Part I day 3. Reminder: Overview

Part I day 1: Principles of gravitational lensing

Brief history of gravitational lensing

Light deflection in an inhomogeneous Universe

Convergence, shear, and ellipticity

Projected power spectrum

Real-space shear correlations

Part I day 2: Measurement of weak lensing

Galaxy shape measurement

PSF correction

Photometric redshifts

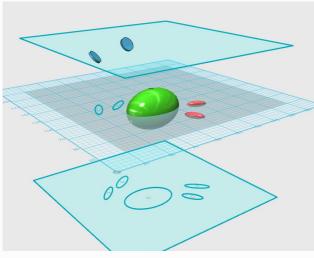
Estimating shear statistics

Part I day 3: Surveys and cosmology

Cosmological modelling

Results from past and ongoing surveys (CFHTlenS, KiDS, DES)

Euclid


Part I day 3+: Extra stuff

Martin Kilbinger (CEA)

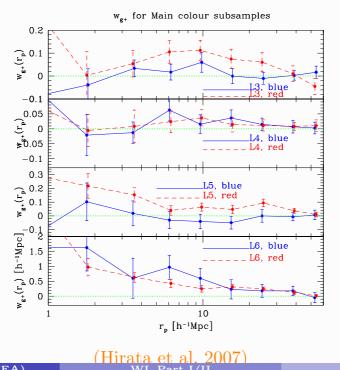
79 / 142

Part I day 3: Surveys and cosmology Cosmological modelling

Intrinsic galaxy alignment (IA)

(Joachimi et al. 2015)

Galaxy shapes are correlated with surrounding tidal density field, due to coupling of spins for spiral galaxies, tidal stretching for elliptical galaxies. Shape of galaxies is sum of shear (G) and intrinsic (I) shape (remember $\varepsilon \approx \varepsilon^{\rm s} + \gamma$).

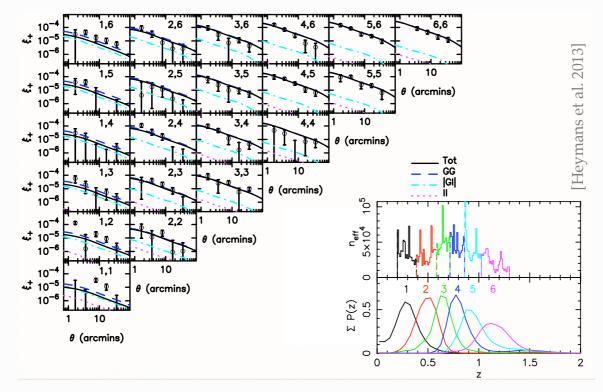

So, with intrinsic alignment, the correlation of galaxy shapes is not only shear-shear (GG), but also intrinsic-intrinsic (II) and shear-intrinsic (GI; (Hirata & Seljak 2004)).

Contamination to cosmic shear at ~ 1 - 10%. Need to model galaxy formation.

Martin Kilbinger (CEA)

IA measurement: Ellipticity - density correlations

With (spectroscopic) data measure γ_t around massive galaxies (= centres of halos): shape - density correlations.



Martin Kilbinger (CEA)

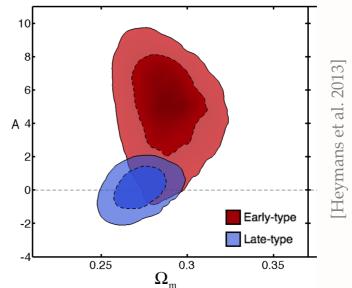
IA measurement: Ellipticity - ellipticity correlations

Part I day 3: Surveys and cosmology Cosmological modelling

With photometric data measure sum of GG, GI, and II.

IA constraints

Simple intrinsic alignment model: Galaxy ellipticity linearly related to tidal field [Hirata & Seljak 2004, Bridle & King 2007].


One free amplitude parameter A, fixed *z*-dependence.

A = 1: reference IA model.

A = 0: no IA

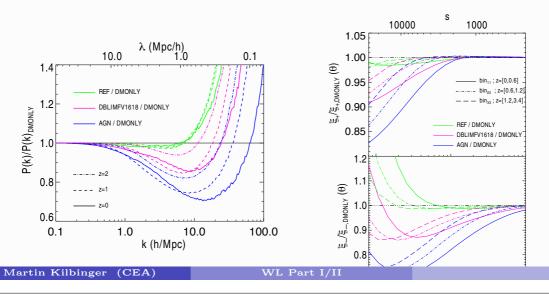
$$A_{\text{late}} = 0.18^{+0.83}_{-0.82}$$

$$A_{\text{early}} = 5.15_{-2.32}^{+1.74}$$

Martin Kilbinger (CEA)

83 / 142

84 / 142

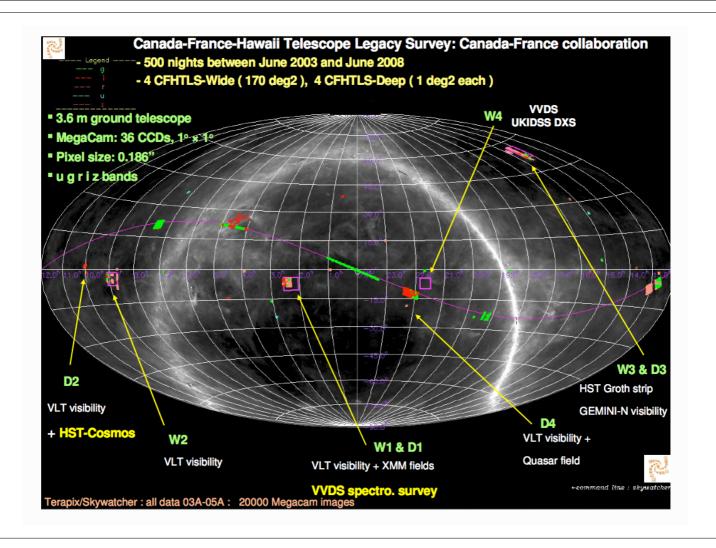

Part I day 3: Surveys and cosmology

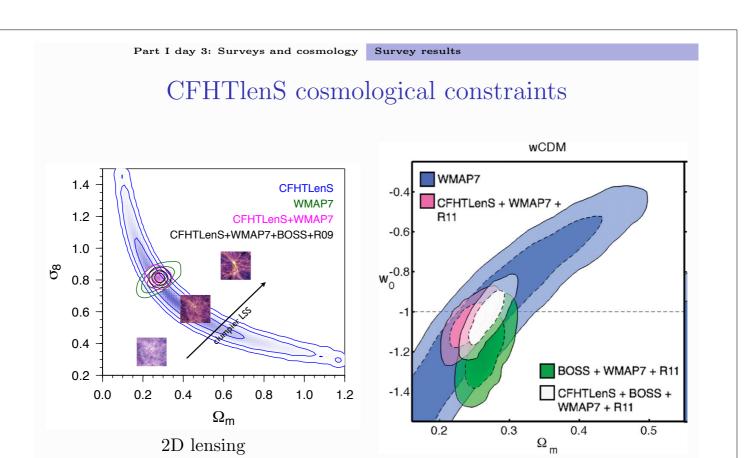
Cosmological modelling

Baryons in the LSS

On small (halo) scales, dark-matter only models do not correctly reproduce clustering:

