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Part I day 2: Measurement of weak lensing Galaxy shape measurement

The shape measurement challenge

• Cosmological shear � ⌧ " intrinsic ellipticity

• Galaxy images corrupted by PSF

• Measured shapes are biased
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Part I day 2: Measurement of weak lensing Galaxy shape measurement

The shape measurement challenge
How do we measure ”ellipticity” for irregular, faint, noisy objects?

The DES Science Verification Weak Lensing Shear Catalogues 13

The files are quite large, so loading the whole file into memory is
not generally feasible, but it is also not necessary.

The postage stamps from the original single-epoch images
were sky-subtracted and then scaled to be on a common photomet-
ric system, which simplified the model fitting using these images.
We also stored the local affine approximation of the WCS function,
evaluated at the object centre, so that models could be made in sky
coordinates and constrained using the different image coordinates
for each postage stamp.

See Appendix A for details about how we build and store the
MEDS files.

5.1 Exposure Selection

We did not use all single-epoch images for measuring shapes. We
excluded a small fraction of the CCD images that had known prob-
lems in the original data or in some step of the data reduction and
processing. We created simple “blacklist” files, in which we stored
information for CCD images we wished to exclude, and that infor-
mation was incorporated into the MEDS files as a set of bitmask
flags. Postage stamps from blacklisted images were then easily ex-
cluded from the analysis when measuring shears. Here we list some
of the reasons that images were blacklisted.

Some of the astrometry solutions (cf. §2.3) provided a poor
map from CCD coordinates to sky coordinates. This happened pri-
marily near the edges of the SPT-E region where there are not
enough overlapping exposures to constrain the fit.

Some of the PSF solutions (cf. §4) provided a poor model of
the PSF across the CCD. In some cases there were too few stars
detected to constrain the model; occasionally there was some error
when running either the star finding code or PSFEX.

A small fraction of the SV images were contaminated by
bright scattered-light artefacts. Scattered-light artefacts fall into
two broad categories: internal reflections between the CCDs and
other elements of the optics, known as “ghosts”; and grazing in-
cidence reflections off of the walls and edges of the shutter and
filter changer mechanism. Ghosts primarily occur when a bright
star is within the field of view, while grazing incidence scatters oc-
cur predominantly for stars just outside the field-of-view. Using the
positions of bright stars from the Yale Bright Star Catalogue (Hof-
fleit & Jaschek 1991) and knowledge of the telescope optics, it is
possible to predict locations on the focal plane that will be most af-
fected by scattered light. We identified and removed a total of 862
CCD images (out of 135,481) from the single-exposure SV data set
in this manner. In April 2013, filter baffles were installed to block
some of this scattered light, and non-reflective paint was applied to
the filter changer and shutter in March 2014 (Flaugher et al. 2015).
These modifications have greatly reduced the occurrence of grazing
incidence reflections in subsequent DES seasons.

It is common for human-made objects to cross the large DE-
Cam field of view during an exposure. The brightest and most im-
pactful of these are low-flying airplanes (two Chilean flight paths
pass through the sky viewable by the Blanco telescope). Airplane
trails are both bright and broad, and cause significant issues in esti-
mating the sky background in CCDs that they cross. We identified
these airplane trails by eye and removed a total of 56 individual
CCD images due to airplane contamination (corresponding to 4 dis-
tinct exposures). This rate of airplane contamination is expected to
continue throughout the DES survey.

In addition to airplanes, earth-orbiting satellites are a common
occurrence in DES images. During the 90 second exposure time of
a DES survey image, a satellite in low-earth-orbit can traverse the

Figure 11. Example galaxy image demonstrating two masking strategies.
The top row shows the original postage stamps in the MEDS file. The
second row shows the result when only the SEXTRACTOR segmentation
map was used to mask neighbors. The third row shows the result when the
überseg algorithm was used to mask neighbors, as described in the text.

entire focal plane, while geosynchronous satellites travel approxi-
mately 1.25 CCD lengths. The impact of these satellite streaks is
significantly less than that of airplanes; however, because they only
occur in a single filter, they can introduce a strong bias in the colour
of objects that they cross. For SV, the “crazy colours” cut men-
tioned in §2.1 removes most of the contaminated objects. At the
end of Year 1, an automated tool was developed by DESDM for
detecting and masking satellite streaks using the Hough transform
(Hough 1959; Duda & Hart 1972). This should greatly reduce the
impact of satellite streaks in upcoming seasons of DES observing
and will be retroactively applied to reprocessing of earlier data.

5.2 Masks

The user can construct a “mask” for each postage stamp in the
MEDS files in a variety of ways. For this analysis, we used what
we call an “überseg” mask, constructed from the weight maps, seg-
mentation maps and locations of nearby objects.

