ter constraints. The changes in �m and �8 for a �CDM model are
less than a per cent.
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on the parameter constraints. We calculate the covariance of �M2
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from 110 instead of 184 lines of sight (Sect. 3.3.4). Using the cor-
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CFHTLenS: tomographic weak lensing 2447

Figure 7. Joint parameter constraints on curvature showing constraints on the curvature parameter !K and the matter density parameter !m from WMAP7-only
(blue), BOSS combined with WMAP7 and R11 (green), CFHTLenS combined with WMAP7 and R11 (pink) and CFHTLenS combined with BOSS, WMAP7
and R11 (white).

"CDM cosmology the constraint σ 8 = 0.799 ± 0.015 is almost
entirely driven by CFHTLenS in combination with WMAP7 alone.

4.3.2 Curved cosmological models

We consider two curved cosmologies where the sum of the different
density components of the Universe is no longer limited to the
critical density. Fig. 7 shows joint parameter constraints on the
curvature !K and the matter density parameter !m for WMAP7-only
(blue), BOSS combined with WMAP7 and R11 (green), CFHTLenS
combined with WMAP7 and R11 (pink) and CFHTLenS combined
with BOSS, WMAP7 and R11 (white). In both the curved "CDM
and curved wCDM cosmology, we find that the data are consistent
with a flat Universe with !K ≃ −0.004 ± 0.004 (see Table 3 for
exact numbers for the different cosmologies and data combinations).

In this parameter space, we find a factor of 2 improvement when R11
is included in combination with CFHTLenS and WMAP7. This is
partly because when curvature is allowed the degeneracy direction
of the CMB in the σ8−!m plane changes such that the combination
of lensing with the CMB becomes less powerful. Little improvement
is found in the constraining power when BOSS is included in our
parameter combination, but the mean !K changes by nearly 2σ .

4.3.3 Constraints on dark energy

Finally, we turn to the constraints that can be placed on the dark en-
ergy equation-of-state parameter w0 in flat and curved cosmologies.
Fig. 8 shows joint parameter constraints in the w−!m plane and also
the w−!K plane for a curved wCDM cosmology. As with the other
parameter planes that we have commented upon in this section, we

Figure 8. Joint parameter constraints on the dark energy equation-of-state parameter w0 and the matter density parameter !m, and curvature parameter !K
for a curved wCDM cosmology from WMAP7-only (blue), BOSS combined with WMAP7 and R11 (green), CFHTLenS combined with WMAP7 and R11
(pink) and CFHTLenS combined with BOSS, WMAP7 and R11 (white).
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(Heymans et al. 2013)
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CFHTlenS modified gravity
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2-bin tomography
(Simpson et al. 2013)
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DES — Dark Energy Survey
• Dedicated new camera: DECam, 3 deg2 fov, weak lensing as main science

goal
• @ 4m class Blanco telecsope on Cerro Tololo, Chile
• 5, 000 deg2 when completed
• Large coverage in other wavelength (e.g. SPT)
• Ongoing survey, published results (2016) from Science Verification Data,

139 deg2 = 3% of final area, but nominal depth and filters
6 The Dark Energy Survey Collaboration

Figure 2. Constraints on the amplitude of fluctuations �8 and
the matter density ⌦m from DES SV cosmic shear (purple filled

contours) compared with constraints from Planck (red filled con-
tours) and CFHTLenS (orange filled, using the correlation func-

tions and covariances presented in Heymans et al. (2013), and the

‘original conservative scale cuts’ described in Section 6.1.1). DES
SV and CFHTLenS are marginalised over the same astrophysical

systematics parameters and DES SV is additionally marginalised

over uncertainties in photometric redshifts and shear calibration.
Planck is marginalised over the 6 parameters of �CDM (the 5 we

vary in our fiducial analysis plus �). The DES SV and CFHTLenS

constraints are marginalised over wide flat priors on ns, ⌦b and
h (see text), assuming a flat universe. For each dataset, we show

contours which encapsulate 68% and 95% of the probability, as is

the case for subsequent contour plots.

The fiducial data vector is the real-space shear–shear
angular correlation function �±(�) measured in three red-
shift bins (hereafter bins 1, 2, 3, with ranges of 0.3 < z <
0.55, 0.55 < z < 0.83 and 0.83 < z < 1.3, and galaxies
assigned to bins according the mean of their photometric
redshift probability distribution function) including cross-
correlations, as shown in Figure 1. The data vector initially
includes galaxy pairs with separations between 2 and 300 ar-
cmin (although many of these pairs are excluded by the scale
cuts described in Section 4.2). We focus mostly on placing
constraints on the matter density of the Universe, �m, and
�8, defined as the rms mass density fluctuations in 8 Mpc/h
spheres at the present day, as predicted by linear theory.

We marginalise over wide flat priors 0.2 < h < 1, 0.01 <
�b < 0.07 and 0.7 < ns < 1.3, assuming a flat Universe, and
thus we vary 5 cosmological parameters in total. The priors
were chosen to be wider than the constraints in a variety
of existing Planck chains.. In practice the results are very
similar to those with these parameters fixed, due to the weak
dependence of cosmic shear on these other parameters. We
use a fixed neutrino mass of 0.06 eV.

We summarise our systematics treatments below:
(i) Shear calibration: For each redshift bin, we
marginalise over a single free parameter to account for
shear measurement uncertainties: the predicted data vector
is modified to account for a potential unaccounted multi-
plicative bias �ij � (1+mi)(1+mj)�

ij . We place a separate
Gaussian prior on each of the three mi parameters. Each is

centred on 0 and of width 0.05, as advocated by J15. See
Section 5.1 for more details.
(ii) Photometric redshift calibration: Similarly, we
marginalise over one free parameter per redshift bin to de-
scribe photometric redshift calibration uncertainties. We al-
low for an independent shift of the estimated photomet-
ric redshift distribution ni(z) in redshift bin i i.e. ni(z) �
ni(z � �zi). We use independent Gaussian priors on each of
the three �zi values of width 0.05 as recommended by Bo15.
See Section 5.2 for more details.
(iii) Intrinsic alignments: We assume an unknown ampli-
tude of the intrinsic alignment signal and marginalise over
this single parameter, assuming the non-linear alignment
model of Bridle & King (2007). See Section 5.3 for more
details of our implementation and tests on the sensitivity of
our results to intrinsic alignment model choice.
(iv) Matter power spectrum: We use halofit (Smith
et al. 2003a), with updates from Takahashi et al. (2012) to
model the non-linear matter power spectrum, and refer to
this prescription simply as ‘halofit’ henceforth. The range
of scales for the fiducial data vector is chosen to reduce the
bias from theoretical uncertainties in the non-linear matter
power spectrum to a level which is not significant given our
statistical uncertainties (see Sections 4.2 and 5.4, and Table
2 for the minimum angular scale for each bin combination).
We thus marginalise over 3 + 3 + 1 = 7 nuisance parame-
ters characterising potential biases in the shear calibration,
photometric redshift estimates and intrinsic alignments re-
spectively.

Figure 2 shows our main DES SV cosmological con-
straints in the �m � �8 plane, from the fiducial data vec-
tor and systematics treatment, compared to those from
CFHTLenS and Planck. For the CFHTLenS constraints, we
use the same six redshift bin data vector and covariance as
H13, but apply the conservative cuts to small scales used
as a consistency test in that work (for �+ we exclude an-
gles < 30 for redshift bin combinations involving the lowest
two redshift bins, and for ��, we exclude angles < 300 for
bin combinations involving the lowest four redshift bins, and
angles < 160 for bin combinations involving the highest two
redshift bins). We see that in this plane, our results are mid-
way between the two datasets and are compatible with both.
We discuss this further in Section 6.1.

Using the MCMC chains generated for Figure 2 we find
the best fit power law �8(�m/0.3)� to describe the degen-
eracy direction in the �8, �m plane (we estimate � using
the covariance of the samples in the chain in log�8 � log�m

space). We find � = 0.478 and so use a fiducial value for �
of 0.5 for the remainder of the paper 9 We find a constraint
perpendicular to the degeneracy direction of

S8 � �8(�m/0.3)0.5 = 0.81 ± 0.06 (68%). (1)

Because of the strong degeneracy, the marginalised 1d con-
straints on either �m or �8 alone are weaker; we find
�m = 0.36+0.09

�0.21 and �8 = 0.81+0.16
�0.26. In Table 1 we also show

other results which are discussed in the later sections, includ-

9 We would advise caution when using S8 to characterise the DES

SV constraints instead of a full likelihood analysis - S8 is sensi-
tive to the tails of the probability distribution, and also weakly

depends on the priors used on the other cosmological parameters.

MNRAS 000, 1–20 (2015)

(The Dark Energy Survey Collaboration et al. 2016)
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KiDS
• 1, 500 deg2 in four optical (+ 5 IR) bands
• New camera (OmegaCAM 1 deg2 fov) and telecsope (2.6 m VST), long

delay
• Compared four di↵erent redshift estimation methodsKiDS: Cosmological Parameters 9

Figure 2. Comparison of the normalised redshift distributions for the four tomographic bins as estimated from the weighted direct

calibration (DIR, blue with errors), the calibration with cross-correlations (CC, red with errors), the re-calibrated stacked Precal(z)

(BOR, purple with errors that are barely visible), and the original stacked P (z) from bpz (green). The gray-shaded regions indicate the

target redshift range selected by cuts on the Bayesian photo-z zB.

ative values that would lead to unphysical negative ampli-
tudes in the n(z). Nevertheless, it is important to allow
for these negative values in the estimation of the cross-
correlation functions so as not to introduce any bias. Such
negative amplitudes can for example be caused by local over-
or underdensities in the spec-z catalogue as explained by
Rahman et al. (2015). Only after the full redshift recovery
process do we re-bin the distributions with a coarser redshift
resolution to attain positive values for n(z) throughout.

The redshift distributions from this method, based on
the combination of the DEEP2 and zCOSMOS results, are
displayed in Fig. 2 (red line with confidence regions). Note
that the uncertainties on the redshift distributions from the
cross-correlation technique are larger than the uncertainties
on the weighted direct calibration, owing to the relatively
small area of sky covered by the spec-z catalogues. As will
be shown in Section 6, propagating the n(z) and associated
errors from the CC method into the cosmological analysis
yields cosmological parameters that are consistent with the
ones that are obtained when using the DIR redshift distribu-
tions, despite some di↵erences in the details of the redshift
distributions.

3.4 Re-calibration of the photometric P(z ) (BOR)

Many photo-z codes estimate a full redshift likelihood, L(z),
for each galaxy or a posterior probability distribution, P (z),
in case of a Bayesian code like bpz. Bordoloi et al. (2010)
suggested to use a representative spectroscopic training sam-
ple and analyse the properties of the photometric redshift
likelihoods of those galaxies.

For each spectroscopic training object the photometric
P (z) is integrated from zero to zspec yielding the cumulative
quantity:

P�(zspec) =

� zspec

0

P (z0) dz0 . (1)

If the P (z) are a fair representation of the underlying prob-
ability density, the P� for the full training sample should be
uniformly distributed between zero and one. If this distribu-
tion N(P�) is not flat, its shape can be used to re-calibrate
the original P (z) as explained in Bordoloi et al. (2010).

One requirement for this approach to work is that the
training sample is completely representative of the photo-
metric sample to be calibrated. Since this is not the case for
KiDS-450 we employ this re-calibration technique in combi-
nation with the re-weighting procedure in magnitude space

MNRAS 000, 1–48 (2016)
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KiDS

Very thorough weak-lensing analysis,
including:

• n(z) errors

• IA, baryonic e↵ects

• Shear calibration

• Non-Gaussian covariance

• Blinded analysis

(Hildebrandt et al. 2017)

18 Hildebrandt, Viola, Heymans, Joudaki, Kuijken & the KiDS collaboration
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Figure 6. Marginalized posterior contours (inner 68% CL, outer 95% CL) in the ⌦m-�8 plane (left) and ⌦m-S8 plane (right) from the

present work (green), CFHTLenS (grey), pre-Planck CMB measurements (blue), and Planck 2015 (orange). Note that the horizontal
extent of the confidence contours of the lensing measurements is sensitive to the choice of the prior on the scalar spectrum amplitude As.

The CFHTLenS results are based on a more informative prior on As artificially shortening the contour along the degeneracy direction.

For each of the three calibration methods (DIR, CC,
BOR) we estimate statistical errors from a bootstrap re-
sampling of the spectroscopic calibration sample (see Sec-
tion 6.2 for details of the implementation). Including those
uncertainties will broaden the contours. As can be seen in
Fig. 2 these bootstrap errors are very small for the BOR
method. This is due to the fact that a lot of information
in that technique is based on the photometric P (z) and the
re-calibration is more stable under bootstrap re-sampling of
the spectroscopic calibration sample than for the other two
methods. Hence to further speed up the MCMC runs we ne-
glect the BOR errors in the following with no visible impact
on the results. The uncertainties on the DIR method – while
larger than the BOR errors – are also negligible compared
to the shot noise in the shear correlation function (see Ap-
pendix C2). We nevertheless include these errors here (as
before) since DIR is our primary calibration method. The
statistical errors on the CC method are larger than for the
two other methods, owing to the as yet small area covered by
the spectroscopic surveys that we can cross-correlate with.
More importantly, we estimate that the limited available
area also gives rise to a larger systematic uncertainty on the
CC method compared to the DIR technique. All major re-
quirements for the DIR technique are met in this analysis
whereas the CC method will only realise its full potential
when larger deep spec-z surveys become available.