- $R \sim 1$ 0.1 Mpc: gas pressure \rightarrow suppression of structure formation, gas distribution more diffuse wrt dm
- R < 0.1 Mpc (k > 10/Mpc): Baryonic cooling, AGN+SN feedback \rightarrow condensation of baryons to form stars and galaxies, increase of density, stronger clustering




CFHTLS/CFHTlenS

Groundbreaking for weak cosmological lensing:

- MegaCam 1 deg² fov (@ 3.6m CFHT)
- \bullet Multiple optical bands \to photometric redshifts, tomography
- Large team (> 20; led by Yannick Mellier, Catherine Heymans, Ludovic van Waerbeke), thorough testing, multiple pipelines
- Public release of all data and lensing catalogues (www.cfhtlens.org)

Martin Kilbinger (CEA)

Martin Kilbinger (CEA)

WL Part I/II

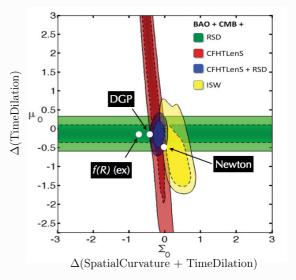
87 / 142

Part I day 3: Surveys and cosmology

Survey results

CFHTlenS modified gravity

$$ds^{2} = -(1 + 2\varphi)dt^{2} + (1 - 2\phi)a^{2}dx^{2}$$
time dilation spatial curvature

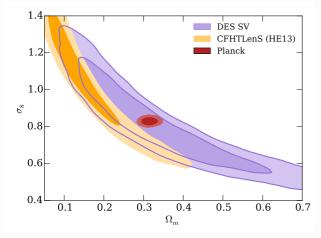

(Kilbinger et al. 2013)

□Gravitational potential as experienced by galaxies:

$$\nabla^2 \varphi = 4\pi G a^2 \bar{\rho} \delta \left[1 + \mu \right] \qquad \mu(a) \propto \Omega_{\Lambda}(a)$$

□Gravitational potential as experienced by photons:

$$\nabla^2(\varphi+\phi)=8\pi Ga^2\overline{\rho}\delta\left[1+\Sigma\right]\quad\Sigma(a)\propto\Omega_{\Lambda}(a)$$


6-bin tomography (Heymans et al. 2013)

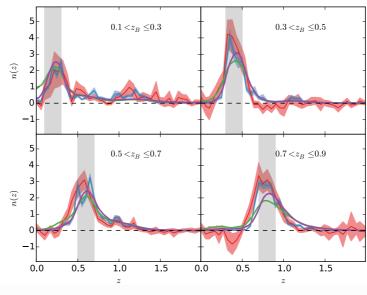
2-bin tomography

(Simpson et al. 2013)

DES — Dark Energy Survey

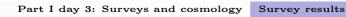
- Dedicated new camera: DECam, 3 deg² fov, weak lensing as main science goal
- @ 4m class Blanco telecsope on Cerro Tololo, Chile
- $5,000 \text{ deg}^2 \text{ when completed}$
- Large coverage in other wavelength (e.g. SPT)
- Ongoing survey, published results (2016) from Science Verification Data, $139 \text{ deg}^2 = 3\%$ of final area, but nominal depth and filters

(The Dark Energy Survey Collaboration et al. 2016)


Martin Kilbinger (CEA)

89 / 142

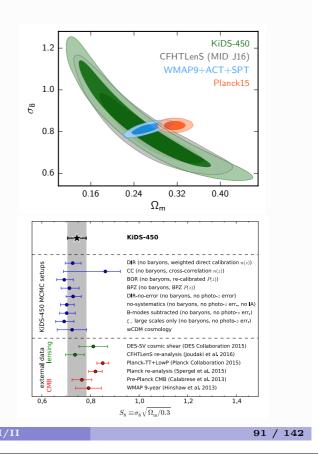
Part I day 3: Surveys and cosmology Survey results

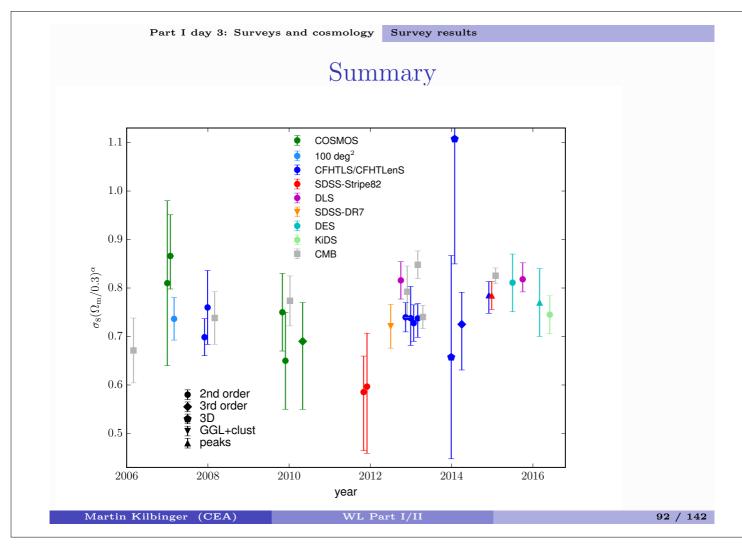

KiDS

- $1,500 \text{ deg}^2$ in four optical (+ 5 IR) bands
- New camera (OmegaCAM 1 deg² fov) and telecsope (2.6 m VST), long delay
- Compared four different redshift estimation methods

(Hildebrandt et al. 2017)

Martin Kilbinger (CEA)


KiDS


Very thorough weak-lensing analysis, including:

- n(z) errors
- IA, baryonic effects
- Shear calibration
- Non-Gaussian covariance
- Blinded analysis

(Hildebrandt et al. 2017)

Martin Kilbinger (CEA)

Part I day 3: Surveys and cosmology Survey results

Discrepancy with Planck?

- Maybe not $(2 3\sigma)$. However, also discrepancy of CMB C_{ℓ} 's with SZ cluster counts.
- Additional physics, e.g. massive neutrinos? Not sufficient evidence.
- WL systematics? (E.g. shear bias, baryonic uncertainty on small scales.) KiDS say not likely.

Martin Kilbinger (CEA)

WL Part I/II

93 / 142

Part I day 3: Surveys and cosmology

Euclid

The Euclid mission

Why is Euclid so special and challenging?

Increase of factor 100 in data volume compare to current surveys! Few Million to few 100 Million galaxies.

For 2PCF: Naive increase of n_{correl} by 10,000!

Comparison with Planck:

Planck all-sky, pixel size ~ 7 arc min.

Euclid 1/3 sky, pixel size \sim typical angular distance between galaxies \sim arc sec.

Factor 10⁵ more pixels!