To create the überseg mask, we started with the SEXTRACTOR
segmentation map from the coadd image, mapping it on to the cor-
responding pixels of the single-epoch images. We prefer this map to
the segmentation map derived for each single-epoch image because
the coadd image is less noisy, and thus has more object detections
and more information for determining the extent of each object.

We then set pixels in the weight map to zero if they were ei-
ther associated with other objects in the segmentation map or were
closer to any other object than to the object of interest. The result
was a superset of the information found in the weight maps and
segmentation maps alone, hence the name überseg.

An example set of images and überseg maps are shown in Fig-
ure 11. In tests on a simulation with realistically blended galaxies
(cf. §6.2), we found a large reduction in the shear biases when using
the überseg masking as compared to the ordinary SEXTRACTOR
segmentation maps. In particular, when using ordinary segmenta-
tion maps we found a significant bias of the galaxy shape in the
direction toward neighbors. With the überseg masking, such a bias
was undetectable.
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fitted, allowing for astrometric offsets and camera distortion as de-
scribed in Sections 4& 6 below. Inevitably, some galaxies had sizes
too large to be fitted in this size of postage stamp; such galaxies
were excluded from the analysis.

In some cases, two or more neighbouring galaxies appeared
within the same postage stamp. The algorithm can only fit one
galaxy at a time, so the solution adopted was to first see whether
it was possible to mask out one galaxy (set its pixel values equal
to the background) without disturbing the isophotes of the galaxy
being fitted. To this end, a co-added image postage stamp was cre-
ated, averaging all the exposures available for that galaxy, shifted
so the relative positions agreed to the nearest pixel, which was
then smoothed by a gaussian of FWHM equal to that of the lo-
cal PSF. Isophotes were created for each smoothed galaxy: if a
separate galaxy or other object was identified with non-touching
isophotes, at a level of twice the smoothed pixel noise, that other
galaxy was masked out and the fitting would proceed. Such close
pairs of galaxies are thus included in the output catalogues from
CFHTLenS. We note, however, that low-level light leaking below
the two-sigma isophote could still contaminate the measurement,
and thus we expect the ellipticity measurements of galaxies in close
pairs, whose isophotes may be contaminated by their neighbour, to
be artificially correlated.

Within each postage stamp, it may be that some pixels should
be masked because of image defects. The THELI pipeline provided
images of pixel masks to be applied. If such masked pixels occurred
within the two-sigma isophote of a galaxy on one individual expo-
sure, that exposure was not used in the joint analysis. If such pixels
occurred outside the two-sigma isophote, the pixel values were set
equal to the background and that masked exposure was used in the
joint fitting.

Other galaxies may be sufficiently close that their smoothed
isophotes overlapped, and there may also be individual galaxies
with complex morphology, not well described by a simple bulge-
plus-disk model. These galaxies were identified using a deblend-
ing algorithm, testing for the presence of significant independent
maxima in the smoothed surface brightness distribution6. Any such
complex or blended galaxies that were found were excluded from
the analysis. A further criterion was imposed, that the intensity-
weighted centroid of a galaxy, measured from the pixels within the
smoothed 2� isophote, should lie within 4 pixels of the nominal
target position: this criterion guarded against any blended galaxies
that had been identified as blends in the original input catalogue
but that had not been identified by the other tests described in this
section. Some examples of images of galaxies excluded by these
criteria are shown in Fig. 3, which shows examples of the stacked,
smoothed images used for testing for object complexity. Visual in-
spection indicated that the great majority of galaxies excluded in
this way had isophotes that overlapped with neighbouring galaxies.

The fraction of galaxies that were excluded in this way varied
somewhat between fields, as the criteria were affected by the size
of the PSF. Typically, 20% of galaxies were excluded. Although

6 The algorithm was similar to that of Beard et al. (1990). Maxima in the
smoothed surface brightness distribution associated with the target galaxy
were identified, and regions ‘grown’ around those maxima by successively
lowering a threshold isophote level from that maximum level. Pixels above
the threshold were either identified with the corresponding maximum of any
identified pixels that they touched, or otherwise were defined to be a new,
secondary, maximum. Regions with fewer than 8 pixels were amalgamated
into any touching neighbours. If multiple regions remained after this pro-
cess, within the limiting 2� isophote, the galaxy was flagged as ‘complex’.