The resulting confidence contours in the �m-�8 plane
for the four cases are shown in Fig. 7. All four cases give
fully consistent results although there are some shifts in
the contours with respect to each other. However, with
��2

e� � �10, we find that the DIR and CC methods provide
a better fit to the data as compared to the BPZ and BOR
methods. For future cosmic shear surveys, with considerably
larger datasets, it will be essential to reduce the statistical
uncertainty in the redshift calibration in order to not com-
promise the statistical power of the shear measurement. For
KiDS-450 the uncertainty for our favoured DIR calibration
scheme is still subdominant.

In summary, we find that the four possible choices for

the photometric redshift calibration technique yield consis-
tent cosmological parameters.

6.4 Impact of analytical and numerical covariance
matrices

For our primary analysis we choose to adopt the analytical
estimate of the covariance matrix described in Section 5.3,
as it yields the most reliable estimate of large-scale sample
variance (including super-sample contributions), is free from
noise, and is broadly consistent with the N -body covariance
(see Section 5.4). In this section we compare the cosmo-
logical parameter constraints obtained with the analytical
covariance matrix to the alternative numerical estimate as
described in Section 5.2. For this test, we set all astrophysi-
cal and data-related systematics to zero: this applies to the
intrinsic alignment amplitude, the baryon feedback ampli-
tude, the errors on the shear calibration, and the errors on
the redshift distributions. Fixing these parameters allows us
to focus on the e↵ect of the di↵erent covariance matrices on
the cosmological parameters.

We correct for noise bias in the inverse of the numerical
covariance matrix estimate using the method proposed by
Sellentin & Heavens (2016). As we have a significant num-
ber of N-body simulations, however, we note that the con-
straints derived using our numerical covariance matrix are
unchanged if we use the less precise but alternative Hartlap
et al. (2007) bias correction scheme.

We find consistency between the results for the di↵erent
covariance matrices given the statistical errors of KiDS-450.
There are however small shifts in the central values of the
best-fit parameters; most notably the S8 constraints for the
analytical and numerical covariances which di↵er by � 1�.
We attribute these shifts to super-sample-covariance terms
that are correctly included only in the analytical estimate
(which is also the reason why we adopt it as our preferred
covariance). The SSC reduces the significance of the large
angular �± measurements (see Fig. 4) where our measured
signal is rather low in comparison to the best-fit model (see

MNRAS 000, 1–48 (2016)
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Figure 10. Constraints on S8 for the di�erent runs considered in the KiDS-450 analysis as well as several literature measurements.
The grey band indicates the 1� constraints from our primary analysis. Note that most of the runs which test for systematic errors (blue

data points) switch o� some of the astrophysical or redshift systematics. Hence not all data points shown here are fully comparable. For

numerical values of the plotted data points see Table F1.

that concordance tests grounded in the deviance information
criterion (DIC; Section 6.1) and Bayesian evidence largely
agreed, with the former enjoying the benefit of being more
readily obtained from existing MCMC chains. We therefore
assess the level of concordance between the two datasets D1

and D2 by computing

I(D1, D2) � exp{�G(D1, D2)/2}, (14)

where

G(D1, D2) = DIC(D1 � D2) � DIC(D1) � DIC(D2), (15)

and DIC(D1 � D2) is the DIC of the combined dataset.
Thus, log I is constructed to be positive when the datasets
are concordant and negative when the datasets are discor-
dant. The significance of the concordance test follows Jef-
freys’ scale (Je↵reys 1961), such that log I values in excess
of ±1/2 are ‘substantial’, in excess of ±1 are ‘strong’, and
in excess of ±2 are ‘decisive’.

For our primary analysis we find that log I = �0.79,
which translates into substantial discordance between KiDS-
450 and Planck. This is consistent with the level of discor-
dance inferred from the respective S8 constraints.

7 DISCUSSION

The KiDS-450 dataset analysed here represents one of the
most powerful cosmic shear surveys to date. Its combination

of area, depth, and image quality is unprecedented, and this
results in one of the most accurate and precise cosmological
constraints from cosmic shear to date. In view of this preci-
sion, understanding systematic uncertainties becomes more
important than in any previous such analysis. The treatment
of systematic errors in the shear and photo-z measurements
of KiDS-450 is based on the most advanced methods de-
scribed in the literature. After accounting for residual uncer-
tainties in these calibrations, KiDS-450 yields a constraining
power on cosmological parameters similar to CFHTLenS.

The results presented in Section 6 reveal a tension be-
tween Planck and KiDS-450 constraints on the matter den-
sity and the normalisation of the matter power spectrum.
While the 2.3-� level tension in the combined parameter S8

is similar compared to previous analyses like CFHTLenS,
there is now less room for explaining this tension with pho-
tometric redshift errors that were either unaccounted for or
not considered as rigorously in the past. The reduced �2

value of �2
e�/dof = 1.3 for our primary analysis indicates

that our model is a reasonable fit. Traditionally weak lens-
ing analyses have focused on possible systematic errors in
the shear measurements, and there are now a number of
techniques that are able to achieve calibration uncertainties
on the order of a per cent (see Mandelbaum et al. 2015 for
a recent compilation). This level of accuracy is adequate for
ground-based surveys like KiDS. Attention is therefore shift-
ing to the other main observable, the photometric redshifts.

The calibration of the source redshift distribution re-

MNRAS 000, 1–48 (2016)
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Discrepancy with Planck?

• Maybe not (2 - 3�). However, also discrepancy of CMB C`’s with SZ
cluster counts.

• Additional physics, e.g. massive neutrinos? Not su�cient evidence.

• WL systematics? (E.g. shear bias, baryonic uncertainty on small scales.)
KiDS say not likely.
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The Euclid mission

Why is Euclid so special and challenging?
Increase of factor 100 in data volume compare to current surveys!
Few Million to few 100 Million galaxies.

For 2PCF: Naive increase of ncorrel by 10, 000!

Comparison with Planck:
Planck all-sky, pixel size ⇠ 7 arc min.
Euclid 1/3 sky, pixel size ⇠ typical angular distance between galaxies ⇠ arc
sec.
Factor 105 more pixels!

Martin Kilbinger (CEA) WL Part I/II 94 / 142



Part I day 3: Surveys and cosmology Euclid

Weak-lensing resolutionWeighing the Giants – I 19

Figure 11. The cluster MACS J1621.3+3810 (z = 0.463). Each panel above shows the 24 arcmin × 24 arcmin optical image composed of the SuprimeCam
VJICz+ observations. The yellow contours in the top-right panel indicate the distribution of galaxies on the cluster red sequence, smoothed with a Gaussian of
3 arcmin width. The blue contours in the bottom-left panel illustrate the aperture mass map, starting at 2.5σ and increasing by 0.5σ increments, reconstructed
from the RC lensing image. The outer radius of the Map filter function corresponds to 1.5 Mpc at the cluster redshift. In the bottom-right panel, the pink contours
indicate the X-ray emission. The white, thin contour illustrates the edge of the Chandra image (merged from four exposures); the flux contours are spaced
on a square root scale. MACS J1621.3+3810 is in the dynamically relaxed cluster sample of A08, though not in the cosmology sample of M10. Despite its
relative high redshift and low X-ray flux, the multiwavelength analysis reveals a wealth of information. The cluster is embedded in a large filament, running
from south-east to north-west in the image. In an extension of the filament (projected), 4 Mpc to the south-east of MACS J1621.3+3810, a secondary, less
massive cluster is seen in both the red sequence map and the lensing map. Another secondary cluster, possibly along a weaker filament, is located 4 Mpc to the
south-south-west. (The third such cluster, in the north-west image corner, is detected in the IC-band lensing image.) The figure on the left shows the profile of
the average tangential and radial shear (top and bottom panels, respectively) measured with respect to the X-ray centroid, which is at the centre of the image.
A coherent tangential shear signal is detected out to ∼3 Mpc.
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Figure 11. The cluster MACS J1621.3+3810 (z = 0.463). Each panel above shows the 24 arcmin × 24 arcmin optical image composed of the SuprimeCam
VJICz+ observations. The yellow contours in the top-right panel indicate the distribution of galaxies on the cluster red sequence, smoothed with a Gaussian of
3 arcmin width. The blue contours in the bottom-left panel illustrate the aperture mass map, starting at 2.5σ and increasing by 0.5σ increments, reconstructed
from the RC lensing image. The outer radius of the Map filter function corresponds to 1.5 Mpc at the cluster redshift. In the bottom-right panel, the pink contours
indicate the X-ray emission. The white, thin contour illustrates the edge of the Chandra image (merged from four exposures); the flux contours are spaced
on a square root scale. MACS J1621.3+3810 is in the dynamically relaxed cluster sample of A08, though not in the cosmology sample of M10. Despite its
relative high redshift and low X-ray flux, the multiwavelength analysis reveals a wealth of information. The cluster is embedded in a large filament, running
from south-east to north-west in the image. In an extension of the filament (projected), 4 Mpc to the south-east of MACS J1621.3+3810, a secondary, less
massive cluster is seen in both the red sequence map and the lensing map. Another secondary cluster, possibly along a weaker filament, is located 4 Mpc to the
south-south-west. (The third such cluster, in the north-west image corner, is detected in the IC-band lensing image.) The figure on the left shows the profile of
the average tangential and radial shear (top and bottom panels, respectively) measured with respect to the X-ray centroid, which is at the centre of the image.
A coherent tangential shear signal is detected out to ∼3 Mpc.
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Figure 1. Chandra images in the 0.7–7 keV energy range. The color bars reflect
the number of counts detected by Chandra. SZ contour levels are (+2, �2, �4,
�6, �8, . . .) times the rms noise in the short baseline data, after removal of
radio sources; solid contours are for negative levels, and dashed contours are for
positive levels. The elliptical Gaussian approximation to the synthesized beam
of the SZ observations is shown in the lower left corner.

in which � describes the slope of the matter density at large radii and rs is a scale radius. The
parameterization of the Bulbul et al (2010) model does not allow the inner slope of the matter
density to vary, which is fixed at r

�1 as in the Navarro et al (1997) model. The resolution
of our SZ data can only effectively constrain the matter distribution on scales larger than the
synthesized beam, which is of the order of 1 arcmin for these observations, and therefore we

New Journal of Physics 14 (2012) 025010 (http://www.njp.org/)

(Bonamente et al. 2012) — X- and SZ

Martin Kilbinger (CEA) WL Part I/II 96 / 142



Part I day 3: Surveys and cosmology Euclid

Weak-lensing resolution

Martin Kilbinger (CEA) WL Part I/II 97 / 142

Part I day 3: Surveys and cosmology Euclid

Mass maps from CFHTLenS
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Euclid imaging
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Some Euclid WL challenges

Martin Kilbinger, SAp/LCSEuclid: Univers sombre et distortions cosmiques 16

Euclid: new challenges
under-sampled PSF

CTI 
(charge transfer inefficiency)

color gradients

unresolved binary stars
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Open questions (selection) I
Modelling

• Intrinsic alignment. Dependence on L, type, z? Physically motivated
model. N -body simulations.

Codis et al. (2014)

Intrinsic alignment of galaxies 11
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Figure 9. Correlation functions of the projected ellipticity �(r) for the � 58 000 middle-mass (left panels), � 25 000 blue (middle panels)
and � 25 000 red (right panels) galaxies as a function of the comoving 3D separation r, in the top row, and as a function of the (projected)
angular separation � in the bottom row; this latter quantity being closer to observations, we call it �II

+ . Note the change in scale from
one row to the other.

show any correlations. We reach identical conclusions when
studying the alignment of galaxy spins with one another,
namely that the spins of galaxies are also correlated on sim-
ilar scales (� 10 h�1 Mpc) and are similarly colour and mass-
dependent.

We have also investigated how spin–spin correlations
project into weak lensing observables like the shear correla-
tion function �+, these correlations being cast into the so-
called II contributions to IA. As in 3D, a �II

+ correlation at a
level of a few 10�4 is found for blue and intermediate-mass
galaxies out to separations of >� 100 for sources at redshift
� 1.2. The results for blue galaxies are in broad agreement
with the recent work of Joachimi et al. (2013b), who com-
bines observational results on IA from the COSMOS survey
and predictions from semi-analytical models applied to DM-
only simulations.

Presently, the “spin-gives-ellipticity” prescription al-
lows one to quantify the new insights that large volume hy-
drodynamical cosmological simulations bring to the issue of
IA. For instance, the large-scale coherence of gas motions ad-
vected all the way to the center of galaxies through cold flows
regardless of the DM behaviour can uniquely be captured by
such simulations (Kimm et al. 2011). Large-scale dynamics
imprint their coherence and morphology (filaments, walls,
voids) onto the spin of galaxies. This complex topology is

likely to have an even more prominent impact on higher-
order statistics beyond the shear two-point correlation func-
tion. Attempts to capture such e↵ects with simple halo occu-
pancy distribution prescriptions may therefore fail at high
redshift (z >� 0.8), which is the place where galaxies carry
more cosmological lensing signal and is also, to large extent,
the population of sources targeted by future surveys like Eu-
clid or LSST. The challenge for simulations is to cover large
cosmological volumes while preserving a su�cient resolution
so that baryonic physics (star formation, feedback processes,
etc) is correctly treated.