Martin Kilbinger (CEA)

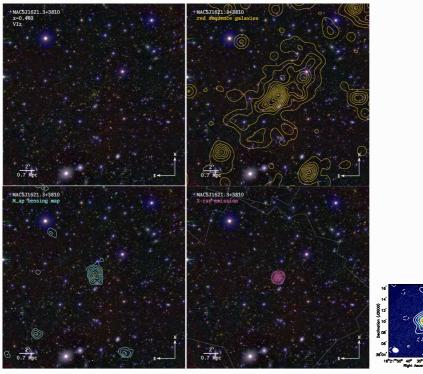
WL Part I/II

Part I day 3: Surveys and cosmology Euclid

Weak-lensing resolution

(von der Linden et al. 2014) — MACS_J1621+3810, ground-based data,

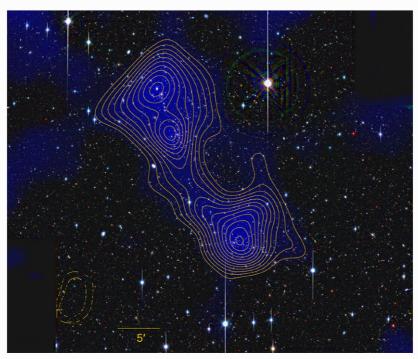
 $n_{\rm gal} = 2.5 \dots 25 \, {\rm arcmin}^{-2}$


Martin Kilbinger (CEA)

95 / 142

Part I day 3: Surveys and cosmology

Euclid

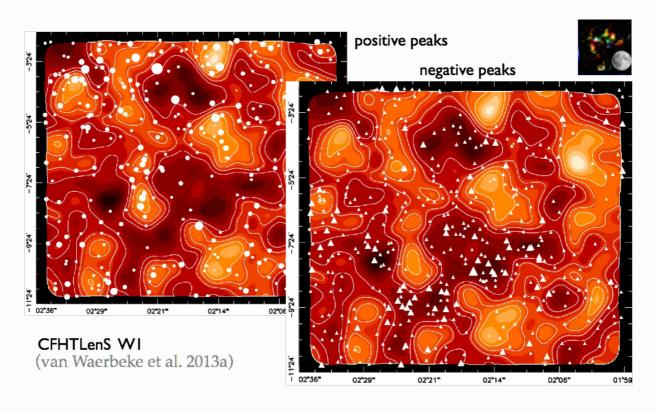

Weak-lensing resolution

(Bonamente et al. 2012) — X- and SZ

Martin Kilbinger (CEA)

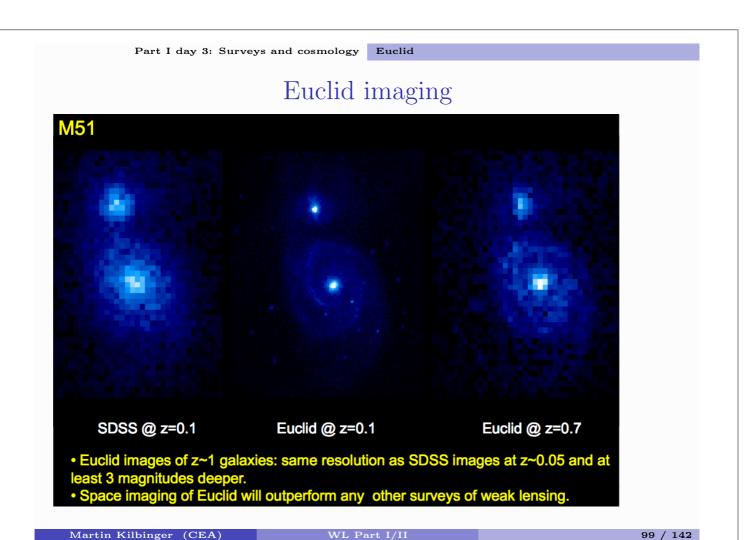
Weak-lensing resolution

A 222/223, filament between clusters (Dietrich et al. 2012)


Martin Kilbinger (CEA)

WL Part I/II

97 / 142


Part I day 3: Surveys and cosmology Euclid

Mass maps from CFHTLenS

Martin Kilbinger (CEA)

WL Part I/II

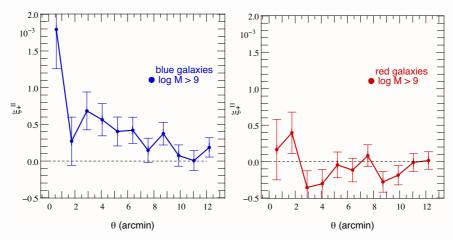
Some Euclid WL challenges

under-sampled PSF

unresolved binary stars

CTI
(charge transfer inefficiency)

color gradients


Martin Kilbinger (CEA)

Part I day 3: Surveys and cosmology E

Open questions (selection) I

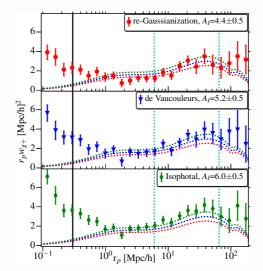
Modelling

• Intrinsic alignment. Dependence on L, type, z? Physically motivated model. N-body simulations.

(Codis et al. 2015)

Martin Kilbinger (CEA)

WL Part I/II


101 / 142

Part I day 3: Surveys and cosmology

Euclid

Open questions (selection) II

• IA contamination depends on shape measurement method!

(Singh & Mandelbaum 2016)

Martin Kilbinger (CEA)

WL Part I/II

Part I day 3: Surveys and cosmology Euclid

Open questions (selection) III

• Baryonic feedback in clusters, influence on WL, modelling.

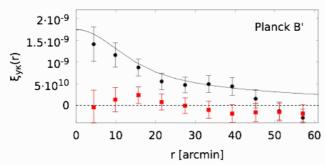
Photometric redshifts

• Euclid needs (very deep!) ground-based follow-up in multiple optical bands. Data (DES, KiDS, CFIS, ...) will be inhomogeneous. Problem of reliable photo-z's not yet solved.

Martin Kilbinger (CEA)