Figure 3. Examples of four galaxies excluded from measurement by the
criteria described in Section 3.7, in field W1m0m1. Each panel shows a
coadded image 48 pixels (approximately 900) square, centred on each target
galaxy, and the inverted grey scale is linear up to some maximum value
which varies between images.

this fraction seems high, such a loss of galaxy numbers does not
significantly degrade the signal-to-noise of the final cosmological
analysis, but it does help ensure that galaxies whose measurements
would be poor because of their size, or because they would be
poorly modelled, have been excluded. These exclusion criteria are
likely to introduce small-scale selection effects into the galaxy dis-
tribution (e.g. neighbouring galaxies would have been classed as
being blended with greater or lesser probability depending on how
they were aligned with respect to the PSF) and so lensing signals
on arcsec scales, � 500, should be excluded from analyses of this
survey, even though nominal measurements are reported in the out-
put catalogues. We note that the exclusion of some fraction of close
pairs of galaxies may introduce a bias at a level of a few percent into
cosmological parameters (Hartlap et al. 2011): we do not currently
have any way to estimate the size of this bias in an actual survey
such as CFHTLenS, without a detailed model of the true distribu-
tion of galaxy pairs and of the effect of the measurement process
on those pairs.

4 OPTIMAL COMBINATION OF MULTIPLE IMAGES

The algorithm presented in Papers I & II, and also the simulations
of the GREAT08 (Bridle et al. 2010) and GREAT10 (Kitching et al.
2012) challenges, assume that each galaxy is measured on a single
image. However, actual galaxy surveys use combinations of multi-
ple exposures in the same waveband, or even across different filters.
The reasons for having multiple exposures in the same filter are: (i)
to increase the dynamic range of the observations; (ii) to prevent
an excessive build-up of cosmic ray artifacts on any one image;
(iii) to allow dithering of observations, filling in gaps where CCD
boundaries or CCD artifacts prevent useful data being obtained and
mitigating the effects of the finite pixel sampling. Thus any shear
measurement method should make optimal use of such multiple
images. In CFHTLenS typically seven dithered exposures were ob-
tained in each field (Section 2).

c� 2011 RAS, MNRAS 000, 1–24

[CFHTLenS/KiDS image — CFHTlenS postage stamps]
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Part I day 2: Measurement of weak lensing Galaxy shape measurement

Shape measurement methods

• Parametric: model fitting.
(Kuijken 1999), lensfit (Miller et al. 2007)), gfit (Gentile et al. 2012),
im3shape (Zuntz et al. 2013) and many more.

• Non-parametric: direct estimation.

• Perturbative: weighted moments.
KSB — (Kaiser et al. 1995) + many improvements
DEIMOS — (Melchior et al. 2011) (PSF correction in moment space)
HOLICs — (Okura & Futamase 2009) — Higher-order moments

• Non-perturbative: Decomposition into basis functions.
shapelets — (Refregier 2003) + many improvements
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Part I day 2: Measurement of weak lensing Galaxy shape measurement

Model fitting methods

Forward model-fitting (example lensfit)

• Convolution of model with PSF instead of devonvolution of image
• Combine multiple exposures (in Bayesian way, multiply posterior

density), avoiding co-adding of (dithered) images
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Part I day 2: Measurement of weak lensing Galaxy shape measurement

Dithering

Left: Co-add of two r-band exposures of CFHTLenS.
Right: Weight map.
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Part I day 2: Measurement of weak lensing Galaxy shape measurement

Moment-based methods I
Moments and ellipticity
How are moments connected to ellipticity?
Q: Simple case: qualitatively, what are the 0th, 1st, 2nd moments of a 1D
distribution? Of a 2D distribution?
Quadrupole moment of weighted light distribution I(✓):

Qij =

R
d2✓ q[I(✓)] (✓i � ✓̄i)(✓j � ✓̄j)R

d2 ✓ q[I(✓)]
, i, j = 1, 2

q : weight function

✓̄ =

R
d2✓ qI [I(✓)]✓R
d2✓ qI [I(✓)]

: barycenter (first moment!)

Ellipticity

" =
Q11 � Q22 + 2iQ12

Q11 + Q22 + 2(Q11Q22 � Q2
12)

1/2

Circular object Q11 = Q22, Q12 = Q21 = 0

Martin Kilbinger (CEA) WL Part I/II 60 / 138

Part I day 2: Measurement of weak lensing Galaxy shape measurement

Moment-based methods II

KSB PSF correction
Perturbative ansatz for PSF e↵ects

"obs = "s + P sm"⇤ + P sh�

[c.f. "obs = "s + � from before]

P sm smear polarisability, (linear) response of to ellipticity to PSF
anisotropy

e⇤ PSF anisotropy
P sh shear polarisability, isotropic seeing correction
� shear

P sm, P sh are functions (2 ⇥ 2 tensors) of galaxy brightness distribution.

Problematic: Strongly anisotropic PSF, error estimation, combining multiple
exposures.
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Part I day 2: Measurement of weak lensing Galaxy shape measurement

Non-perturbative methods
Shapelets
(Refregier 2003, Massey & Refregier 2005, Kuijken 2006)

• Decompose galaxies and stars into basis functions.
4 A. Refregier

Figure 2. First few 2-dimensional Cartesian basis functions
φn1,n2 . The dark and light regions correspond to positive and
negative values, respectively.

f(x) =

∞∑

n1,n2=0

fnBn(x;β), (22)

where the shapelet coefficients are given by

fn =

∫
d2xf(x)Bn(x; β) (23)

Figure 3 show how an image observed with HST can be de-
composed and reconstructed using shapelets. The resulting
distribution of the coefficients is shown on Figure 4. More
examples can be found on Figure 5. These examples and
associated applications will be discussed in detail in §6.