When the Horizon-AGN simulation reaches redshift
zero, we will be in a good position to compare our findings
with existing observations. In order to get a good match
for massive red galaxies, we will certainly adopt a di↵er-
ent ansatz for our recipe – currently based on a thin disk
approximation – and use directly the resolved shape of mas-
sive galaxies as a proxy for the projected ellipticities. How-
ever, this concerns only a small fraction of the galaxies that
made up the typical weak lensing catalogues of background
sources. Once the Horizon-AGN light-cone is completed, we
will estimate more realistic galactic shapes, taking full ac-
count of the spectral energy distribution of young and old
stars (giving a non trivial weight to the relative contribution
of the disk and the bulge) into a well chosen rest-frame filter

CFHTLenS ξ+GG

Why is II = 0 for red galaxies?

M < Mtransition = 2 × 106 M⊙: aligned w filaments;  
M > Mtransition: perpendicular!

Spins might not capture full shape of triaxial  
early-type galaxies

Intrinsic alignment of galaxies 7
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Figure 4. PDF of the cosine of the angle between the spin of galaxies and the minor/intermediate/major axis (from left to right) of
the tidal tensor in the Horizon-AGN simulation when the sample is separated into three di�erent mass bins (solid lines for stellar mass
between 2�108 and 3�109 M�, dashed lines for stellar mass between 3�109 and 4�1010 M� and dotted lines for stellar mass between
4 � 1010 and 6 � 1011 M�). The error bars represent the Poisson noise and are only shown for e1 (left panel) since they are the same for
e2 (middle panel) and e3 (right panel). The spin of galaxies tends to align with the minor eigen-direction at small mass and becomes
perpendicular to it at larger mass.
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Figure 5. Same as Fig. 4 but for di�erent galaxy colours as labeled, meaning that the left, middle and right panels respectively show
the PDF of the angle between the e1, e2, e3 directions of the tidal tensor and the galactic spins. The bluer the galaxy the larger the
correlations with the surrounding tidal field. Hence red galaxies are less sensitive to IA.

delta function. The minor, intermediate and major eigen-
directions of the tidal tensor Tij are called e1, e2 and e3 cor-
responding to the ordered eigenvalues �1 � �2 � �3 of the
Hessian of the gravitational potential, �ij� (with which the
tidal tensor shares the eigen-directions). In the filamentary
regions, e1 gives the direction of the filament (see Fig. 1),
while the walls are collapsing along e3 and extend, locally, in
the plane spanned by e1 and e2 (Pogosyan, Bond & Kofman
1998).

The tidal shear tensor smoothed on scale Rs, Tij =
�ij�Rs � ��Rs �ij/3, is computed via Fast Fourier Trans-
form of the density field (including dark matter, stars, gas
and black holes) sampled on a 5123 cartesian grid and
convolved with a Gaussian filter of comoving scale Rs =
200 h�1 kpc

�ij�Rs (x) =
3H2

0�0

2a

�
d3k �(k)

kikj

k2
WG(kRs) exp (ik·x) ,

where �(k) is the Fourier transform of the sampled density
field and WG a Gaussian filter.

4.1 One-point cross-correlations

We begin with a measurement of the correlations between
the spin and the eigen-directions of the tidal tensor at the
same spatial position. In practice, we compute the cosine
of the angle between the spin of the galaxies and the three
eigen-directions of the local tidal tensor cos � = L · ei/|L|.
The resulting histogram is shown in Fig. 3. The spin is pref-
erentially aligned with the minor eigen-direction (i.e. the
filaments) in agreement with the spin-filament correlations
detected by Dubois et al. (2014) at redshift z � 1.83. To a
lower extent, some alignment is found with the direction of
the intermediate axis.

When galaxies are binned in mass (see Fig. 4), it ap-
pears that the most massive galaxies tend to have a spin ly-
ing in the plane (e2, e3) perpendicular to the filaments, while
the less massive galaxies have their spin aligned with e1. The
transition occurs at stellar masses about 4 � 1010 M�. We
conclude that the spins of galaxies are definitely influenced
by their surrounding environment di↵erentially with their
mass.

(Codis et al. 2015)
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Open questions (selection) II
• IA contamination depends on shape measurement method!12 Singh & Mandelbaum
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Figure 7. (a) The projected galaxy density-shape correlation function wg+ (Eq. 9) using the full LOWZ sample and di�erent shape

measurement methods, isophotal (blue), re-Gaussianization (red) and de Vaucouleurs shapes (green), along with the best-fitting NLA

models. For comparison, the best-fitting NLA models for all three shape measurement methods are plotted on all panels. Isophotal shapes
show the highest IA signal, followed by de Vaucouleurs and re-Gaussianization shapes (note that error bars are correlated between the

di�erent shape measurement methods). The solid black line shows the SDSS fiber collision limit, and the dashed cyan lines show the

range of rp used for the NLA model fitting. (b) Same as (a), but for the projected shape-shape correlation function w++ (Eq. 10).
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Figure 8. Comparison of NLA model amplitude AI for isophotal

and de Vaucouleurs vs. re-Gaussianization shape measurements.

Isophotal (de Vaucouleurs) shapes consistently give a higher am-
plitude by � 40% (20%) compared to re-Gaussianization shapes.

The de Vaucouleurs results have been shifted horizontally for clar-

ity.

using isophotal shapes. To display NLA model predictions,
we use the best-fitting parameters from fitting wg+, with
fII = 1 (solid lines) and fII = 2 (dashed lines). The two-
dimensional contours in Fig. 10e suggest that the data pre-
fer the model with fII = 2. However, these contours are
quite noisy, so Fig. 10e is not a reliable test of the validity
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Figure 9. Ratio of mean intrinsic shear, ��� (Eq. 27) and mean

alignment angle, 45� � ��� (Eq. 28) using di�erent shape mea-

surement methods.

of the model. In Fig. 10f, we show a clear detection of the
monopole for �++, with the data again preferring a higher
amplitude than predicted by NLA model (fII > 1). This
discrepancy could either be from the e↵ects of non-linear
physics that is not included in the NLA model (Blazek et al.
2015), or from additive PSF contamination. Even though ad-
ditive PSF contamination was shown to be low for isophotal
shapes (|APSF | � 0.05), the contamination in �++ could still
be strong enough to increase the observed �++ amplitude.

MNRAS 000, 1–18 (2015)

(Singh & Mandelbaum 2016)
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Part I day 3: Surveys and cosmology Euclid

Open questions (selection) III

• Baryonic feedback in clusters, influence on WL, modelling.

Photometric redshifts

• Euclid needs (very deep!) ground-based follow-up in multiple optical
bands. Data (DES, KiDS, CFIS, . . .) will be inhomogeneous. Problem of
reliable photo-z’s not yet solved.
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Part I day 3+: Extra stu↵

Further possible topics

1. CMB (x) lensing

2. Cluster weak lensing

3. Nature of dark matter (bullet cluster)

4. Testing GR with WL and galaxy clustering

5. Higher-order statistics: peak counts
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Part I day 3+: Extra stu↵ CMB lensing

CMB (SZ) ⇥ WL

Planck CMB (SZ) ⇥ CFHTLenS weak-lensing: hot gas associated with matter
on large scales
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Part I day 3+: Extra stu↵ CMB lensing

CMB lensing

(Planck Collaboration et al. 2014)
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Part I day 3+: Extra stu↵ CMB lensing

CMB lensing

CIB: Integrated star formation history
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Part I day 3+: Extra stu↵ Cluster weak lensing

Stacked cluster weak lensing: Large scales
Weak lensing by stacked galaxy clusters

4 COVONE ET AL.

Table 1
Results of the fit of profiles of the N=6 stacked bins in optical richness. Reported central values and uncertainties were obtained as bi-weight estimators of the

marginalized probability distributions. The �2 value refers to the best fit model.

richness bin Nclus RL� M200 c200 bh�2
8 �2

(1014M� h�1)
12 � RL� < 16 476 13.8 ± 1.1 0.48 ± 0.09 8.6 ± 5.8 1.76 ± 0.39 11.9
16 � RL� < 21 347 18.1 ± 1.4 0.51 ± 0.11 4.3 ± 5.3 1.20 ± 0.49 10.7
21 � RL� < 30 216 24.7 ± 2.6 0.81 ± 0.13 9.3 ± 5.5 1.77 ± 0.56 4.45
30 � RL� < 40 90 34.2 ± 2.7 1.52 ± 0.24 1.8 ± 1.1 1.87 ± 0.94 18.8
40 � RL� < 70 37 47.8 ± 6.7 1.95 ± 0.30 10.1 ± 5.6 2.14 ± 1.15 16.2
70 � RL� < 100 10 85.6 ± 10.3 3.21 ± 0.54 10.4 ± 5.2 5.45 ± 2.31 14.3

Figure 1. Radial profiles of the excess surface mass density �� for the six samples of galaxy clusters, binned according to their optical richness RL� . Black
points are our measurements. The green line is the main galaxy cluster halo, the blue line is the contribution from the 2-halo term. The black line is the overall
fitted radial profile. Dashed lines are extrapolation from the best fit model.
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halo bias, function of mass
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Part I day 3+: Extra stu↵ Cluster weak lensing

Stacked cluster weak lensing: 2D mass profiles

Stacked cluster 2D mass profiles

4 JOHNSTON ET AL
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Fig. 1.— Left: Weak lensing profiles ��(R) for 12 bins of optical richness, N200. Right: ��(R) for 16 i-band luminosity bins, L200.

TABLE 2
16 L200 bins

Bin number L200(1010h�2L�) Number of clusters per bin

1 5 - 6.24 19618
2 6.24 - 7.8 18597
3 7.8 - 9.74 16042
4 9.74 - 12.2 12269
5 12.2- 15.2 9010
6 15.2 - 19.0 6152
7 19.0 - 23.7 4164
8 23.7 - 29.6 2666
9 29.6 - 36.9 1703
10 36.9 - 46.1 1042
11 46.1 - 57.6 638
12 57.6 - 71.9 344
13 71.9 - 89.8 210
14 89.8 - 112.1 108
15 112.1 - 140 49
16 140 - 450 46

Note. — The catalog is also divided into 16 L200 richness
bins. This table shows the boundaries of L200 values and the
number of clusters for each bin.

Sheldon et al. (2004) to obtain the galaxy-mass correla-
tion function from galaxy-galaxy lensing measurements.
Here, we provide a brief overview of the methods.

The mean excess 3D density profile �⇢(r) around a
set of clusters with a given observable O (e.g., rich-
ness or luminosity) is best thought of in terms of the
cluster–mass two-point correlation function, ⇠cm, since
�⇢(r) = ⇢̄ ⇠cm(r), where ⇢̄ is the mean density of the Uni-
verse. By the assumptions of spatial homogeneity and
isotropy, ⇠cm depends only on the magnitude of the sep-
aration, r, not on direction. As a consequence, the mean
density profile �⇢(r) should be very nearly spherically
symmetric. Note that this is a purely statistical state-
ment: we do not assume that individual cluster density

profiles are spherically symmetric. The spherical sym-
metry of the average density profile enables the inversion
of the stacked lensing signal �⌃(R) to the 3D density
�⇢(R) and the aperture mass M(R). By contrast, weak
lensing measurements of individual clusters can only be
used to reconstruct the projected 2D mass density, ⌃(�x),
since lensing is produced by all of the mass projected
along the line of sight.

The mean 3D density profile is obtained as an integral
of the derivative of the shear profile �⌃(R) through a
purely geometric relation,

�⇢(r) =
1

⇡

Z 1

r
dR

�⌃0(R)�
R2 � r2

, (1)

where a prime denotes a derivative with respect to R.
The lensing data �⌃ enters here since it can be shown
that

� ⌃0(R) = �⌃0(R) + 2�⌃(R)/R . (2)

The 3D mass profile is given in terms of �⌃(R) and
�⇢(R) as

M(R) = ⇡R2�⌃(R) + 2⇡

Z 1

R
dr r �⇢(r) ⇥


R2

�
r2 � R2

� 2
�
r �

�
r2 � R2

��
. (3)

In practice, these integrals must be truncated at some
maximum radius, Rmax, the largest scale at which one
has lensing data (30h�1 Mpc for our data). The uncer-
tainty from this truncation is related to the mass-sheet
degeneracy. Due to the steepness of the cluster profiles
we infer in this paper, this truncation creates only a few
percent uncertainty in the last few radial bins of both
density or mass and virtually none in bins at smaller
radii. Complete details of the procedure are given in
Johnston et al. (2007).
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York et al. 2000). These clusters were selected from
the maxBCG cluster catalog described in Koester et al.
(2007b); the maxBCG cluster finding algorithm, based
on the red sequence of early-type cluster galaxies, is de-
scribed in Koester et al. (2007a).

In this paper, we analyze the detected lensing signal
presented in Paper I and model the features seen in the
shear profiles. In §2 we summarize the relevant results
from Paper I. In §3 we apply the non-parametric in-
versions of Johnston et al. (2007) to infer the mean 3D
cluster mass density and aperture mass profiles in bins
of optical richness and luminosity (see §2.1). These in-
verted density and mass profiles, however, cannot be di-
rectly interpreted as profiles of dark matter halos. In
§4, we discuss why this is so and develop a parameter-
ized model which includes the e↵ects of: displacement
of the center of the cluster halo from the brightest clus-
ter galaxy (BCG); non-linear shear corrections; lensing
by the central BCG; and lensing by neighboring clusters
and structures. When these e↵ects are included, we find
that the inferred halo profiles are well fit by the uni-
versal dark matter profiles of Navarro, Frenk & White
(Navarro et al. 1997). In the context of this model, we
estimate the average halo virial mass, M200, as a function
of cluster galaxy richness and total galaxy luminosity.
We infer the mean halo concentration and halo bias as a
function of M200 and find them to be in good agreement
with the predictions of N-body simulations for the stan-
dard LCDM cosmology. In §6 we compare the inferred
mean halo masses vs. galaxy richness to recent dynam-
ical mass estimates from measured velocity dispersions
for the same cluster sample (Becker et al. 2007); the two
mass estimates agree very well, with the lensing estimates
having smaller errors. We conclude by discussing some
cosmological applications of these results as well as ap-
plications in future optical surveys.