WL Part I/II

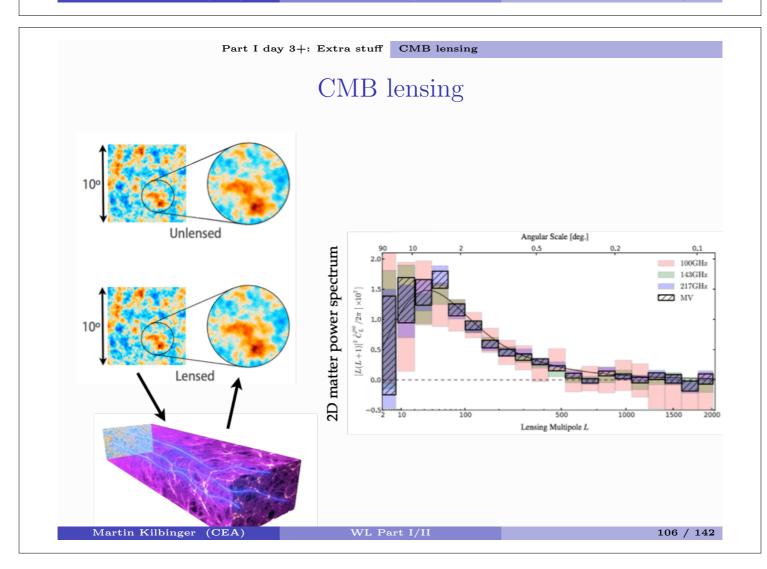
103 / 142

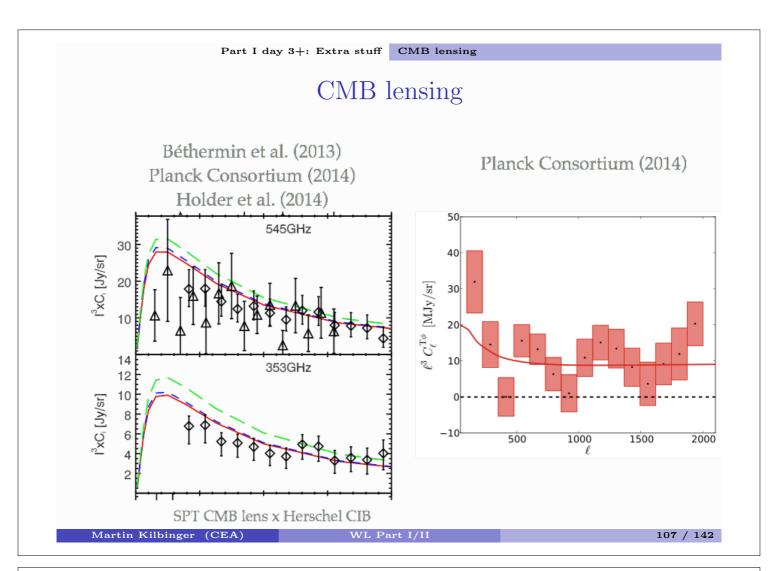

Part I day 3+: Extra stuff

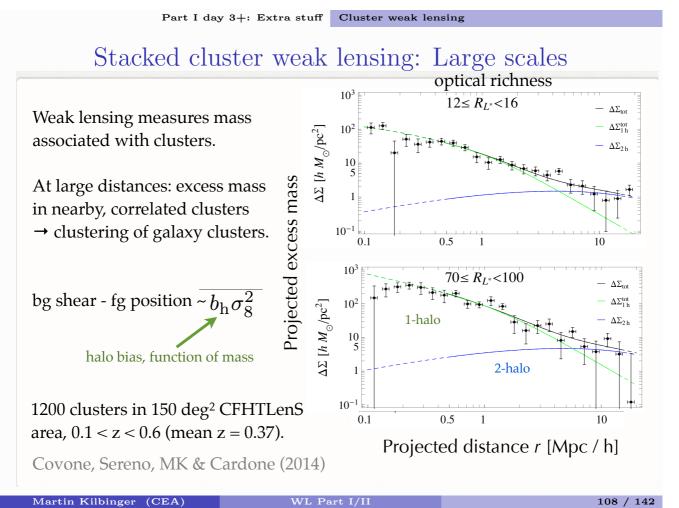
Further possible topics

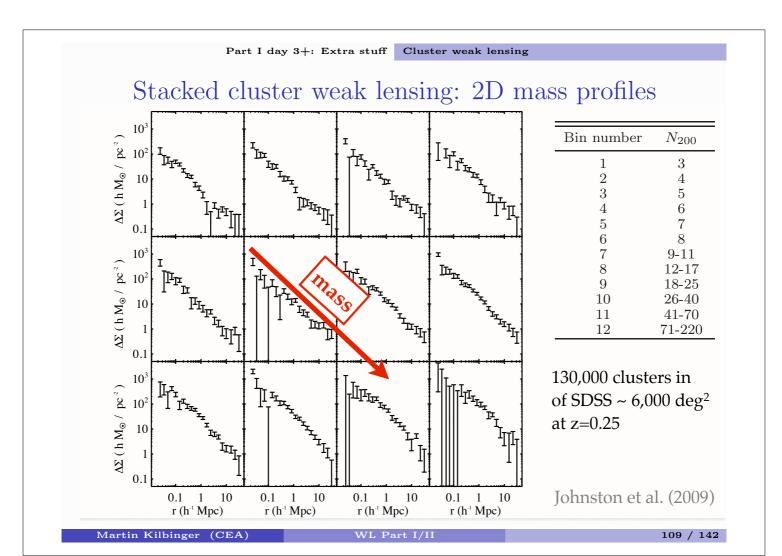
- 1. CMB (x) lensing
- 2. Cluster weak lensing
- 3. Nature of dark matter (bullet cluster)
- 4. Testing GR with WL and galaxy clustering
- 5. Higher-order statistics: peak counts

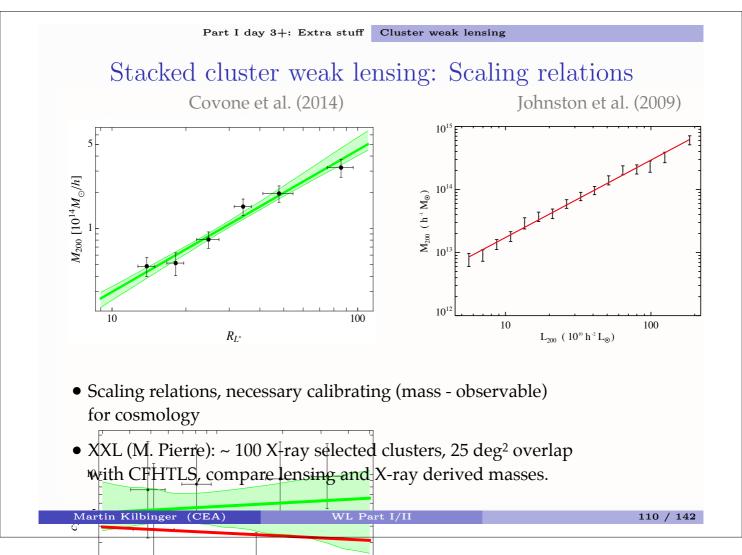
Martin Kilbinger (CEA)

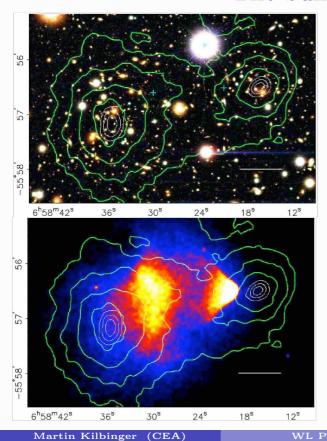

WL Part I/II




$$\left(\frac{b_{\rm gas}}{1}\right) \left(\frac{T_e(0)}{0.1~{\rm keV}}\right) \left(\frac{\bar{n}_e}{1~{\rm m}^{-3}}\right) = 2.01 \pm 0.31 \pm 0.21$$


(van Waerbeke et al. 2013b)


Planck CMB (SZ) \times CFHTLenS weak-lensing: hot gas associated with matter Martin Kilbinger (CEA) WL Part I/II 105 / 142