Of practical interest, is the choice of an appropriate
shapelet scale β and maximum order nmax for the faithful
and efficient decomposition of a given image. Using argu-
ments similar to those of §2.4, it is easy to show that a
decomposition in 2-dimensions which include shapelets of
scale β with order ranging from n1 + n2 = 0 to nmax can
only describe features with scales between the two limits

θmin ≈ β (nmax + 1)−
1
2 , θmax ≈ β (nmax + 1)

1
2 . (24)

Thus, if the function has features with scales ranging from
θmax (eg. the size of the object or that of the image) and
θmin (eg. the pixel size, or the size of a smoothing kernel), a
good choice of β and nmax will be

β ≈ (θminθmax)
1
2 , nmax ≈ θmax

θmin
− 1. (25)

In practice, this provides a good first guess, which can be
refined using a few iterations (see §3.2).

Figure 3. Decomposition of a galaxy image found in the HDF.
The original 60 × 60 pixel HST image (upper left-hand panel)
can be compared with the reconstructed images with different
maximum order n = n1 + n2. The shapelet scale is chosen to be
β = 4 pixels. The lower right-hand panel (n ≤ 20) is virtually
indistinguishable from the initial image.

3.2 Photometry and Astrometry

The most basic quantities to measure for an object image
are its total flux (photometry), centroid position (astrom-
etry) and size. Let us first decompose the intensity f(x)
of the object into shapelet coefficients fn = ⟨n; β|f⟩ as in
Equation (22).

Using the integral property of Equation (17), it is then
easy to show that the total flux F ≡

∫
d2xf(x) of the object

is

F = π
1
2 β

even∑

n1,n2

2
1
2
(2−n1−n2)

(
n1

n1/2

) 1
2
(

n2

n2/2

) 1
2

fn1n2 ,(26)

where the sum is over even values of n1 and n2.
Using Equations (17) and (13), one can also show that

the centroid of the object xf
i ≡

∫
d2xxif(x)/F is given by

xf
1 = π

1
2 β2F−1

odd∑

n1

even∑

n2

(n1 + 1)
1
2 2

1
2
(2−n1−n2)

×
(

n1 + 1
(n1 + 1)/2

) 1
2
(

n2

n2/2

) 1
2

fn1n2 , (27)

and similarly for xf
2 .

Similarly, the rms radius rf defined by r2
f ≡

c⃝ 2001 RAS, MNRAS 000, 1–13
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Figure 4. Shapelet coefficients for the image decomposition of
the previous figure. Since the coefficient array is sparse, the images
can be reconstructed from the few first largest coefficients.

∫
d2xx2f(x)/F is given by

r2
f = π

1
2 β3F−1

even∑

n1,n2

2
1
2
(4−n1−n2) (1 + n1 + n2)

×
(

n1

n1/2

) 1
2
(

n2

n2/2

) 1
2

fn1n2 , (28)

These expressions can be used, by iteration, to find the op-
timal centre and scale of the basis functions.

3.3 Coordinate Transformations

Let us consider a general coordinate transformation of the
form x → x′ = (1 + Ψ)x + ϵ, where Ψ is a 2 × 2 matrix,
ϵ = (ϵ1, ϵ2) is a small displacement. Such a transformation
can arise for instance from a translation, rotation or from the
action of gravitational lensing. We assume that the trans-
formation matrix Ψ and the displacement ϵ are small and
constant across the object. We parametrise the matrix Ψ

following the gravitational lensing conventions as

Ψ =

(
κ + γ1 γ2 − ρ
γ2 + ρ κ − γ1

)
, (29)

where ρ describes rotations and the convergence κ describes
overall dilatations and contractions. The shear γ1 (γ2) de-
scribes stretches and compressions along (at 45◦ from) the
x-axis. The displacements ϵ1 and ϵ2 correspond to transla-
tions along the x and y-axis, respectively.