For computing distances and, where needed, the lin-
ear power spectrum of density perturbations, we use
a spatially flat cosmological model with a cosmologi-
cal constant and cold dark matter (LCDM) with scaled
CDM density ⌦m = 0.27, baryon density ⌦b = 0.045,
scaled Hubble parameter h = 0.71 (for the linear power
spectrum not distances) and primordial spectral index
ns = 0.95. The linear power spectrum amplitude �8 is
left free except where specified. We employ the linear
transfer function of Eisenstein and Hu (Eisenstein & Hu
1998). This model (with �8 = 0.8) fits both the WMAP
third-year data Spergel et al. (2007) and the SDSS lumi-
nous red galaxy (LRG) clustering data (Eisenstein et al.
2005). All distances in this paper are in physical not
comoving units of h�1Mpc.

2. WEAK LENSING SHEAR MEASUREMENTS

The methods of measuring the weak lensing signal
are described in detail in Paper I. We briefly summa-
rize some of the important features here. For any pro-
jected mass distribution, the azimuthally averaged tan-
gential shear at projected radius R from the center of
the distribution is given by �(R) = �⌃(R)/⌃crit ⌘
[⌃(< R) � ⌃(R)]/⌃crit, where ⌃(R) is the 2D pro-
jected mass density at radius R, ⌃(< R) is the aver-
age of ⌃ inside a disk of radius R, ⌃(R) is the az-
imuthal average of ⌃(R) in a thin annulus of radius
R, and the critical density for strong lensing is given

TABLE 1
12 N200 bins

Bin number N200 Number of clusters per bin

1 3 58788
2 4 27083
3 5 14925
4 6 8744
5 7 5630
6 8 3858
7 9-11 6196
8 12-17 4427
9 18-25 1711
10 26-40 787
11 41-70 272
12 71-220 47

Note. — The catalog is divided into 12 N200 rich-
ness bins. This table shows the boundaries of N200
values and the number of clusters for each bin.

by ⌃crit ⌘ c2/(4⇡G) DS/(DLDLS), with DS , DL, DLS

the angular diameter distances from the observer to the
source, to the lens, and between the lens and source,
respectively. These distances are cosmology-dependent
functions of redshift. Paper I presents average profiles
of �⌃(R) for maxBCG clusters binned by cluster galaxy
number, N200, and by optical luminosity L200. For these
measurements, the radius R is defined with respect to
the position of the BCG; see §4.3 for further discussion
of this point.

2.1. Richness and Luminosity measures N200 and L200

Although the richness and luminosity measures N200
and L200 are discussed in detail in Paper I, here we em-
phasize some of their important features to avoid possible
confusion. N200 and L200 are the galaxy number and to-
tal i-band luminosity measured within a projected radius
we call rgals

200 , in both cases counting only red-sequence
galaxies with luminosities larger than 0.4L⇤ and satisfy-
ing other selection criteria (see Koester et al. 2007a for
details). This radius is not by definition, equivalent to
the r200 defined by the mass (Eqn. 4), which can in prin-
ciple be measured directly from lensing, since r200 is not
known prior to performing the weak lensing analysis. In-
stead, rgals

200 is determined by first measuring the number
of galaxies, Ngal, within a fixed 1 h�1 Mpc aperture and

calculating rgals
200 = 0.156 N0.6

gal h�1 Mpc, as discussed

in Hansen et al. (2005). Nevertheless, we find that rgals
200

is in fact a good approximation to r200 as determined
in this paper from the lensing data to within about 5%.
The mass-to-light ratio as a function of radius will be pre-
sented in Paper III of this series (Sheldon et al. 2007).
Note that N200 is dimensionless, and L200 has units of
1010h�2L�.

For the purpose of lensing measurement, the catalog
is subdivided into 12 N200 richness bins and 16 L200
richness bins. The richness boundaries for each richness
measure as well as the number of clusters per bin are
displayed in Tables 1 and 2.

3. INVERTING CLUSTER PROFILES

3.1. Inversion Method

The methods used to invert the lensing �⌃(R) pro-
files to 3D density and mass profiles are discussed in
detail in Johnston et al. (2007) and were first used by

mass

130,000 clusters in  
of SDSS ~ 6,000 deg2 

at z=0.25

Johnston et al. (2009)
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Stacked cluster weak lensing: Scaling relations

Scaling relations from weak lensing

HALO BIAS IN GALAXY CLUSTERS 5
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Figure 2. Correlation between the mass of the galaxy clusters and the optical
richness RL� . The line and the shaded regions show the linear relation and
its 1 � � uncertainty.
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Figure 3. Concentration-mass relation for the stacked galaxy clusters.
Green: relation and its scatter found in this work. Red line: theoretical pre-
diction for individual galaxy clusters by Duffy et al. (2008).
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Figure 4. The quantity bh �2
8 as a function of the halo mass. Black points

are our measurements and blue points measurements are from Johnston et al.
(2007). Red curves are the theoretical predictions from Tinker et al. (2010)
for three fiducial values of �8.

based on the LCDM cosmological models. While consistent
at 1 � � level with the predictions from Duffy et al. (2008),
we find evidence for a an over-concentration of the c(M)-
relation.

Our results partially reconcile present tension between ob-
served c-M relations and theoretical predictions. On one
hand, studies of single clusters found very steep and over-
concentrated relations (Oguri et al. 2012, Fedeli 2012, Sereno
& Covone 2013). On the other hand, previous stacked anal-
yses found flat relations of the expected amplitude (Mandel-
baum et al. 2008). We found an alternative scenario on a
middling ground: an over-concentrated but still flat relation.
Analysis of single clusters might be affected by low S/N and
high correlation, as well as by selection effects whereas previ-
ous SDSS stacked analysis might suffer from contamination
and off-set effects.

The large scale shear profile is a degenerate function of the
halo bias and the power spectrum normalisation, therefore our
measurement of the halo bias term is not independent of �8.
Our measurement of the quantity bh(M) �2

8 as a function of
the average halo mass is in very good agreement with theo-
retical predictions by Tinker et al. (2010), and systematically
higher than the ones by Johnston et al. (2007), see Fig. 4. Our
analysis is also consistent with measurements from the corre-
lation function of galaxy clusters. Veropalumbo et al. (2013)
analyzed a spectroscopic sample of 25226 clusters of rich-
ness RL � 12 at z ⇠ 0.3 and obtained bh = 2.06 ± 0.04 for
�8 = 0.8.

Our results open the possibility to verify further phys-
ical effects on the clustering properties of massive halos:
Villaescusa-Navarro et al. (2013) have used N-body simula-
tions to show that cosmological models with massive neutri-
nos show a scale-dependent bias on large scales, while Dalal
et al. (2008) have shown that the nongaussianity of primordial
fluctuations brings to a strongly scale-dependent bias.
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Fig. 10.— The model fits of Fig. 8 and 9 over-plotted on the inverted 3D mass profiles for the 12 N200 richness (left panel) and 16 L200
luminosity bins (right panel).
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Fig. 11.— The inferred mean halo mass vs. richness (left panel) and mass vs. luminosity (it right panel) relations from the model fits to
the lensing profiles. The red lines show the best-fit power-law relations (see text).

(black points) on the same plot — these are not indepen-
dent, since the same clusters are used for both. The blue
curve shows the best-fit power law,

c200(M200) = c200|14(M200/1014h�1M�)�c (28)

c200|14 = 4.1 ± 0.2stat ± 1.2sys

�c = �0.12 ± 0.04.

The fit is performed with all data points from both bin-
nings but the errors are adjusted upward by

�
2 so that

they are not treated as independent data points. These
results indicate that the halo concentrations, with typical
values c200 � 5, depend only weakly on halo mass, as has
been suggested by previous observational and theoretical
results. Note that ignoring the parameters pc, �s and M0

in the model fits would lead to a (biased) underestimate

of the halo concentration parameter c200 by about a fac-
tor of 3, as well as to unrealistically small error estimates
on the concentration.

For comparison with the lensing results, the green
curve in Fig. 12 shows the predicted concentration
vs. mass relation from the halo formation model of
Bullock et al. (2001). Note that Bullock et al. (2001) use
a di↵erent definition of halo mass Mvir and concentration
cvir, so we have converted their predictions to our param-
eters M200 and c200 following the translation given in the
Appendix. In their model, the halo concentration is given
by cvir = K (a/ac), where a = 1/(1 + z) and ac is the
collapse epoch of the halo; the time at which the typical
collapsed mass, M⇤, is a fixed fraction F of the halo mass,
M⇤(ac) = F Mvir. This model is defined by the two pa-
rameters K and F , which are assumed to be independent

Covone et al. (2014) Johnston et al. (2009)

• Scaling relations, necessary calibrating (mass - observable)  
    for cosmology!

• XXL (M. Pierre): ~ 100 X-ray selected clusters, 25 deg2 overlap  
    with CFHTLS, compare lensing and X-ray derived masses.
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Stacked cluster weak lensing on large scales

Scaling relations from weak lensing
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Figure 2. Correlation between the mass of the galaxy clusters and the optical
richness RL� . The line and the shaded regions show the linear relation and
its 1 � � uncertainty.
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Figure 3. Concentration-mass relation for the stacked galaxy clusters.
Green: relation and its scatter found in this work. Red line: theoretical pre-
diction for individual galaxy clusters by Duffy et al. (2008).
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Figure 4. The quantity bh �2
8 as a function of the halo mass. Black points

are our measurements and blue points measurements are from Johnston et al.
(2007). Red curves are the theoretical predictions from Tinker et al. (2010)
for three fiducial values of �8.

based on the LCDM cosmological models. While consistent
at 1 � � level with the predictions from Duffy et al. (2008),
we find evidence for a an over-concentration of the c(M)-
relation.

Our results partially reconcile present tension between ob-
served c-M relations and theoretical predictions. On one
hand, studies of single clusters found very steep and over-
concentrated relations (Oguri et al. 2012, Fedeli 2012, Sereno
& Covone 2013). On the other hand, previous stacked anal-
yses found flat relations of the expected amplitude (Mandel-
baum et al. 2008). We found an alternative scenario on a
middling ground: an over-concentrated but still flat relation.
Analysis of single clusters might be affected by low S/N and
high correlation, as well as by selection effects whereas previ-
ous SDSS stacked analysis might suffer from contamination
and off-set effects.

The large scale shear profile is a degenerate function of the
halo bias and the power spectrum normalisation, therefore our
measurement of the halo bias term is not independent of �8.
Our measurement of the quantity bh(M) �2

8 as a function of
the average halo mass is in very good agreement with theo-
retical predictions by Tinker et al. (2010), and systematically
higher than the ones by Johnston et al. (2007), see Fig. 4. Our
analysis is also consistent with measurements from the corre-
lation function of galaxy clusters. Veropalumbo et al. (2013)
analyzed a spectroscopic sample of 25226 clusters of rich-
ness RL � 12 at z ⇠ 0.3 and obtained bh = 2.06 ± 0.04 for
�8 = 0.8.

Our results open the possibility to verify further phys-
ical effects on the clustering properties of massive halos:
Villaescusa-Navarro et al. (2013) have used N-body simula-
tions to show that cosmological models with massive neutri-
nos show a scale-dependent bias on large scales, while Dalal
et al. (2008) have shown that the nongaussianity of primordial
fluctuations brings to a strongly scale-dependent bias.
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TABLE 10
Mass Richness Power-law Fits: N200 Bins

Mass type M200|20 �N c200|20 �N

M200 8.794E+13 1.28 3.99 -0.15
M180b 1.204E+14 1.30 6.14 -0.14
Mvir 1.055E+14 1.29 5.08 -0.15
M500 6.069E+13 1.25 2.60 -0.16

Note. — Coe�cients and exponents
of the power-law fits of mass and concen-
tration versus richness for the di�erent virial
mass definitions. The mass–richness relation
and concentration–richness relation is of the
form M = M200|20 (N200/20)�N and c =

c200|20 (N200/20)�N . The relative errors on pa-

rameters are the same as the M200 versions (see
text).