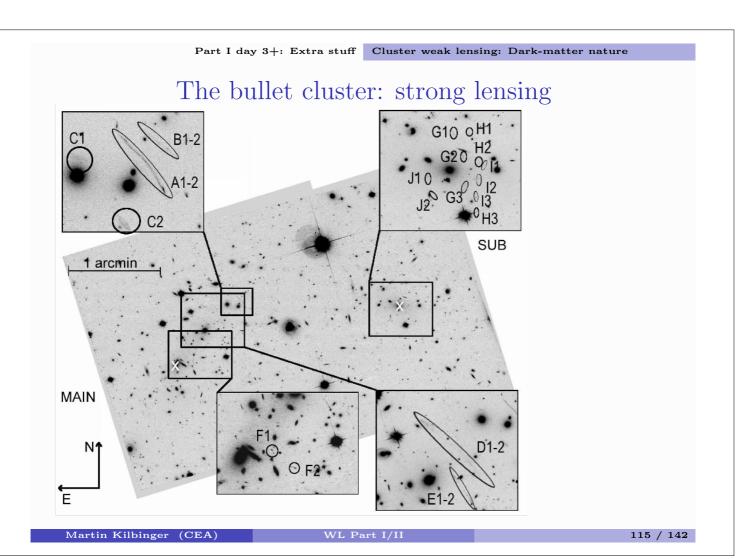
 R_{L^*} Part I day 3+: Extra stuff Cluster weak lensing Stacked cluster weak lensing on large scales Covone et al. (2014) Johnston et al. (2009) Buote et al. 2007 10 Comerford & Nat. 2007 c_{200} \mathbf{c}_{200} Duffy et al. 08 [z=0.36] 0.5 $M_{200} [10^{14} M_{\odot}/h]$ Best fit power-law • Concentration parameter *c* reflects central Neto et al. 2007 Bullock et al. 2001 halo density; depends on assembly history, 10^{13} formation time M_{200} ($h^{\mbox{\tiny -1}}\,M_{\odot}\!)$ • Predictions usually from No body simulations Tinker et al. 10 [z=0.25], σ_8 =0.83 • Indirect test of CDM paradigm Johnston et al. 07 [z=0.25]
Martin Kilbinger (CEA) 111 / 142 Part I day 3+: Extra stuff Cluster weak lensing: Dark-matter nature The bullet cluster and the nature of dark matter Martin Kilbinger (CEA) 112 / 142

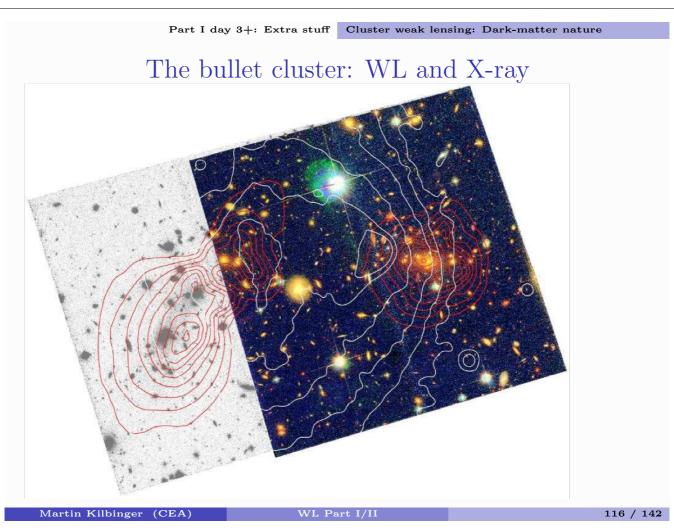
The bullet cluster

- Merging galaxy cluster at z = 0.296
- Recent major merger 100 Myr ago
- Components moving nearly perpendicular to line of sight with $v = 4700 \text{ km s}^{-1}$
- Galaxy concentration offset from X-ray emission. Bow shocks visible

WL Part I/II

Clowe et al. (2006)


113 / 142


Part I day 3+: Extra stuff Cluster weak lensing: Dark-matter nature

The bullet cluster: SL+WL measurements

Instrument	Date of Obs.	FoV	Passband	$t_{\rm exp}$ (s)	$m_{ m lim}$	$n_{\rm d}~('^{-2})$	seeing
2.2m ESO/MPG	01/2004	$34' \times 34'$	R	14100	23.9	15	08
Wide Field Imager	01/2004		В	6580			1."0
	01/2004		V	5640			0."9
6.5m Magellan	01/15/2004	8' radius	R	10800	25.1	35	0."6
IMACS	01/15/2004		В	2700			0"9
	01/15/2004		V	2400			08
HST ACS	10/21/2004	3.5×3.5	F814W	4944	27.6	87	0".12
subcluster	10/21/2004		F435W	2420			0".12
	10/21/2004		F606W	2336			0"12
main cluster	10/21/2004	3.5×3.5	F606W	2336	26.1	54	012

(Bradač et al. 2006, Clowe et al. 2006)

The bullet cluster: Evidence for dark matter

- $10\sigma(6\sigma)$ offset between main (sub-)mass peak and X-ray gas \rightarrow most cluster mass is not in hot X-ray gas (unlike most baryonic mass: $m_X \gg m_*!$
- Main mass associated with galaxies \rightarrow this matter is collisionless

Modified gravity theories without dark matter: MoND (Modified Newtonian Dynamics), (Milgrom 1983), changes Newton's law for low accelerations $(a \sim 10^{-10} \text{ m s}^{-2})$, can produce flat galaxy rotation curves and Tully-Fisher relation.

MoND's relativistic version (Bekenstein 2004), varying gravitational constant G(r). Introduces new vector field ("phion") with coupling strength $\alpha(r)$ and range $\lambda(r)$ as free functions.

This can produce non-local weak-lensing convergence mass, where $\kappa \not\propto \delta!$ Necessary to explain offset between main κ peak and main baryonic mass. Model with four mass peaks can roughly reproduce WL map with additional collisionless mass! E.g. 2 eV neutrinos.

Martin Kilbinger (CEA)

117 / 142

Part I day 3+: Extra stuff Cluster weak lensing: Dark-matter nature

The bullet cluster: MoND model

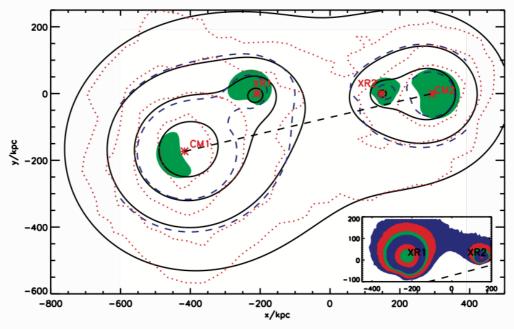
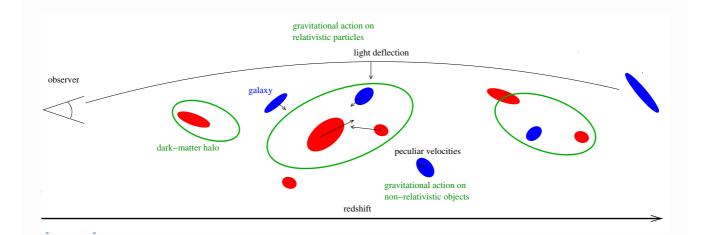



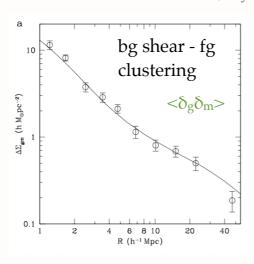
Fig. 1.— Our fitted convergence map (solid black lines) overplotted on the convergence map of C06 (dotted red lines) with x and y axes in kpc. The contours are from the outside 0.16,0.23,0.3 and 0.37. The centres of the four potentials we used are the red stars which are labelled. Also overplotted (blue dashed line) are two contours of surface density [4.8 & 7.2]×10² M_{\odot} pc⁻² for the MOND standard μ function; note slight distortions compared to the contours of κ . The green shaded region is where matter density is above $1.8 \times 10^{-3} M_{\odot} \, \mathrm{pc^{-3}}$ and correspond to the clustering of 2eV neutrinos. Inset: The surface density of the gas in the bullet cluster predicted by our collisionless matter subtraction method for the standard μ -function. The contour levels are [30, 50, 80, 100, 200, 300] $M_{\odot}pc^{-2}$. The origin in RA and dec is $[06^h58^m24.38^s, -55^o56^s.32]$