Under this transformation, the intensity f(x) of an ob-
ject becomes

Figure 5. Reconstruction and compression of three HST galaxy
images using shapelets. The left-hand column shows the orginal
images extracted from the HDF and list Npix their size in pix-
els. The right-hand column shows their reconstructed image from
the Ncof largest coefficients (in absolute value) of their shapelet
decomposition. Because the coefficient matrix is typically sparse,
a large compression factor Npix/Ncof is achieved. The shapelet
scale was chosen to be β = 4 pixels in all 3 cases.

f ′(x′) = f(x(x′)) ≃ f(x′ − Ψx
′ − ϵ). (30)

Since we are now considering infinitesimal transformations,
we can Taylor expand this expression and only keep the
terms which are first order in Ψ. After using Equations (11)
and (13), we find

f ′ ≃ (1 + ρR̂ + κK̂ + γjŜj + ϵiT̂i)f, (31)

where R̂, K̂, Ŝi and T̂i are the operators generating rota-
tion, convergence, shears and translations, respectively, and
where we have used the Einstein summation convention. The
generators are given by

R̂ = −i (x̂1p̂2 − x̂2p̂1) = â1â
†
2 − â†

1â2

K̂ = −i (x̂1p̂1 + x̂2p̂2) = 1 +
1
2

(
â†2
1 + â†2

2 − â2
1 − â2

2

)

Ŝ1 = −i (x̂1p̂1 − x̂2p̂2) =
1
2

(
â†2
1 − â†2

2 − â2
1 + â2

2

)

Ŝ2 = −i (x̂1p̂2 + x̂2p̂1) = â†
1â

†
2 − â1â2

T̂j = −ip̂j =
1√
2
(â†

j − âj), j = 1, 2. (32)

The rotation generator R̂ is thus simply equal to the angular
momentum operator in 2-dimensions

L̂ = x̂1p̂2 − x̂2p̂1 = i
(
â1â

†
2 − â†

1â2

)
, (33)

c⃝ 2001 RAS, MNRAS 000, 1–13

• PSF correction, convergence and shear acts on shapelet coe�cients,
deconvolution feasible

• Problems: series truncation, basis functions not representative, need to
set size parameter
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Part I day 2: Measurement of weak lensing Galaxy shape measurement

Further methods and techniques

• Machine-Learning, e.g. LUT by supervised learning, (Tewes et al. 2012)

• Self-calibration

• Further Bayesian methods

• Hierarchical Multi-level Bayesian Inference (MBI), (Schneider et al. 2014).
Joint posterior of shear, galaxy properties, PSF, nuisance parameters given
pixel data.

• (Bernstein & Armstrong 2014). Does not measure ellipticity of individual
galaxies, direct posterior estimation of shear for population. Needs prior
from deep images.
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Part I day 2: Measurement of weak lensing Galaxy shape measurement

Shear measurement biases I

Origins

• Noise bias
In general, ellipticity is non-linear in pixel data (e.g. normalization by
flux). Pixel noise ! biased estimators.

• Model bias
Assumption about galaxy light distribution is in general wrong.

• Model-fitting method: wrong model
• Perturbative methods (KSB, DEIMOS, HOLICS): weight function not

appropriate
• Non-perturbative methods (shapelets): truncated expansion, bad

eigenfunction representation
• Color gradients
• Non-elliptical isophotes

• Other

• Imperfect PSF correction
• Detector e↵ects (CTI — charge transfer ine�ciency)
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Part I day 2: Measurement of weak lensing Galaxy shape measurement

Shear measurement biases II
• Selection e↵ects (probab. of detection/sucessful " measurement depends on

" and PSF)

Characterisation
Bias can be multiplicative (m) and additive (c):

�obs
i = (1 + mi)�

true
i + ci; i = 1, 2.

Biases m, c are typically complicated functions of galaxy properties (e.g. size,
magnitude, ellipticity), redshift, PSF, . . .. They can be scale-dependent.

Current methods: |m| = 1% � 10%, |c| = 10�3 � 10�2.

Challenges such as STEP1, STEP2, great08, great10, great3 quantified these
biases with blind simulationes.

Calibration
Usually biases are calibrated using simulated or emulated data, or
self-calibration.
Current surveys produce their own image simulations with properties of
galaxy sample and PSF matching to data.

Martin Kilbinger (CEA) WL Part I/II 65 / 138



Part I day 2: Measurement of weak lensing Galaxy shape measurement

Shear measurement biases III

Functional dependence of m on
observables must not be too
complicated (e.g. not smooth,
many variables, large parameter
space), or else measurement is not
calibratable!

18 M. Jarvis, E. Sheldon, J. Zuntz, T. Kacprzak, S. Bridle, et al.

Figure 13. Shear bias for IM3SHAPE measurements on the GREAT-DES simulation: multiplicative bias (left) and PSF leakage (right), as functions of the
measured (S/N)w and Rgp/Rp. The fits, which are used to calibrate the shear estimates on the data, are smooth functions in both of these variables. Solid
lines show the fits vs (S/N)w at particular choices of Rgp/Rp.

function of pixel intensities affected by Gaussian noise, resulting in
noise bias in the estimated shear values. The IM3SHAPE algorithm,
being a maximum likelihood estimator, is known to suffer from this
effect.