TABLE 11
Mass Richness Power-law Fits: L200 Bins

Mass type M200|40 �L c200|40 �L

M200 9.504E+13 1.23 4.37 -0.15
M180b 1.284E+14 1.25 6.68 -0.14
Mvir 1.131E+14 1.24 5.54 -0.14
M500 6.672E+13 1.20 2.86 -0.16

Note. — Coe�cients and exponents of
the power-law fits of mass and concentra-
tion versus luminosity for the di�erent virial
mass definitions. The mass–luminosity relation
and concentration–luminosity relation are of the
form M = M200|40 (L200/40)�L and c =

c200|40 (L200/40)�L . The relative errors on pa-

rameters are the same as the M200 versions (see
text).

of cosmological parameters. Here M⇤ is the non-linear
mass scale at scale factor a in Press-Schechter theory, i.e.,
the mass for which D(a)�(M⇤(a)) = �c, where the linear
growth factor D(a) is given by Eqn. 13, �c=1.686 is the
critical density in the spherical collapse model, and �(M)
is the variance of the linear density field smoothed on the
scale that on average encloses mass M . We choose the
parameter values K = 2.9 and F = 0.001 (di↵erent from
the original Bullock numbers), which have been demon-
strated to reproduce the measured halo concentrations
in a more recent set of LCDM dark matter simulations
(Wechsler et al. 2006). With those choices, the predicted
concentrations of this galaxy formation model, shown as
the green curve in Figure 12, fit those inferred from the
lensing data fairly well. The �2 between the two is 8 (for
12 degrees of freedom) for the N200 richness binning and
12 (for 16 degrees of freedom) for the L200 binning. In
making this comparison, we have used the fiducial cosmo-
logical parameters given at the end of §1. Furthermore,
if we keep the Bullock F parameter and cosmological pa-
rameters fixed we can determine the best fit Bullock K
parameter from our data: Kfit = 3.00 ± 0.24 (assuming
our fiducial cosmology with �8 = 0.8).

Recently, Neto et al. (2007) studied the concentra-
tions of halos identified from the Millennium Simu-
lation (Springel et al. 2005) and found a power-law
relation for the average halo concentration, c200 =
5.26(M200/1014h�1M�)�0.1. The Millennium simulation

1013 1014

M200  ( h −1 MO · )

1

10

c 2
00

Best fit power−law
Neto et al. 2007
Bullock et al. 2001

Buote et al. 2007
Comerford & Nat. 2007

Fig. 12.— The mean NFW halo concentration parameter c200
versus halo mass M200. Black points are from the shear profile
fits for the L200 luminosity bins and the red points are from the
N200 richness bins. The blue curve shows the best-fit power law
to the data (see text). The green curve shows the prediction from
the Bullock et al. (2001) model with F = 0.001, K = 2.9, and
our fiducial cosmology. The magenta curve shows the result from
Neto et al. (2007) for the Millennium Simulation (adjusted to z =
0.25). Note that this was fit to a cosmology with a slightly higher
normalization (�8 = 0.9 vs. �8 = 0.8) and is thus expected to
have slightly higher concentrations. The purple dashed curve is a
result from Buote et al. (2007) on X-ray clusters; the red dashed
line shows a result from a compilation of X-ray and strong-lensing
clusters (Comerford & Natarajan 2007)

uses a flat LCDM cosmology with ⌦m = 0.25, ⌦b =
0.045, h = 0.73, ns = 1, �8 = 0.9 and z = 0.
Bullock et al. (2001) found that halo concentration scales
as 1/(1 + z), which is consistent with recent observa-
tional results from X-ray clusters ; c / (1 + z)�0.71±0.52

(Schmidt & Allen 2007). We thus shift the Neto et al.
(2007) relation by 0.8 to put it at our median cluster
redshift of z = 0.25; this is shown as the magenta curve
in Fig. 12. This result for dissipationless halos agrees
very well with both the Bullock et al. (2001) model and
our data (�2 = 8). Note that because the Neto et al.
(2007) results are calculated for a cosmology with slightly
higher normalization (�8 = 0.9 vs. �8 = 0.8) they are
expected to have slightly higher concentrations and the
agreement between the two models is even better than
it looks in the figure. The large di↵erence shown in the
Neto et al. (2007) paper between their results and the
results of Bullock et al. (2001) are due to the fact that
these authors used the original Bullock et al. (2001) val-
ues for K and F , instead of the updated ones that we
use here; with this change the two theoretical models
are virtually indistinguishable, and are both in excellent
agreement with our results.

Buote et al. (2007) have recently presented a deter-
mination of the concentration–mass relation as mea-
sured by a set of 39 clusters with X-ray measurements,
finding cvir(1 + z) = (9.0 ± 0.4)(Mvir/M14)�0.172±0.026.

Covone et al. (2014) Johnston et al. (2009)

• Concentration parameter c reflects central  
    halo density; depends on assembly history,  
    formation time!

• Predictions usually from N-body simulations!

• Indirect test of CDM paradigm
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Part I day 3+: Extra stu↵ Cluster weak lensing: Dark-matter nature

The bullet cluster

• Merging galaxy cluster at
z = 0.296

• Recent major merger 100 Myr ago

• Components moving nearly
perpendicular to line of sight with
v = 4700 km s�1

• Galaxy concentration o↵set from
X-ray emission. Bow shocks
visible
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Part I day 3+: Extra stu↵ Cluster weak lensing: Dark-matter nature

The bullet cluster: SL+WL measurements

3

TABLE 1
Optical Imaging Sets

Instrument Date of Obs. FoV Passband texp (s) mlim nd (0�2) seeing

2.2m ESO/MPG 01/2004 340 � 340 R 14100 23.9 15 0.008
Wide Field Imager 01/2004 B 6580 1.000

01/2004 V 5640 0.009
6.5m Magellan 01/15/2004 80 radius R 10800 25.1 35 0.006
IMACS 01/15/2004 B 2700 0.009

01/15/2004 V 2400 0.008
HST ACS 10/21/2004 3.05�3.05 F814W 4944 27.6 87 0.0012
subcluster 10/21/2004 F435W 2420 0.0012

10/21/2004 F606W 2336 0.0012
main cluster 10/21/2004 3.05�3.05 F606W 2336 26.1 54 0.0012

Note. — Limiting magnitudes for completion are given for galaxies and measured by where the number counts depart from
a power law. All image sets had objects detected in the reddest passband available.

m435 � m606 > 1.5 � (m606 � m814) � 0.25, and m435 �
m606 < 1.6�(m606�m814)+0.4 for the ACS images; sim-
ilar for the other image sets) that were calibrated with
photometric redshifts from the HDF-S (Fontana et al.
1999). Each galaxy has a statistical weight based on its
significance of detection in the image set (Clowe et al.
2006), and the weights are normalized among catalogs
by comparing the rms reduced shear measured in a re-
gion away from the cores of the cluster common to all five
data sets. To combine the catalogs, we adopt a weighted
average of the reduced shear measurements and appro-
priately increase the statistical weight of galaxies that
occur in more than one catalog.

3. ANALYSIS

We use the combined catalog to create a two-
dimensional  reconstruction, the central portion of
which is shown in Fig. 1. Two major peaks are clearly
visible in the reconstruction, one centered 7.001 east and
6.005 north of the subcluster’s brightest cluster galaxy
(BCG) and detected at 8� significance (as compared to
3� in (Clowe et al. 2004)), and one centered 2.005 east
and 11.005 south of the northern BCG in the main clus-
ter (21.002 west and 17.007 north of the southern BCG)
detected at 12�. We estimate centroid uncertainties by
repeating bootstrap samplings of the background galaxy
catalog, performing a  reconstruction with the resam-
pled catalogs, and measuring the centroid of each peak.
Both peaks are o↵set from their respective BCG by ⇠ 2�,
but are within 1� of the luminosity centroid of the re-
spective component’s galaxies (both BCGs are slightly
o↵set from the center of galaxy concentrations). Both
peaks are also o↵set at ⇠ 8� from the center of mass
of their respective plasma clouds. They are skewed
toward the plasma clouds, which is expected because
the plasma contributes about 1/10th of the total clus-
ter mass (Allen et al. 2002; Vikhlinin et al. 2006) (and
a higher fraction in non-standard gravity models with-
out dark matter). The skew in each  peak toward the
X-ray plasma is significant even after correcting for the
overlapping wings of the other peak, and the degree of
skewness is consistent with the X-ray plasma contribut-
ing 14%+16%

�14% of the observed  in the main cluster and

10%+30%
�10% in the subcluster (see Table 2). Because of the

large size of the reconstruction (340 or 9 Mpc on a side),
the change in  due to the mass-sheet degeneracy should
be less than 1% and any systematic e↵ects on the cen-
troid and skewness of the peaks are much smaller than
the measured error bars.

The projected cluster galaxy stellar mass and plasma
mass within 100 kpc apertures centered on the BCGs
and X-ray plasma peaks are shown in Table 2. This
aperture size was chosen as smaller apertures had sig-
nificantly higher kappa measurement errors and larger
apertures resulted in significant overlap of the apertures.
Plasma masses were computed from a multicomponent 3-
dimensional cluster model fit to the Chandra X-ray image
(details of this fit will be given elsewhere). The emission
in the Chandra energy band (mostly optically-thin ther-
mal bremsstrahlung) is proportional to the square of the
plasma density, with a small correction for the plasma
temperature (also measured from the X-ray spectra),
which gives the plasma mass. Because of the simplic-
ity of this cluster’s geometry, especially at the location
of the subcluster, this mass estimate is quite robust (to
a 10% accuracy).

Stellar masses are calculated from the I-band lumi-
nosity of all galaxies equal in brightness or fainter than
the component BCG. The luminosities were converted
into mass assuming (Kau↵mann et al. 2003) M/LI = 2.
The assumed mass-to-light ratio is highly uncertain (can
vary between 0.5 and 3) and depends on the history of
recent star formation of the galaxies in the apertures;
however even in the case of an extreme deviation, the X-
ray plasma is still the dominant baryonic component in
all of the apertures. The quoted errors are only the errors
on measuring the luminosity and do not include the un-
certainty in the assumed mass-to-light ratio. Because we
did not apply a color selection to the galaxies, these mea-
surements are an upper limit on the stellar mass as they
include contributions from galaxies not a�liated with the
cluster.

The mean  at each BCG was calculated by fitting a
two peak model, each peak circularly symmetric, to the
reconstruction and subtracting the contribution of the
other peak at that distance. The mean  for each plasma
cloud is the excess  after subtracting o↵ the values for
both peaks.

(Bradač et al. 2006, Clowe et al. 2006)
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The bullet cluster: strong lensing
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The bullet cluster: WL and X-ray
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The bullet cluster: Evidence for dark matter

• 10�(6�) o↵set between main (sub-)mass peak and X-ray gas ! most
cluster mass is not in hot X-ray gas (unlike most baryonic mass:
mX � m⇤!)

• Main mass associated with galaxies ! this matter is collisionless

Modified gravity theories without dark matter: MoND (Modified Newtonian
Dynamics), (Milgrom 1983), changes Newton’s law for low accelerations
(a ⇠ 10�10 m s�2), can produce flat galaxy rotation curves and Tully-Fisher
relation.
MoND’s relativistic version (Bekenstein 2004), varying gravitational constant
G(r). Introduces new vector field (“phion”) with coupling strenght ↵(r) and
range �(r) as free functions.
This can produce non-local weak-lensing convergence mass, where  6/ �!
Necessary to explain o↵set between main  peak and main baryonic mass.
Model with four mass peaks can roughly reproduce WL map with additional
collisionless mass! E.g. 2 eV neutrinos.
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The bullet cluster: MoND model
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Testing GR with WL and galaxy clusteringMartin KilbingerMMoG 4

Cluster mass function n(M, z). 
Scaling relations between observables (X-ray, 
optical, SZ, …) and mass, mass measurement.

galaxy 
clusters

galaxy 
groups

Gravity strength on 
relativistic vs. non-
relativistic objects. 
Poorly known relation 
between galaxies &  
dark matter (galaxy bias)

Rate of growth of cosmic web. 
Galaxy bias

time

Problem: Baryonic tracers!

galaxy

relativistic particles

gravitational action on

redshift

observer

light deflection

peculiar velocities

gravitational action on

non−relativistic objects

dark−matter halo
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Results from SDSS

Going to larger scales and testing GR

(Reyes et al. 2010)SDSS

3

3 

linearly related by the galaxy bias14, but the value of the bias itself is poorly constrained. 

Moreover, galaxy-galaxy lensing and galaxy clustering depend on the amplitude of the 

matter perturbations A, which we also do not know a priori. However, the combination 

of these quantities inEG is such that both nuisance parameters cancel out. Thus, unlike 

in previous analyses15, we do not require additional observations and assumptions to 

estimate the galaxy bias, and are able to obtain more robust results.  

We use a sample of 70,205 luminous red galaxies16 (LRGs) from the Sloan Digital 

Sky Survey (SDSS)17, a homogeneous dataset ideal for the study of large-scale 

structure. The galaxies have been selected according to the same criteria as in Eisenstein 

et al.18 They cover an area of 5215 sq. degrees and a range of redshifts z = 0.16 − 0.47. 

The redshift z = λmeas/λemis - 1 of the radiation emitted by a distant galaxy is a measure 

of the time of emission. The redshift of our galaxy sample, z = 0.32, corresponds to a 

lookback time of 3.5 billion years, when the universe was about 77 per cent of its 

current size, and is already well into the accelerated phase of the cosmic expansion. The 

sample also spans a large comoving volume, 1.02h-3 Gpc3, where the Hubble constant 

H0 = 100h km s-1 Mpc-1, and 1 Gpc (giga-parsec) = 1000 Mpc (mega-parsec) = 3.086 × 

1025 m. 

Tegmark et al.19 measured the anisotropy in the power spectra of an equally 

selected sample of LRGs to determine the redshift distortion parameter β ≡ f(z)/b, where 

f (z) is the logarithmic linear growth rate of structure at redshift z. Their analysis found 

β = 0.309 ± 0.035 on large scales and at z = 0.32. In this work, we use this result forβ , 

together with new measurements of the galaxy-galaxy lensing and galaxy clustering 

signals of the full LRG sample, to determine EG at mega-parsec scales and effective 

redshift of z = 0.32. 

from SDSS galaxy clustering  
(redshift-space distortions)  
Tegmark et al. (2006)
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Figure 1 | Probes of large-scale structure measured from ~70,000 

luminous red galaxies (LRGs).  Observed radial profiles for two 

complementary probes, galaxy-galaxy lensing (a) and galaxy clustering (b) are 

shown for scales R = 1.5 – 47h-1 Mpc (open circles). The 1σ error bars (s.d.) are 

estimated from jackknife resampling of 34 equal-area regions in the sky. 