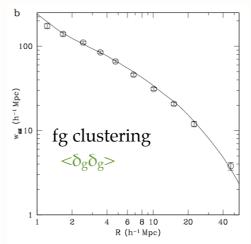
Martin Kilbinger (CEA)

Testing GR with WL and galaxy clustering

Martin Kilbinger (CEA)

WL Part I/II


119 / 142


Part I day 3+: Extra stuff WL + galaxy clustering: Tests of GR

Results from SDSS

SDSS

(Reyes et al. 2010)

$$E_{\rm G} \cong \frac{1}{\beta} \frac{\langle \delta_{\rm m} \delta_{\rm g} \rangle}{\langle \delta_{\rm g} \delta_{\rm g} \rangle}$$

galaxy bias

growth factor

$$\beta = \frac{1}{b} \frac{\mathrm{d} \ln D_{+}}{\mathrm{d} \ln a}$$

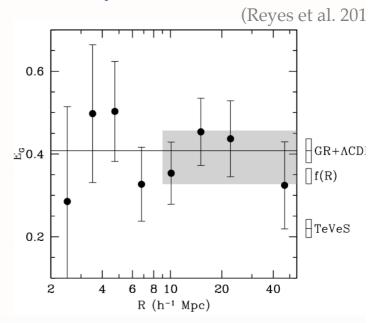
$$\beta = 0.309 \pm 0.035$$

from SDSS galaxy clustering (redshift-space distortions) Tegmark et al. (2006)

Martin Kilbinger (CEA)

WL Part I/II

Results from SDSS

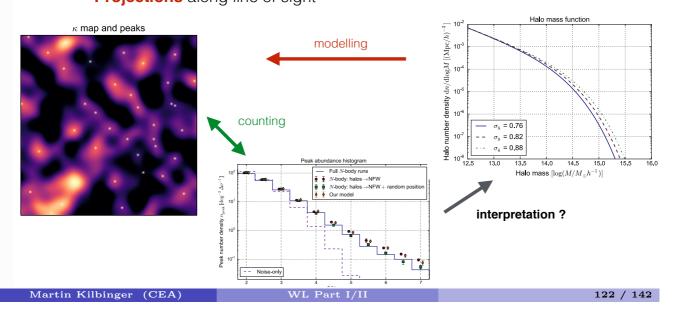

Friedmann-Lemaître-Robertson-Walker metric with perturbations:

$$ds^{2} = -(1 + 2\varphi)dt^{2} + (1 - 2\phi)a^{2}dx^{2}$$

spatial curvature

Galaxy-galaxy lensing: measures $\phi + \varphi$ and b

Galaxy clustering: measures φ


Martin Kilbinger (CEA)

121 / 142

Part I day 3+: Extra stuff Higher order statistics: peak counts

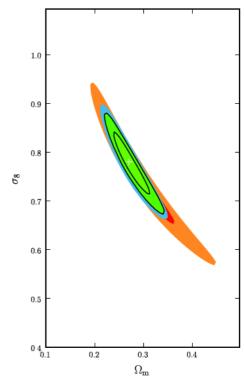
WL peak counts: Why do we want to study peaks?

- WL peaks probe high-density regions ↔ non-Gaussian tail of LSS
- First-order in observed shear: less sensitive to systematics, circular average!
- High-density regions ↔ halo mass function, but indirect probe:
 - Intrinsic ellipticity **shape noise**, creating false positives, up-scatter in S/N
 - **Projections** along line of sight

Part I day 3+: Extra stuff Higher order statistics: peak counts

Martin Kilbinger (CEA)

123 / 142


Part I day 3+: Extra stuff Higher order statistics: peak counts

WL peak counts. What are peaks good for?

What do we gain from peak counting?

- Additional and complementary information and constraints compared to 2nd order shear
- Non-Gaussian information

Figure from Dietrich & Hartlap 2010 red/orange: cosmic shear green: shear & peak

Martin Kilbinger (CEA)

Lin, MK & Pires 2016

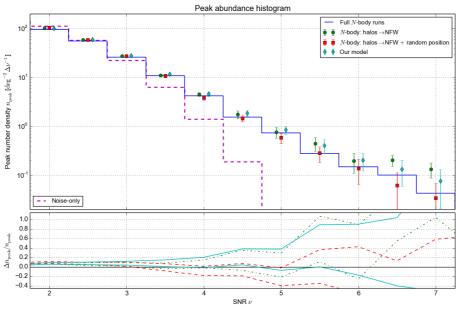
Martin Kilbinger (CEA)

WL Part I/II

125 / 142

Part I day 3+: Extra stuff

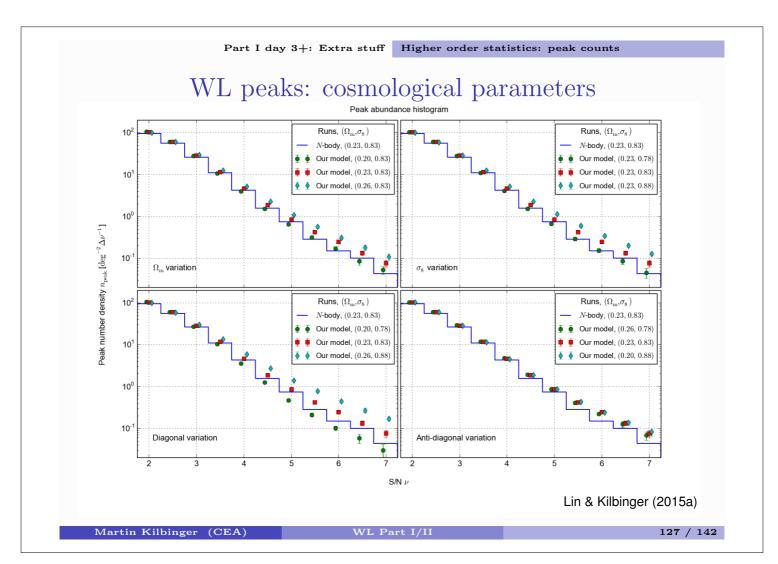
Higher order statistics: peak counts


Make maps, create peak catalogues

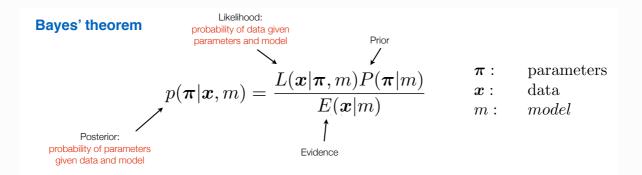
WL peaks: histograms

Hypotheses:

- 1. Clustering of halos not important for counting peaks (along los: Marian et al. 2013)
- 2. Unbound LSS does not contribute to WL peaks


Test:

Field of view = 54 deg²; 10 halo redshift bins from z = 0 to 1; galaxies on regular grid, $z_s = 1.0$


Martin Kilbinger (CEA)