In addition, we found a small selection bias, which is intro-
duced by using recommended IM3SHAPE flags (cf. §7.3.3) and the
selection based on galaxy size and S/N (cf. §9.1). We also expect
a small amount of model bias due to realistic galaxies not always
being well fit by our bulge-or-disc model. This model bias is ex-
pected to be small compared to the requirements (Kacprzak et al.
2014).

To account for all of these sources of error in our shape
measurements, we calculated bias corrections of the form shown
in equation 3.4. Specifically, we fit for m and � as functions of
(S/N)w (defined in equation 7.3) and Rgp/Rp (the FWHM of the
PSF-convolved galaxy divided by the FWHM of the PSF) on sim-
ulated data from the GREAT-DES simulation (cf. §6.1). We ran
IM3SHAPE on the simulated data in the same way as we do on the
DES data, including the same choices of input parameters.

In principle, the two multiplicative terms, m1 and m2 should
be treated as independent biases. In practice, however, when av-
eraged over many galaxies we find virtually no difference be-
tween the two. As such, we correct both e1 and e2 by the average
m = (m1 + m2)/2.

We fit both m and � as two-dimensional surfaces in the S/N
and size parameters. Due to the complicated structure of this sur-
face, we fit m with 15 terms of the form (S/N)�x

w (Rgp/Rp)�y ,
where x and y are various powers ranging from 1.5 to 4. To control
overfitting, we used a regularization term in the least-square fit and
optimized it such that the fitted surface has a reduced �2 = 1. A
similar procedure was applied to �, where we used 18 parameters
in the fit. In Figure 13 we show these fits as curves in (S/N)w in
bins of Rgp/Rp. However, the actual functions are smooth in both
parameters.

We checked if our calibration is robust to the details of this
model by (1) varying the number of terms in the basis expansion
and (2) splitting the training data into halves. For both tests the
changes in the mean multiplicative and additive corrections applied
to the SV data did not vary by more than 1%.

In §7.2, we mentioned that (S/N)w is a biased measure of

S/N with respect to shear, so if it is used to select a population of
galaxies, it will induce a selection bias on the mean shear. Rgp/Rp

similarly induces such a bias. Thus, when we bin the shears by
these quantities to construct the calibration functions, there is a se-
lection bias induced in every bin. The scale of selection bias reaches
m � �0.05 for the most populous bins. This is not a problem for
the correction scheme so long as the overall selection is also made
using these same quantities. In that case, the shear calibration au-
tomatically accounts for the selection bias in addition to the noise
bias.

We tried using (S/N)r in the calibration model rather than
(S/N)w to help reduce the level of the selection bias in each bin,
but we found that it does not perform as well as using the standard
(S/N)w. Perhaps not surprisingly, the noise bias seems to be more
related to the S/N of the actual galaxy than it is to the counterfac-
tual round version of the galaxy used for (S/N)r . In future work, it
would be interesting to seek an effective shear calibration scheme
that disentangles noise and selection biases, but we have not found
one yet.

We used these fits to estimate the multiplicative and addi-
tive corrections to use for every galaxy in the IM3SHAPE cata-
logue. However, it should be stressed that this bias estimate is it-
self a noisy quantity, being based on noisy estimates of the size
and S/N . Therefore one should not directly apply the correction to
each galaxy individually. Rather, the mean shear of an ensemble of
galaxies should be corrected by the mean shear bias correction of
that same ensemble (cf. §9.2).

Note that a selection bias can appear whenever a subset of
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ysis, we apply recommended IM3SHAPE flags, cut on Rgp/Rp and
(S/N)w, and then typically split the galaxies into redshift bins.
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calibration nevertheless performs well in this scenario by applying
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Figure 5. An example size-magnitude diagram for a single CCD image,
used to identify stars. The size T = 2�2 is based on the scale size of the
best-fitting elliptical Gaussian. The pink and green points are the objects
initially identified as stars. The green points are the ones that pass our se-
lection criteria outlined in §4.2, most notably the magnitude cut to avoid
objects contaminated by the brighter-fatter effect. These objects are then
used to constrain the PSF model. The blue circles show an an alternate
star classification, called the Modest Classification within DES, which was
found not to work as well for our specific purpose.

We found that, for some CCD images, the sets of objects iden-
tified as stars by the Modest Classification scheme10 included a
relatively high number of galaxies, and in other cases too few stars
were identified. The cause of these failures is dependent on many
factors, but may be partly related to the use of coadd data for the
classification. The coadd PSF can change abruptly at the locations
of chip edges in the original single-epoch images, which may have
affected the stellar classification near these discontinuities.