Profiles measured from mock galaxy catalogues are also shown (solid curves). 

11 

 

Figure 1 | Probes of large-scale structure measured from ~70,000 

luminous red galaxies (LRGs).  Observed radial profiles for two 

complementary probes, galaxy-galaxy lensing (a) and galaxy clustering (b) are 
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Results from SDSS

Modifying general relativity

Galaxy-galaxy lensing: 
measures ! + " and b#

Galaxy clustering:  
measures "
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Figure 2 | Comparison of observational constraints with predictions from 

GR and viable modified gravity theories. Estimates of EG(R) are shown with 

1σ error bars (s.d.) including the statistical error on the measurement19 of β 

(filled circles). The grey shaded region indicates the 1σ  envelope of the mean 

EG over scales R = 10 – 50h-1 Mpc, where the systematic effects are least 

important (see Supplementary Information). The horizontal line shows the mean 

prediction of the GR+ΛCDM model, EG = Ωm,0 / f , for the effective redshift of the 

measurement, z = 0.32. On the right side of the panel, labelled vertical bars 

show the predicted ranges from three different gravity theories: (i) GR+ΛCDM 

(EG = 0.408 ± 0.029(1σ ) ), (ii)  a class of cosmologically-interesting models 

in f (R)  theory with Compton wavelength parameters27B0 = 0.001− 0.1 

(EG = 0.328 − 0.365 ), and (iii) a TeVeS model9 designed to match existing 

cosmological data and to produce a significant enhancement of the growth 

factor (EG = 0.22 , shown with a nominal error bar of 10 per cent for clarity).  

Friedmann-Lemaître-Robertson-Walker metric with perturbations:

(Reyes et al. 2010)

Parameterisation

Gravitational potential as experienced by galaxies:

Gravitational potential as experienced by photons:

 ds
2 = −(1+ 2ϕ )dt 2 + (1− 2φ)a2drx 2

∇2ϕ = 4πGa2ρδ

∇2 (ϕ + φ) = 8πGa2ρδ 1+ Σ[ ]

1+ µ[ ] µ(a)∝ΩΛ (a)

Σ(a)∝ΩΛ (a)

time dilation spatial curvature
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WL peak counts: Why do we want to study peaks?

Martin KilbingerWL: higher-order stats. / 45

Weak-lensing peak counts

21

• WL peaks probe high-density regions ↔ non-Gaussian tail of LSS 
• First-order in observed shear: less sensitive to systematics, circular average! 
• High-density regions ↔ halo mass function, but indirect probe: 

• Intrinsic ellipticity shape noise, creating false positives, up-scatter in S/N 
• Projections along line of sight

linc.tw Chieh-An Lin (CEA Saclay)

Weak-lensing peak counts

• Local maxima of the projected mass
• Probe the mass function
• Non-Gaussian information

ABC: an application to weak-lensing peak counts Cosmo21, Chania — May 26th, 2016 4

Chapter 5 — Peak-count modelling

Figure 5.9: Similar to Fig. 5.4, comparison between four cases on the large field. Here, Case 1 is only
indicative since it is still the result from the small field.

Galaxy redshift, redshift errors, tomography One can either suppose a constant source
redshift or generate sources from a distribution law. If a model for photo-z or other redshift
errors is provided, our forward model generates without any di�culties a series of realis-
tic observed redshifts for galaxies. To better extract cosmological information, performing
tomographic studies is also feasible.

Galaxy shape noise & intrinsic alignment Another extension for our model is the noise
model. When isotropy for galaxy shape orientation is assumed, Gaussian noise is added.
Beyond Gaussian noise, some physically-motivated models for IA can be added easily. In this
case, one needs to identify pairs of galaxy and hosted halo. The galaxy orientation can be
provided by an IA model depending, on its type and the distance to the halo center.

Inversion & filtering A large number of options are available for our model to make a mass
map. For example, using a �-peak approach, one could compute directly the convergence
signal without worrying about the inversion problem (see Sect. 4.4), while a more realistic
way would be simulating shears and using inversion techniques (Kaiser & Squires 1993, Seitz &
Schneider 1995, etc.) to get convergence maps. Besides, one can also adopt an aperture-mass
approach: convolving the shear field with a zero-mean filter. By definition, the aperture mass
is already a smoothing, while both �-peak methods require in addition filtering techniques,
linear or nonlinear ones, to reduce noise (see further Chap. 8). For all three modelling
approaches, taking masking into account is not necessarily trivial. Reducing the e�ective
survey area, determining near-mask areas with a higher noise level (Liu X. et al. 2014), or
filling missing data with inpainting (method: Pires et al. 2009b, data application: Jullo et al.
2014), are di�erent options.

S/N determination In most studies, the noise level in S/N is a global value derived from
the whole survey, which yields a global significance. However, in reality, depending on mask
and the galaxy spatial distribution, the local noise level is not uniform. Taking the local
significance into account would make the modelling more accurate (see also Chap. 8).

100 PhD thesis of Chieh-An Lin
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Weak-lensing peak counts

• Local maxima of the projected mass
• Probe the mass function
• Non-Gaussian information

ABC: an application to weak-lensing peak counts Cosmo21, Chania — May 26th, 2016 4

interpretation ?

modelling

counting
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WL peak counts. What are peaks good for?

chieh-an.lin@cea.fr Chieh-An Lin (CEA/SAp-AIM)

What is peak counting?

What do we gain from peak counting?
• Additional and complementary

information and constraints
compared to 2nd order shear

• Non-Gaussian information

Figure from Dietrich & Hartlap 2010

red/orange: cosmic shear

green: shear & peak

CAMELUS: A New Model to Predict Weak Lensing Peak Counts IWCS2, Nice — September 9th, 2014 8
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WL peaks: A fast stochastic model
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Fast simulations for WL peak counts

25

linc.tw Chieh-An Lin (CEA Saclay)

A new model to predict weak-lensing peak counts

Public code in C: Camelus@GitHub See also Lin & Kilbinger (2015a)

ABC: an application to weak-lensing peak counts Cosmo21, Chania — May 26th, 2016 7

Replace N-body simulations by Poisson distribution of halos

Lin, MK & Pires 2016

Simulating 
1-halo term
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WL peaks: histograms
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Fast simulations for WL peak counts
Hypotheses:

1. Clustering of halos not important for counting peaks  
(along los: Marian et al. 2013) 

2. Unbound LSS does not contribute to WL peaks

Test:

chieh-an.lin@cea.fr Chieh-An Lin (CEA/SAp)

Results (on a small field)

Field of view = 54 deg2; 10 halo redshift bins from z = 0 to 1; galaxies on regular grid, zs = 1.0

A New Model to Predict Weak Lensing Peak Counts IAS — January 27th, 2015 30
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WL peaks: cosmological parameters

chieh-an.lin@cea.fr Chieh-An Lin (CEA/SAp)

Dependance on parameters

Lin & Kilbinger (2015a)

A fast stochastic approach for constraints using peaks Irfu — Jul 2nd, 2015 20
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In general: Constraining cosmological parameters
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Constraining parameters

29

p(�|x, m) =
L(x|�, m)P (�|m)

E(x|m)

Martin Kilbinger Bayesian model selection in cosmology with PMC RA E Science day 14/06/2010 /23

Bayes’ theorem

• In cosmology, we often have:

• data

• parametrised theoretical model(s)
to predict the data

• We want: best parameters/model
to describe data, with confidence regions

• Bayes’ theorem:

Evidence

Likelihood:
probability of data given
parameters and model Prior

Posterior:
probability of parameters

given data and model

m : model

d : data

✓ : model parameter

p(✓|d, m) =
L(d|✓, m)⇡(✓|m)

E(d|m)

Power Spectrum Present

Dunkley et al (2008)

Angular power spectrum (WMAP5)
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� : parameters
x : data
m : model

Bayes’ theorem

Parameter constraints = integrals over the posterior

For example:

Approaches: Sampling (Monte-Carlo integration), Fisher-matrix approximation,  
frequentist evaluation, ABC, …

Z
dn⇡ h(�)p(�|x, m)

h(�) = � : mean
h(�) = 168% : 68% credible region
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WL peaks: data vector choices
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Fast simulations for WL peak counts

25
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A new model to predict weak-lensing peak counts

Public code in C: Camelus@GitHub See also Lin & Kilbinger (2015a)

ABC: an application to weak-lensing peak counts Cosmo21, Chania — May 26th, 2016 7

Replace N-body simulations by Poisson distribution of halos

Lin, MK & Pires 2016

Simulating 
1-halo term
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WL peaks: Gaussian likelihood
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Parameter constraints: Gaussian

32

A&A proofs: manuscript no. Submit1

Fig. 3. Confidence regions derived from Lcg, Lsvg, and Lvg with xabd5. The solid and dashed lines represent Lcg in the left panel and Lvg in the right
panel, while the colored areas are from Lsvg. The black star stands for �in and grey areas represents the non-explored parameter space. The dotted
lines are di�erent isolines, the variance Ĉ55 of the bin with highest S/N in the left panel and ln(det Ĉ) for the right panel. The contour area is
reduced by 22% when taking into account the CDC e�ect. The parameter-dependent determinant term does not contribute significantly.

4. Testing the copula transform

4.1. Formalism

Consider a multivariate joint distribution P(x1, . . . , xd). In gen-
eral, P could be far from Gaussian so that imposing a Gaussian
likelihood could induce biases. The idea of the copula technique
is to evaluate the likelihood in a new observable space in which
the Gaussian approximation is better. Using a change of vari-
ables, individual marginalized distributions of P can be approx-
imated to Gaussian ones. This is achieved by a series of suc-
cessive 1-dimensional, axis-wise transformations. The multivari-
ate Gaussianity of the transformed distribution is not garanteed.
However, in some cases, this transformation tunes the distribu-
tion and makes it more “Gaussian”, so that evaluating the like-
lihood in the tuned space is more realistic (Benabed et al. 2009;
Sato et al. 2011).

From Sklar’s theorem (Sklar 1959), any multivariate distri-
bution P(x1, . . . , xd) can be decomposed into the copula density
multiplied by marginalized distributions. A comprehensible and
elegant demonstration is given by Rüschendorf (2009). Readers
are also encouraged to follow Scherrer et al. (2010) for detailed
physical interpretations and Sato et al. (2011) for a very peda-
gogical derivation of the Gaussian copula transform.

Consider a d-dimensional distribution P(x), where x =
(x1, . . . , xd) is a random vector. Let Pi be the marginalized 1-
point PDF of xi, and Fi the corresponding CDF. Sklar’s theorem
shows that there exists an unique d-dimensional function c de-
fined on [0, 1]d with uniform marginal PDF, such that

P(x) = c(u)P1(x1) · · · Pd(xd), (11)

where ui � Fi(xi). The function c is called the copula density.
On the other hand, let qi � ��1

i (ui), where �i is the CDF of the
normal distribution with the same means µi and variances �2

i as

the laws Pi, such that

�i(qi) �
� qi

��
�i(q�)dq�, (12)

�i(qi) �
1

�
2��2

i

exp
�
������

(qi � µi)2

2�2
i

�
����� . (13)

We can then define a new joint PDF P� in the q-space that corre-
sponds to P in x-space, i.e. P�(q) = P(x). The marginal PDF and
CDF of P� are nothing but �i and�i, respectively. Thus, applying
Eq. (11) to P� and �i, one gets

P�(q) = c(u)�1(q1) · · · �d(qd). (14)

By uniqueness of the copula density, c in Eqs. (11) and (14) are
the same. Thus, we obtain

P(x) = P�(q)
P1(x1) · · · Pd(xd)
�1(q1) · · · �d(qd)

. (15)

We note that the marginal PDFs of P� are identical to a multi-
variate Gaussian distribution � with mean µ and covariance C,
where C is the covariance matrix of x. The PDF of � is given by

�(q) � 1
�

(2�)d det C
exp

�
��������

1
2

�

i, j

(qi � µi)C�1
i j (q j � µ j)

�
������� . (16)

Finally, by approximating P� to �, one gets the Gaussian copula
transform:

P(x) = �(q)
P1(x1) · · · Pd(xd)
�1(q1) · · · �d(qd)

. (17)

Why is it more accurate to calculate the likelihood in this
way? In the classical case, since the shape of P(x) is unknown,
we approximate it to a normal distribution: P(x) � �(x). Apply-
ing the Gaussian copula transform means that we carry out this
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Fig. 2. Middle panel: the likelihood value using xabd5 on the �m-�8 plane. The green star represents the input cosmology �in. Since log�8 and
log�m form an approximately linear degenerency, the quantity �8 � �8(�m/0.27)� allows us to characterize the banana-shape contour thickness.
Right panel: the marginalized PDF of �8. The dashed lines give the 1-� interval (68.3%), while the borders of the shaded areas represent 2-�
limits (95.4%). Left panel: the log-value of the marginalized likelihood ratio. Dashed lines in the left panel give corresponding value for 1 and 2-�
significance levels, respectively.