WL Part I/II

Part I day 3+: Extra stuff Higher order statistics: peak counts

In general: Constraining cosmological parameters

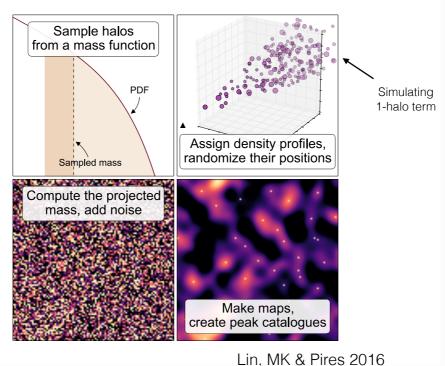
Parameter constraints = integrals over the posterior

$$\int \mathrm{d}^n \pi \, h(\boldsymbol{\pi}) p(\boldsymbol{\pi}|\boldsymbol{x},m)$$

For example:

$$h(\boldsymbol{\pi}) = \boldsymbol{\pi}$$
: mean

$$h(\pi) = \pi$$
: mean $h(\pi) = 1_{68\%}$: 68% credible region

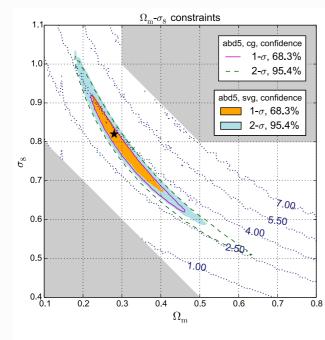

Approaches: Sampling (Monte-Carlo integration), Fisher-matrix approximation, frequentist evaluation, ABC, ...

Martin Kilbinger (CEA)

WL Part I/II

WL peaks: data vector choices

Replace N-body simulations by Poisson distribution of halos



Martin Kilbinger (CEA)

129 / 142

Part I day 3+: Extra stuff Higher order statistics: peak counts

WL peaks: Gaussian likelihood

$$L_{\text{cg}} \equiv \Delta \mathbf{x}^{T}(\boldsymbol{\pi}) \ \widehat{\mathbf{C}^{-1}}(\boldsymbol{\pi}^{\text{obs}}) \ \Delta \mathbf{x}(\boldsymbol{\pi}),$$

$$L_{\text{svg}} \equiv \Delta \mathbf{x}^{T}(\boldsymbol{\pi}) \ \widehat{\mathbf{C}^{-1}}(\boldsymbol{\pi}) \ \Delta \mathbf{x}(\boldsymbol{\pi}), \text{ and}$$

$$L_{\text{vg}} \equiv \ln \left[\det \widehat{\boldsymbol{C}}(\boldsymbol{\pi}) \right] + \Delta \boldsymbol{x}^T(\boldsymbol{\pi}) \ \widehat{\boldsymbol{C}}^{-1}(\boldsymbol{\pi}) \ \Delta \boldsymbol{x}(\boldsymbol{\pi}).$$

Cosmology-dependent covariance [(s)vg] reduces error area by 20%.

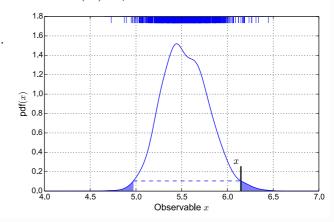
Martin Kilbinger (CEA)

WL Part I/II

ABC: Approximate Bayesian Computation I

Likelihood: probability of data given parameters and model

$$p(\boldsymbol{\pi}|\boldsymbol{x},m) = \frac{L(\boldsymbol{x}|\boldsymbol{\pi},m)P(\boldsymbol{\pi}|m)}{E(\boldsymbol{x}|m)}$$


parameters

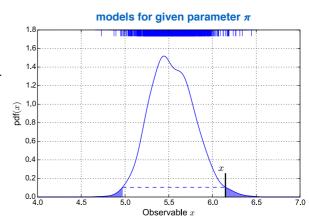
data m:model

Likelihood: how likely is it that model prediction $x^{\mathrm{mod}}(\pi)$ reproduces data x?

Classical answer: evaluate function L at x.

Alternative: compute fraction of models that are equal to the data x.

Martin Kilbinger (CEA)


131 / 142

Part I day 3+: Extra stuff Higher order statistics: peak counts

ABC: Approximate Bayesian Computation II

Probability = p/N in frequentist sense.

Magic: Don't need to sample *N* models. One per parameter π is sufficient with accept-reject algorithm.

ABC can be performed if:

• it is possible and easy to sample from L

ABC is useful when:

- functional form of *L* is unknown
- evaluation of L is expensive
- model is intrinsically stochastic

ABC: Approximate Bayesian Computation III

Example: let's make soup.

Goal: Determine ingredients from final result. Model physical processes? Complicated.

Martin Kilbinger (CEA)

133 / 142

Part I day 3+: Extra stuff Higher order statistics: peak counts

ABC: Approximate Bayesian Computation IV

Example: let's make soup.

Goal: Determine ingredients from final result. Model physical processes? Complicated.

Easier: Make lots of soups with different ingredients, compare.

Martin Kilbinger (CEA)

ABC: Approximate Bayesian Computation V

Example: let's make soup.

Questions:

- What aspect of data and simulations do we compare? (summary statistic)
- How do we compare? (metric, distance)
- When do we accept? (tolerance)

Martin Kilbinger (CEA)

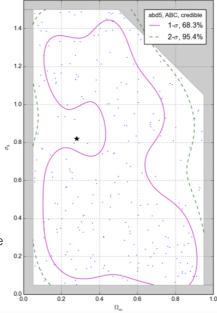
135 / 142

Part I day 3+: Extra stuff Higher order statistics: peak counts

ABC: Approximate Bayesian Computation VI

Parameter constraints: ABC

- · Summary statistic
 - $\mathbf{s} = \mathbf{x}$ (data vector for 2 cases)
- Metric D: two cases


$$D_{1}\left(x, x^{\text{obs}}\right) \equiv \sqrt{\sum_{i} \frac{\left(x_{i} - x_{i}^{\text{obs}}\right)^{2}}{C_{ii}}},$$

$$D_{2}\left(x, x^{\text{obs}}\right) \equiv \sqrt{\left(x - x^{\text{obs}}\right)^{T} C^{-1} \left(x - x^{\text{obs}}\right)},$$

D₁ in Lin & MK 2015b

 $D_1 + D_2$ in Lin, MK & Pires 2016

ABC algorithm: iterative importance sampling (PMC) with decreasing tolerance

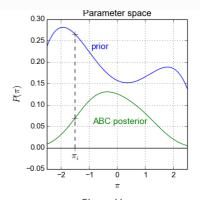
Martin Kilbinger (CEA)