Ultimately, the problems with the modest classifier were com-
mon enough that we decided to develop a new algorithm tailored
specifically to the identification of a pure set of PSF stars. Our algo-
rithm works on each CCD image separately, using a size-magnitude
diagram of all the objects detected on the image. For the magni-
tude, we use the SEXTRACTOR measurement MAG_AUTO. For the
size, we use the scale size, �, of the best-fitting elliptical Gaus-
sian profile using an adaptive moments algorithm. We found that
these measures produce a flatter and tighter stellar locus than the
FLUX_RADIUS value output by SEXTRACTOR, and is thus better
suited for selection of stars. As a further improvement, we initialize
the algorithm with some stars identified by SEXTRACTOR to have
CLASS_STAR between 0.9 and 1.0. This was found to give a decent
estimate of the size of the PSF, providing a good starting guess for
the location of the stellar locus.

The stars are easily identified at bright magnitudes as a locus
of points with constant size nearly independent of magnitude. The
galaxies have a range of sizes, all larger than the PSF size. Thus,
the algorithm starts with a tight locus at small size for the stars
and a broad locus of larger sizes for the galaxies for objects in the
brightest 5 magnitudes (excluding saturated objects). Then the al-
gorithm proceeds to fainter magnitudes, building up both loci, until

10 Stars were identified as (bright_test OR locus_test) in terms
of the pseudo-code presented in §2.2

the stellar locus and the galaxy locus start to merge. The precise
magnitude at which this happens is a function of the seeing as well
as the density of stars and galaxies in the particular part of the sky
being observed. As such the faint-end magnitude of the resulting
stellar sample varies among the different exposures.

Figure 5 shows such a size-magnitude diagram for a repre-
sentative CCD image. The stellar locus is easily identified by eye,
and the stellar sample identified by our algorithm is marked in pink
and green. The pink points are stars that are removed by subse-
quent steps in the process outlined below, while the green points are
the stars that survive these cuts. The blue circles show the objects
identified as stars according to the Modest Classification, which in-
cludes more outliers and misses some of the objects clearly within
the stellar locus.

While the algorithm we currently use is found to work well
enough for the SV data, we plan to investigate whether the neural
net star-galaxy separator recently developed by Soumagnac et al.
(2015) is more robust or could let us include additional stars.

4.2 Selection of PSF Stars

Some of the stars in this sample are not appropriate to use for
PSF modeling, even ignoring the inevitable few galaxies that get
misidentified as stars. The CCDs on the Dark Energy Camera each
have six spots where 100 micron thick spacers were placed behind
the CCDs when they were glued to their carriers (cf. Flaugher et al.
2015), which affects the electric field lines near each 2mm � 2mm
spacer. These features, which we call tape bumps, distort the shapes
in those parts of the CCDs, so the stellar images there are not ac-
curate samples of the PSF. We exclude any star whose position is
within 2 PSF FWHM separation of the outline of a tape bump. The
tape bumps are relatively small, so this procedure excludes less than
0.1% of the total area of the CCD, but removes a noticeable bias in
the PSF model near the bumps.

Another problem we addressed with regards to star selection
is the so-called “brighter-fatter effect” (Antilogus et al. 2014; Guy-
onnet et al. 2015). As charge builds up in each pixel during the
exposure, the resulting lateral electric fields and increased lateral
diffusion push newly incoming charges slightly away from the ex-
isting charge. This makes bright objects appear a bit larger than
fainter objects. In addition, an asymmetry in the magnitude of the
effect between rows and columns can make bright stars more ellip-
tical. The galaxies we used for weak lensing are generally faint, so
the brightest stars do not accurately sample the PSF that we need to
measure. Furthermore, the brighter-fatter effect does not manifest
as a convolution of the signal, so the bright stars do not even pro-
vide an estimate of the correct PSF to be used for bright galaxies.

The appropriate solution is to move the shifted charge back to
where it would have fallen in the absence of this effect. This will be
implemented in future DES data releases (Gruen et al. 2015). For
the current round of catalogues, we instead partially avoided the
problem by removing the brightest stars from our sample. Specif-
ically, we removed all stars within 3 magnitudes of the saturation
limit for the exposure. That is, in our final selection of PSF stars
we required that the brightest pixel in the stellar image be less than
6% of the pixel full well. Since the brighter-fatter effect scales ap-
proximately linearly with flux, this reduces the magnitude of the
effect by a factor of 16. We were left with stars of lower S/N , so it
is not the ideal solution, but it is an acceptable interim measure (as
we demonstrate below) until the more sophisticated solution can be
implemented.

In Figure 6 we show the mean difference between the mea-
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Figure 5. An example size-magnitude diagram for a single CCD image,
used to identify stars. The size T = 2�2 is based on the scale size of the
best-fitting elliptical Gaussian. The pink and green points are the objects
initially identified as stars. The green points are the ones that pass our se-
lection criteria outlined in §4.2, most notably the magnitude cut to avoid
objects contaminated by the brighter-fatter effect. These objects are then
used to constrain the PSF model. The blue circles show an an alternate
star classification, called the Modest Classification within DES, which was
found not to work as well for our specific purpose.