Gaussian (labelled vg) log-likelihoods as

Lcg � �xT (�)�C�1(�obs) �x(�), (8)

Lsvg � �xT (�)�C�1(�) �x(�), and (9)

Lvg � ln
�
det�C(�)

�
+ �xT (�)�C�1(�) �x(�). (10)

Here, the term�C�1(�obs) in Eq. (8) refers to�C�1(�in), where �in is
described in Sect. 2.2. By comparing the contours derived from
di�erent likelihoods, we aim to measure (1) the evolution of the
�2 term by substituing the constant matrix with the true vary-
ing �C�1, and (2) the impact from adding the determinant term.
Therefore, Lsvg is just an illustrative case to assess the influence
of the two terms in the likelihood.

3.2. The �2 term

The left panel of Fig. 3 shows the comparison between confi-
dence regions derived from Lcg and Lsvg with xabd. It shows a
clear di�erence of the contours between Lcg and Lsvg. Since the
o�-diagonal correlation coe�cients are weak (as shown in Ta-
ble 3), the variation of diagonal terms of C plays a major role in
the size of credible regions. The isolines for Ĉ55 are also drawn
in Fig. 3. These isolines cross the�m-�8 degenerency lines from
Lcg and thus shrink the credible region. We also find that the iso-
lines for Ĉ11 and Ĉ22 are noisy, and that those for Ĉ33 and Ĉ44
coincide well with the original degeneracy direction.

Table 4 shows the values of both criteria for di�erent like-
lihoods. We observe that using Lsvg improves significantly the
constraints by 24% in terms of FoM. Regarding ��8, the im-
provement is weak. As a result, using varying covariance ma-
trices breaks down part of the banana-shape degenerency and
shrinks the contour length, but does not reduce the thickness.

We show in the left panels of Fig. 4 the same constraints de-
rived from two other observables xpct5 and xcut5. We see a similar
CDC e�ect for both. We observe that xpct5 has less constraining
power than xabd5, and xcut5 is outperformed by both other data
vectors. This is due to the cuto� value �min. Introducing a cuto�
at �min = 3 decreases the total number of peaks and amplifies
the fluctuation of high-peak values in the CDF. When we use

percentiles to define observables, the distribution of each com-
ponent of xcut5 becomes wider than the one of the corresponding
component of xpct5, and this greater scatter in the CDF enlarges
the contours. However, the cuto� also introduces a tilt of the
contours. Table 5 shows the best-fit � for the di�erent cases.
The di�erence of the tilt could be a useful tool to improve the
constraining power. This has also been observed by Dietrich &
Hartlap (2010). Nevertheless, we do not procced any joint analy-
sis since xabd5 and xcut5 contain essentially the same information.

3.3. Impact from the determinant term

The right panel of Fig. 3 shows the comparison between Lsvg and
Lvg with xabd5. It shows that adding the determinant term does
not result in significant changes of the parameter constraints. The
isolines from ln(det Ĉ) explain this, since the graidents are per-
pendicular to the degenerency lines. We observe that including
the determinant makes the contours slightly larger, but almost
negligibly so. The total improvement of the contour area com-
pared to Lcg is 22%.

However, a di�erent change is seen for xpct5 and xcut5.
Adding the determinant to the likelihood computed from these
observables induces a shift of contours toward the higher-�m
area. In the case of xcut5, this shift compensates the contour o�-
set from the varying �2 term, but does not improve significantly
either ��8 or FoM, as shown in Table 4. As a result, using the
Gaussian likelihood, the total CDC e�ect can be summed up as
an improvement of at least 14% in terms of thickness and 38%
in terms of area.

The results from Bayesian inference is very similar to the
likelihood-ratio test. Thus, we only show their ��8 and FoM in
Table 6 and best fits in Table 7. We recall that a similar analy-
sis has been done by Eifler et al. (2009) on shear covariances.
Our observations agree with their conlusions: a relatively large
impact from the �2 term and negligible change from the deter-
minant term. However, the total CDC e�ect is more significant
in the peak-count framework than for the power spectrum.

Article number, page 5 of 15

Cosmology-dependent covariance [(s)vg] reduces  
error area by 20%.
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Approximate Bayesian Computation (ABC)

35

p(�|x, m) =
L(x|�, m)P (�|m)

E(x|m)
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Bayes’ theorem

• In cosmology, we often have:

• data

• parametrised theoretical model(s)
to predict the data

• We want: best parameters/model
to describe data, with confidence regions

• Bayes’ theorem:

Evidence

Likelihood:
probability of data given
parameters and model Prior

Posterior:
probability of parameters

given data and model

m : model

d : data

✓ : model parameter

p(✓|d, m) =
L(d|✓, m)⇡(✓|m)

E(d|m)

Power Spectrum Present

Dunkley et al (2008)

Angular power spectrum (WMAP5)

3
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� : parameters
x : data
m : model

xLikelihood: how likely is it that model prediction                 reproduces data    ?x

mod(�)
C.-A. Lin & M. Kilbinger: A new model to predict weak-lensing peak counts II.

Fig. 6. Example for the p-value determination. The x-axis indicates a
one-dimensional observable, and the y-axis is the PDF. The PDF is ob-
tained from a kernel density estimation using the N = 1000 realizations.
Their values are shown as bars in the rug plot on the top of the panel.
The shaded area is the corresponding p-value for given observational
data xobs.

Fig. 7. This figure shows the PDF from two di�erent models (denoted
by �1 and �2) and the observation xobs. The dashed lines show 1-� in-
tervals for both models, while the shaded areas are intervals beyond the
2-� level. In this figure, the model �1 is excluded at more than 2-�,
whereas the significance of the model �2 is between 1 and 2-�.

to move a step further, and bypass the likelihood estimation al-
together.

Based on an accept-reject rule, approximate Bayesian com-
putation (ABC) is an algorithm that provides the posterior dis-
tribution of a complex stochastic process when evaluation of the
likelihood is expensive or unreachable. There are only two re-
quirements: (1) a stochastic model for the observed data that
samples the likelihood function of the observable and (2) a mea-
sure, called summary statistic, to perform model comparison.
We present below a brief description of ABC. Readers can find
detailed reviews of ABC in Marin et al. (2011), and Sect. 1 of
Cameron & Pettitt (2012).

The idea behind ABC can be most easily illustrated in the
case of discrete data as follows. Instead of explicitly calculating
the likelihood, one generates first a set of parameters {�i} as sam-
ples under the prior P(�), and then for each �i simulates a model
prediction X sampled under the likelihood function P(·|�i) (we
put here X in upper case to emphasize that X is a random vari-
able). Keeping only those �i for which X = xobs, the distribution
of the accepted samples PABC(�) equals to the posterior distribu-

tion of the parameter P(�|xobs) given the observed data, since

PABC(�) =
�

X
P(X|�)P(�)�X,xobs

= P(xobs|�)P(�)

= P(�|xobs), (27)

where �X,xobs is Kronecker’s delta. Therefore, {�i} is an iid sample
from the posterior. It is su�cient to perform a one-sample test:
using a single realization X for each parameter � to obtain a
sample under the posterior.

ABC can also be adapted to continuous data and parameters,
where obtaining a strict equality X = xobs is pratically impossi-
ble. Hence, sampled points are accepted with a tolerance level �,
say |X� xobs| � �. What is retained after repeating this process is
an ensemble of parameters � that are compatible with the data,
and that follow a probability distribution, which is a modified
version of Eq. (27):

P�(�|xobs) = A�(�)P(�), (28)

where A�(�) is the probability that a proposed parameter � passes
the one-sample test within the error �:

A�(�) �
�

dX P(X|�) |X�xobs |��(X). (29)

The Kronecker delta from Eq. (27) has now been replaced with
the indicator function of the set of points X that satisfy the tol-
erance criterion. The basic assumption of ABC is that the proba-
bility distribution (28) is a good approximation of the underlying
posterior, such that

P�(�|xobs) � P(�|xobs). (30)

Therefore, the one-sample test with tolerance generates samples
under P� . This means that the fact that only one model for a given
parameter � is tested does not add additional noise compared to
ordinary Monte Carlo sampling.

A further addition to the ABC algorithm is a reduction of the
complexity of the full model and data. This is necessary in cases
of very large dimensions, for example when the model produces
entire maps or large catalogues. The reduction of data complex-
ity is done with the so-called summary statistic s. For instance,
in our peak-count framework, a complete data set x is a peak cat-
alogue with positions and S/N values, and the summary statistic
s is chosen here to be s(x) = xabd5, xpct5, or xcut5, respectively,
for the three cases of observables introduced in Sect. 2.2.

For a general comparison of model and data, one chooses a
metric D adapted to the summary statistic s, and the schematic
expression |X � xobs| � � used above is generalized to
D(s(X), s(xobs)) � �. We highlight that the summary statistic
can have low dimension and a very simple form. In practice, it
is be motivated by computational e�ciency, and it seems that a
simple summary can still produce reliable constraints (Weyant
et al. 2013).

The integral of Eq. (28) over � is smaller than unity, and
the deficit represents just the probability that a parameter is re-
jected by ABC. This is not problematic since density estimation
will automatically normalize the total integral over the posterior.
However, a more subtle issue is the choice of the tolerance level
�. If � is too large, A(�) is close to 1, and Eq. (30) becomes a
bad estimate. If � is too small, A(�) is close to 0, and sampling
becomes extremely di�cult and ine�cient. How, then, should
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ABC can be performed if: 

• it is possible and easy to sample from L 
 

ABC is useful when: 

• functional form of L is unknown 
• evaluation of L is expensive 
• model is intrinsically stochastic

Probability = p/N in frequentist sense. 

Magic: Don’t need to sample N models. 
One per parameter     is sufficient  
with accept-reject algorithm.

�
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Fig. 6. Example for the p-value determination. The x-axis indicates a
one-dimensional observable, and the y-axis is the PDF. The PDF is ob-
tained from a kernel density estimation using the N = 1000 realizations.
Their values are shown as bars in the rug plot on the top of the panel.
The shaded area is the corresponding p-value for given observational
data xobs.

Fig. 7. This figure shows the PDF from two di�erent models (denoted
by �1 and �2) and the observation xobs. The dashed lines show 1-� in-
tervals for both models, while the shaded areas are intervals beyond the
2-� level. In this figure, the model �1 is excluded at more than 2-�,
whereas the significance of the model �2 is between 1 and 2-�.

to move a step further, and bypass the likelihood estimation al-
together.

Based on an accept-reject rule, approximate Bayesian com-
putation (ABC) is an algorithm that provides the posterior dis-
tribution of a complex stochastic process when evaluation of the
likelihood is expensive or unreachable. There are only two re-
quirements: (1) a stochastic model for the observed data that
samples the likelihood function of the observable and (2) a mea-
sure, called summary statistic, to perform model comparison.
We present below a brief description of ABC. Readers can find
detailed reviews of ABC in Marin et al. (2011), and Sect. 1 of
Cameron & Pettitt (2012).

The idea behind ABC can be most easily illustrated in the
case of discrete data as follows. Instead of explicitly calculating
the likelihood, one generates first a set of parameters {�i} as sam-
ples under the prior P(�), and then for each �i simulates a model
prediction X sampled under the likelihood function P(·|�i) (we
put here X in upper case to emphasize that X is a random vari-
able). Keeping only those �i for which X = xobs, the distribution
of the accepted samples PABC(�) equals to the posterior distribu-

tion of the parameter P(�|xobs) given the observed data, since

PABC(�) =
�

X
P(X|�)P(�)�X,xobs

= P(xobs|�)P(�)

= P(�|xobs), (27)

where �X,xobs is Kronecker’s delta. Therefore, {�i} is an iid sample
from the posterior. It is su�cient to perform a one-sample test:
using a single realization X for each parameter � to obtain a
sample under the posterior.

ABC can also be adapted to continuous data and parameters,
where obtaining a strict equality X = xobs is pratically impossi-
ble. Hence, sampled points are accepted with a tolerance level �,
say |X� xobs| � �. What is retained after repeating this process is
an ensemble of parameters � that are compatible with the data,
and that follow a probability distribution, which is a modified
version of Eq. (27):

P�(�|xobs) = A�(�)P(�), (28)

where A�(�) is the probability that a proposed parameter � passes
the one-sample test within the error �:

A�(�) �
�

dX P(X|�) |X�xobs |��(X). (29)

The Kronecker delta from Eq. (27) has now been replaced with
the indicator function of the set of points X that satisfy the tol-
erance criterion. The basic assumption of ABC is that the proba-
bility distribution (28) is a good approximation of the underlying
posterior, such that

P�(�|xobs) � P(�|xobs). (30)

Therefore, the one-sample test with tolerance generates samples
under P� . This means that the fact that only one model for a given
parameter � is tested does not add additional noise compared to
ordinary Monte Carlo sampling.

A further addition to the ABC algorithm is a reduction of the
complexity of the full model and data. This is necessary in cases
of very large dimensions, for example when the model produces
entire maps or large catalogues. The reduction of data complex-
ity is done with the so-called summary statistic s. For instance,
in our peak-count framework, a complete data set x is a peak cat-
alogue with positions and S/N values, and the summary statistic
s is chosen here to be s(x) = xabd5, xpct5, or xcut5, respectively,
for the three cases of observables introduced in Sect. 2.2.

For a general comparison of model and data, one chooses a
metric D adapted to the summary statistic s, and the schematic
expression |X � xobs| � � used above is generalized to
D(s(X), s(xobs)) � �. We highlight that the summary statistic
can have low dimension and a very simple form. In practice, it
is be motivated by computational e�ciency, and it seems that a
simple summary can still produce reliable constraints (Weyant
et al. 2013).