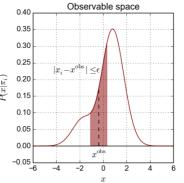
WL Part I/II

ABC: Approximate Bayesian Computation VII

ABC's accept-reject process is actually a sampling under P_{ϵ} (green curve):

$$P_{\epsilon}(\pi|x^{\text{obs}}) = A_{\epsilon}(\pi)P(\pi),$$

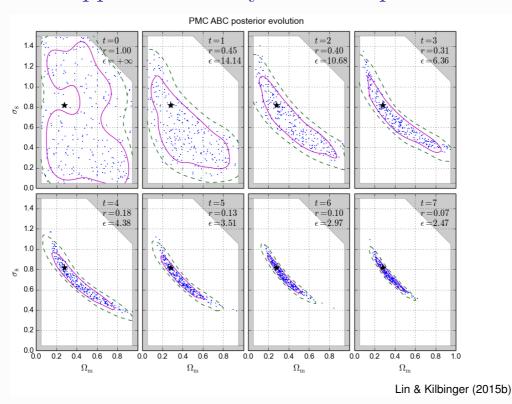

where $P(\pi)$ stands for the prior (blue curve) and


$$A_{\epsilon}(\pi) \equiv \int \mathrm{d}x \; P(x|\pi) \mathbb{1}_{|x-x^{\mathrm{obs}}| \le \epsilon}(x),$$

is the accept probability under π (red area). One can see that

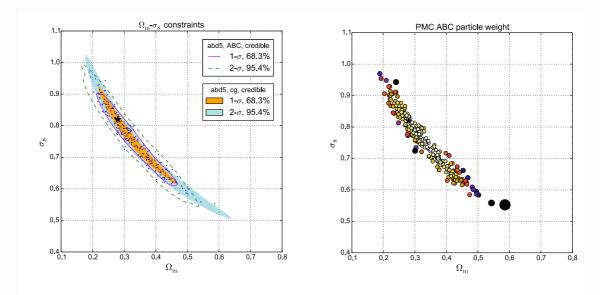
$$\lim_{\epsilon \to 0} A_{\epsilon}(\pi_0)/\epsilon = P(x^{\text{obs}}|\pi_0) = \mathcal{L}(\pi_0),$$

so P_{ϵ} is proportional to the true posterior when $\epsilon \to 0$.



Martin Kilbinger (CEA)

137 / 142


Part I day 3+: Extra stuff Higher order statistics: peak counts

ABC: Approximate Bayesian Computation VIII

Martin Kilbinger (CEA)

ABC: Approximate Bayesian Computation IX

ABC wider but less elongated and less bent contours than Gaussian with const cov. KDE smoothing effect?

Martin Kilbinger (CEA)

139 / 142

Bibliography

Bibliography I

- Beaulieu J P, Bennett D P, Fouqué P, Williams A, Dominik M & al. 2006 Nature **439**, 437–440.
- Bekenstein J D 2004 Phys. Rev. D 70(8), 083509.
- Benítez N 2000 ApJ **536**, 571–583.
- Bernstein G M & Armstrong R 2014 MNRAS 438, 1880–1893.
- **Bo**lzonella M, Miralles J M & Pelló R 2000 A&A 363, 476–492.
- Benamente M, Hasler N, Bulbul E, Carlstrom J E, Culverhouse T L & al. 2012 New Journal of Physics 14(2), 025010.
 - **URL:** http://stacks.iop.org/1367-2630/14/i=2/a=025010
- Bradač M, Clowe D, Gonzalez A H, Marshall P, Forman W & al. 2006 ApJ **652**, 937–947.
- we D, Bradač M, Gonzalez A H, Markevitch M, Randall S W & al. 2006 ApJ **648**, L109–L113.
- Godis S, Gavazzi R, Dubois Y, Pichon C, Benabed K & al. 2015 MNRAS **448**, 3391–3404.

Martin Kilbinger (CEA)

Bibliography II

- Collister A A & Lahav O 2004 PASP 116, 345–351.
- Centile M, Courbin F & Meylan G 2012 arXiv:1211.4847.
- Gentile M, Courbin F & Meylan G 2013 A&A 549, A1.
- Heymans C, Grocutt E, Heavens A, Kilbinger M, Kitching T D & al. 2013 MNRAS 432, 2433–2453.
- Wymans C, Van Waerbeke L, Miller L, Erben T, Hildebrandt H & al. 2012 MNRAS 427, 146–166.
- Hidebrandt H, Viola M, Heymans C, Joudaki S, Kuijken K & al. 2017 MNRAS 465, 1454–1498.
- Tirata C M, Mandelbaum R, Ishak M, Seljak U, Nichol R & al. 2007 MNRAS 381, 1197–1218.
- Tata C M & Seljak U 2004 Phys. Rev. D 70(6), 063526-+.
- Hag A, Bradac M, Trenti M, Treu T, Schmidt K B & al. 2017 Nature Astronomy 1, 0091.
- Hiterer D, Takada M, Bernstein G & Jain B 2006 MNRAS 366, 101–114.

Martin Kilbinger (CEA)

WL Part I/II

141 / 142

Bibliography

Bibliography III

- Ibert O, Arnouts S, McCracken H J, Bolzonella M, Bertin E & al. 2006 A&A 457, 841–856.
- Jarvis M, Sheldon E, Zuntz J, Kacprzak T, Bridle S L & al. 2016 MNRAS 460, 2245–2281.
- Joachimi B, Cacciato M, Kitching T D, Leonard A, Mandelbaum R & al. 2015 Space Sci. Rev. 193, 1–65.
- Liser N, Squires G & Broadhurst T 1995 ApJ 449, 460.
- binger M, Fu L, Heymans C, Simpson F, Benjamin J & al. 2013 MNRAS 430, 2200–2220.
- **Ku**ijken K 1999 *A&A* **352**, 355–362.
- **K**ijken K 2006 A&A **456**, 827–838.
- Ina M, Cunha C E, Oyaizu H, Frieman J, Lin H & al. 2008 MNRAS 390, 118–130.
- Massey R & Refregier A 2005 MNRAS 363, 197–210.
- Melchior P, Viola M, Schäfer B M & Bartelmann M 2011 MNRAS 412, 1552–1558.
- Milgrom M 1983 Astrophysical Journal 270, 371–389.

Bibliography IV

- liller L, Kitching T D, Heymans C, Heavens A F & van Waerbeke L 2007 MNRAS 382, 315–324.
- Tura Y & Futamase T 2009 ApJ 699, 143-149.
- Pinck Collaboration, Ade P A R, Aghanim N, Armitage-Caplan C, Arnaud M & al. 2014 A&A 571, A17.
- Refregier A 2003 MNRAS 338, 35-47.
- Reyes R, Mandelbaum R, Seljak U, Baldauf T, Gunn J E & al. 2010 Nature 464, 256–258.
- Schneider M D, Hogg D W, Marshall P J, Dawson W A, Meyers J & al. 2014 ArXiv e-prints .
- Semboloni E, Hoekstra H, Schaye J, van Daalen M P & McCarthy I G 2011 MNRAS 417, 2020–2035.
- Simpson F, Heymans C, Parkinson D, Blake C, Kilbinger M & al. 2013 MNRAS 429, 2249–2263.
- **\$\square\$** Singh S & Mandelbaum R 2016 MNRAS **457**, 2301–2317.

Martin Kilbinger (CEA)

WL Part I/II

143 / 142

Bibliography

Bibliography V

- Tewes M, Cantale N, Courbin F, Kitching T & Meylan G 2012 A&A 544, A8.
- The Dark Energy Survey Collaboration, Abbott T, Abdalla F B, Allam S, Amara A & al. 2016 Phys. Rev. D 94, 022001.
- Wan Waerbeke L, Mellier Y, Erben T, Cuillandre J C, Bernardeau F & al. 2000 $A \mathcal{E} A$ 358, 30–44.
- Wander M, van Uitert E, Hoekstra H, Coupon J, Erben T & al. 2014 MNRAS 437, 2111–2136.
- der Linden A, Allen M T, Applegate D E, Kelly P L, Allen S W & al. 2014 MNRAS 439, 2–27.
- Walsh D, Carswell R F & Weymann R J 1979 Nature 279, 381–384.
- Zuntz J, Kacprzak T, Voigt L, Hirsch M, Rowe B & al. 2013 MNRAS 434, 1604–1618.