The integral of Eq. (28) over � is smaller than unity, and
the deficit represents just the probability that a parameter is re-
jected by ABC. This is not problematic since density estimation
will automatically normalize the total integral over the posterior.
However, a more subtle issue is the choice of the tolerance level
�. If � is too large, A(�) is close to 1, and Eq. (30) becomes a
bad estimate. If � is too small, A(�) is close to 0, and sampling
becomes extremely di�cult and ine�cient. How, then, should
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ABC: Approximate Bayesian Computation III
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Example: let’s make soup.

Goal: Determine ingredients from final result. 
Model physical processes? Complicated. 
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ABC: Approximate Bayesian Computation IV
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Example: let’s make soup.

Goal: Determine ingredients from final result. 
Model physical processes? Complicated. 
Easier: Make lots of soups with different ingredients, compare.
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Example: let’s make soup.

Questions: 
• What aspect of data and simulations do we compare? (summary statistic) 
• How do we compare? (metric, distance) 
• When do we accept? (tolerance) 
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• Summary statistic 
 
s = x (data vector for 2 cases) 

• Metric  D: two cases  
 
 
 
 

• ABC algorithm: iterative importance 
sampling (PMC) with decreasing 
tolerance

A&A 593, A88 (2016)

Fig. 4. Distribution of evaluated parameter points on the �m-�8 plane.
This figure can be considered as a slice of points with the same wde

0 .
There are in total 46 slices of 816 points.

we use

xmod
i =

1
N

N�

k=1

x(k)
i , (32)

Ĉi j =
1

N � 1

N�

k=1

�
x(k)

i � xmod
i

� �
x(k)

j � xmod
j

�
, (33)

�C�1 =
N � d � 2

N � 1
�C
�1
, and (34)

P̂i(xi) =
1
N

N�

k=1

1
hi

W

�
������

xi � x(k)
i

hi

�
������ (35)

for the estimations, where d is the dimension of x, W is the
Gaussian kernel, and hi = (4/3N)1/5�̂i. Note that the model pre-
diction xmod is nothing but the average over the realization set;
the inverse covariance matrix is unbiased (Hartlap et al. 2007) to
good accuracy (see also Sellentin & Heavens 2016); and Eq. (35)
is a kernel density estimation (KDE).

We evaluated the copula likelihoods, given by Eq. (31), on a
grid. The range of wde

0 is [–1.8, 0], with �wde
0 = 0.04. Concerning

�m and �8, only some particular values were chosen for eval-
uation in order to reduce the computing cost. This resulted in
816 points in the �m-�8 plane, as displayed in Fig. 4, and the
total number of parameter sets was 37536. For each parameter
set, we carried out N = 400 realizations of our model, to es-
timate L using Eqs. (31)–(35). Each realization produced data
vectors for three cases: (1) the Gaussian kernel; (2) the starlet
kernel; (3) MRLens, so that the comparisons between cases are
based on the same stochasticity. The aperture mass was not in-
cluded here because of the time consuming convolution of the
unbinned shear catalog with the filter Q. The FDR � of MRLens
was set to 0.05. A map example is displayed in Fig. 5 for the
three cases and the input simulated � field.

Table 2. Definition of the data vector x for PMC ABC runs.

Filter �ker [arcmin] or � Number of bins d
Gaussian �ker = 1.2, 2.4, 4.8 9 � bins 27

Starlet �ker = 2, 4, 8 9 � bins 27
Map tanh �ker = 2.125, 4.25, 8.5 9 � bins 27
MRLens � = 0.05 6 � bins 6

Notes. The 9 bins of � are [1, 1.5, 2, . . ., 4, 4.5, 5, +�[, and the 6 bins of
� are [0.02, 0.03, 0.04, 0.06, 0.10, 0.16, +�[. The symbol d is the total
dimension of x, and � stands for the input value of FDR for MRLens.

4.4.2. Population Monte Carlo approximate Bayesian
computation

The second analysis adopts the approximate Bayesian compu-
tation (ABC) technique. ABC bypasses the likelihood evalua-
tion to estimate directly the posterior by accept-reject sampling.
It is fast and robust, and has already had several applications
in astrophysics (Cameron & Pettitt 2012; Weyant et al. 2013;
Robin et al. 2014; Paper II; Killedar et al. 2016). Here, we use
the Population Monte Carlo ABC (PMC ABC) algorithm to con-
strain parameters. This algorithm adjusts the tolerance level iter-
atively, such that ABC posterior converges. A detailed descrip-
tion of the PMC ABC algorithm can be found in Sect. 6 of
Paper II.

We ran PMC ABC for four cases: the Gaussian kernel, the
starlet kernel, the aperture mass with the hyperbolic tangent
function, and MRLens with � = 0.05. For the three first lin-
ear cases, the data vector x was composed of three scales. The
S/N bins of each scale were [1, 1.5, 2, . . ., 4, 4.5, 5, +�[, which
result in 27 bins in total (Table 2). For MRLens, x was a 6-
bin � histogram, which is the same as for the analysis using the
likelihood.

Concerning the ABC parameters, we used 1500 particles in
the PMC process. The iteration stoped when the success ratio
of accept-reject processes fell below 1%. Finally, we tested two
distances. Between the sampled data vector x and the observed
one, xobs, we considered a simplified distance D1 and a fully
correlated one D2, which are respectively defined as

D1
�
x, xobs

�
�

�����

i

�
xi � xobs

i

�2

Cii
, (36)

D2
�
x, xobs

�
�
��

x � xobs�T C�1 �x � xobs�, (37)

where Cii and C�1 are now independent from cosmology,
estimated using Eqs. (33) and (34) under (�m,�8, wde

0 ) =
(0.28, 0.82,�0.96). Note that D1 has been shown in Paper II to be
able to produce constraints which agree well with the likelihood.
However, with multiscale data, bins could be highly correlated,
and therefore we also ran ABC with D2 in this paper.

5. Results

5.1. Comparing filtering techniques using the likelihood

We propose two methods to measure the quality of constraints.
The first indicator is the uncertainty on the derived parameter �8.
Here, we define �8 di�erently from the literature:

�8 �
�
�m + �

1 � �

�1�� ��8

�

��
· (38)

A88, page 8 of 14

D1 in Lin & MK 2015b 

D1 + D2 in Lin, MK & Pires 2016
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Approximate Bayesian computation

ABC’s accept-reject process is actually a
sampling under P� (green curve):

P�(�|xobs) = A�(�)P(�),

where P(�) stands for the prior (blue curve) and

A�(�) �
�

dx P(x|�) |x�xobs|��(x),

is the accept probability under � (red area). One
can see that

lim
��0

A�(�0)/� = P(xobs|�0) = L(�0),

so P� is proportional to the true posterior when
�� 0.

A fast stochastic approach for constraints using peaks Irfu — Jul 2nd, 2015 B 5

Martin Kilbinger (CEA) WL Part I/II 137 / 142

Part I day 3+: Extra stu↵ Higher order statistics: peak counts

ABC: Approximate Bayesian Computation VIII
chieh-an.lin@cea.fr Chieh-An Lin (CEA/SAp)

Approximate Bayesian computation

Lin & Kilbinger (2015b)
A fast stochastic approach for constraints using peaks Irfu — Jul 2nd, 2015 24
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Fig. 10. Weights of particles from t = 8 with s(x) = xabd5. The weight
is represented by the size and the color at the same time.

Fig. 11. Comparison between credible regions derived from Lcg (col-
ored areas) and ABC (solid and dashed lines).

that the CDC e�ect can increase the constraining power up to
22%. The main contribution comes from the additional variation
of the �2 term and the contribution from the determinant term
is negligible. These observations conform a previous study by
Eifler et al. (2009).

We also perform a copula analysis, which makes weaker as-
sumption than Gaussianity. In this case, the marginalized PDF is
Gaussianized by the copula transform. The result shows that the
di�erence with the Gaussian likelihood is small. This is dom-
inated by the CDC e�ect if a varying covariance is taken into
account.

Discarding the Gaussian hypothesis on the PDF of observ-
ables, we provide two straightforward ways to use the full PDF
information. The first one is the true likelihood. The direct eval-
uation of the likelihood is noisy due to the high statistical fluc-
tuations from the finite number of sample points. However, we
find that the varying-covariance copula likelihood, noted as Lvc
above, seems to be a good approximation to the truth. The sec-
ond method is to determine directly the p-value for a given pa-
rameter set, and this approach gives us more conservative con-
straints. We outline that both methods are covariance-free, avoid-
ing non-linear e�ects caused by the covariance inversion.

At the end we show how approximate Bayesian computation
(ABC) derives cosmological constraints using the accept-reject
sampling. Combined with importance sampling, this method re-
quires less computational ressources than all the others. We
prove that by reducing the computational time by a factor of 300,
ABC is able to yield consistent constraints from weak-lensing
peak counts. Furthermore, Weyant et al. (2013) showed in their
study that ABC is able to perform unbiased constraints using
contaminated data, demonstrating the robustness of this algo-
rithm.

A comparison between di�erent data vectors is done in this
study. Although we find for all analyses that xabd5 outperforms
xpct5 by 20%–40% in terms of FoM, this is not necessarily true
in general when we use a di�erent percentile choice. Actually,
the performance of xpct depends on the correlation between its
di�erent components. However, the xpct family is not recom-
mended in practice due to model biases induced for very low
peaks (S/N < 0). In addition, our study shows that the xcut fam-
ily is largely outperformed by xabd. Thus, we conclude that xabd

seems to be good candidates for peak-count analysis, while the
change of contour tilt from xcut could be interesting when com-
bining with other information.

The methodology that we show for parameter constraints can
be applied to all fast stochastic forward models. Flexible and ef-
ficient, this approach possesses a great potential whenever the
modeling of complex e�ects is desired. Our study displays two
di�erent parameter-constraint philosophies. On the one hand,
parameteric estimation (Sects. 3 and 4), under some specific
hypotheses such as Gaussianity, requires only some statistical
quantities such as the covariances. However, the appropriateness
of the likelihood should be examined and validated to avoid bi-
ases. On the other hand, non-analytic estimation (Sects. 5 and
6) is directly derived from the PDF. The problem of inappropri-
ateness vanishes, but instead the uncertainty and bias of density
estimation becomes a drawback. Depending on modeling perti-
nence, an aspect may be more advantageous than another. Not
studied in this work, an hybrid approach using semi-analytic es-
timator could be interesting. This solicits more detailed studies
on trade-o� between the unappropriatenss of analytic estimators
and the uncertainty of density estimation.
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is negligible. These observations conform a previous study by
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We also perform a copula analysis, which makes weaker as-
sumption than Gaussianity. In this case, the marginalized PDF is
Gaussianized by the copula transform. The result shows that the
di�erence with the Gaussian likelihood is small. This is dom-
inated by the CDC e�ect if a varying covariance is taken into
account.

Discarding the Gaussian hypothesis on the PDF of observ-
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tuations from the finite number of sample points. However, we
find that the varying-covariance copula likelihood, noted as Lvc
above, seems to be a good approximation to the truth. The sec-
ond method is to determine directly the p-value for a given pa-
rameter set, and this approach gives us more conservative con-
straints. We outline that both methods are covariance-free, avoid-
ing non-linear e�ects caused by the covariance inversion.

At the end we show how approximate Bayesian computation
(ABC) derives cosmological constraints using the accept-reject
sampling. Combined with importance sampling, this method re-
quires less computational ressources than all the others. We
prove that by reducing the computational time by a factor of 300,
ABC is able to yield consistent constraints from weak-lensing
peak counts. Furthermore, Weyant et al. (2013) showed in their
study that ABC is able to perform unbiased constraints using
contaminated data, demonstrating the robustness of this algo-
rithm.

A comparison between di�erent data vectors is done in this
study. Although we find for all analyses that xabd5 outperforms
xpct5 by 20%–40% in terms of FoM, this is not necessarily true
in general when we use a di�erent percentile choice. Actually,
the performance of xpct depends on the correlation between its
di�erent components. However, the xpct family is not recom-
mended in practice due to model biases induced for very low
peaks (S/N < 0). In addition, our study shows that the xcut fam-
ily is largely outperformed by xabd. Thus, we conclude that xabd

seems to be good candidates for peak-count analysis, while the
change of contour tilt from xcut could be interesting when com-
bining with other information.

The methodology that we show for parameter constraints can
be applied to all fast stochastic forward models. Flexible and ef-
ficient, this approach possesses a great potential whenever the
modeling of complex e�ects is desired. Our study displays two
di�erent parameter-constraint philosophies. On the one hand,
parameteric estimation (Sects. 3 and 4), under some specific
hypotheses such as Gaussianity, requires only some statistical
quantities such as the covariances. However, the appropriateness
of the likelihood should be examined and validated to avoid bi-
ases. On the other hand, non-analytic estimation (Sects. 5 and
6) is directly derived from the PDF. The problem of inappropri-
ateness vanishes, but instead the uncertainty and bias of density
estimation becomes a drawback. Depending on modeling perti-
nence, an aspect may be more advantageous than another. Not
studied in this work, an hybrid approach using semi-analytic es-
timator could be interesting. This solicits more detailed studies
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and the uncertainty of density estimation.
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Bradač M, Clowe D, Gonzalez A H, Marshall P, Forman W & al. 2006 ApJ
652, 937–947.
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