We found that, for some CCD images, the sets of objects iden-
tified as stars by the Modest Classification scheme10 included a
relatively high number of galaxies, and in other cases too few stars
were identified. The cause of these failures is dependent on many
factors, but may be partly related to the use of coadd data for the
classification. The coadd PSF can change abruptly at the locations
of chip edges in the original single-epoch images, which may have
affected the stellar classification near these discontinuities.

Ultimately, the problems with the modest classifier were com-
mon enough that we decided to develop a new algorithm tailored
specifically to the identification of a pure set of PSF stars. Our algo-
rithm works on each CCD image separately, using a size-magnitude
diagram of all the objects detected on the image. For the magni-
tude, we use the SEXTRACTOR measurement MAG_AUTO. For the
size, we use the scale size, �, of the best-fitting elliptical Gaus-
sian profile using an adaptive moments algorithm. We found that
these measures produce a flatter and tighter stellar locus than the
FLUX_RADIUS value output by SEXTRACTOR, and is thus better
suited for selection of stars. As a further improvement, we initialize
the algorithm with some stars identified by SEXTRACTOR to have
CLASS_STAR between 0.9 and 1.0. This was found to give a decent
estimate of the size of the PSF, providing a good starting guess for
the location of the stellar locus.

The stars are easily identified at bright magnitudes as a locus
of points with constant size nearly independent of magnitude. The
galaxies have a range of sizes, all larger than the PSF size. Thus,
the algorithm starts with a tight locus at small size for the stars
and a broad locus of larger sizes for the galaxies for objects in the
brightest 5 magnitudes (excluding saturated objects). Then the al-
gorithm proceeds to fainter magnitudes, building up both loci, until

10 Stars were identified as (bright_test OR locus_test) in terms
of the pseudo-code presented in §2.2

the stellar locus and the galaxy locus start to merge. The precise
magnitude at which this happens is a function of the seeing as well
as the density of stars and galaxies in the particular part of the sky
being observed. As such the faint-end magnitude of the resulting
stellar sample varies among the different exposures.

Figure 5 shows such a size-magnitude diagram for a repre-
sentative CCD image. The stellar locus is easily identified by eye,
and the stellar sample identified by our algorithm is marked in pink
and green. The pink points are stars that are removed by subse-
quent steps in the process outlined below, while the green points are
the stars that survive these cuts. The blue circles show the objects
identified as stars according to the Modest Classification, which in-
cludes more outliers and misses some of the objects clearly within
the stellar locus.

While the algorithm we currently use is found to work well
enough for the SV data, we plan to investigate whether the neural
net star-galaxy separator recently developed by Soumagnac et al.
(2015) is more robust or could let us include additional stars.

4.2 Selection of PSF Stars

Some of the stars in this sample are not appropriate to use for
PSF modeling, even ignoring the inevitable few galaxies that get
misidentified as stars. The CCDs on the Dark Energy Camera each
have six spots where 100 micron thick spacers were placed behind
the CCDs when they were glued to their carriers (cf. Flaugher et al.
2015), which affects the electric field lines near each 2mm � 2mm
spacer. These features, which we call tape bumps, distort the shapes
in those parts of the CCDs, so the stellar images there are not ac-
curate samples of the PSF. We exclude any star whose position is
within 2 PSF FWHM separation of the outline of a tape bump. The
tape bumps are relatively small, so this procedure excludes less than
0.1% of the total area of the CCD, but removes a noticeable bias in
the PSF model near the bumps.

Another problem we addressed with regards to star selection
is the so-called “brighter-fatter effect” (Antilogus et al. 2014; Guy-
onnet et al. 2015). As charge builds up in each pixel during the
exposure, the resulting lateral electric fields and increased lateral
diffusion push newly incoming charges slightly away from the ex-
isting charge. This makes bright objects appear a bit larger than
fainter objects. In addition, an asymmetry in the magnitude of the
effect between rows and columns can make bright stars more ellip-
tical. The galaxies we used for weak lensing are generally faint, so
the brightest stars do not accurately sample the PSF that we need to
measure. Furthermore, the brighter-fatter effect does not manifest
as a convolution of the signal, so the bright stars do not even pro-
vide an estimate of the correct PSF to be used for bright galaxies.

The appropriate solution is to move the shifted charge back to
where it would have fallen in the absence of this effect. This will be
implemented in future DES data releases (Gruen et al. 2015). For
the current round of catalogues, we instead partially avoided the
problem by removing the brightest stars from our sample. Specif-
ically, we removed all stars within 3 magnitudes of the saturation
limit for the exposure. That is, in our final selection of PSF stars
we required that the brightest pixel in the stellar image be less than
6% of the pixel full well. Since the brighter-fatter effect scales ap-
proximately linearly with flux, this reduces the magnitude of the
effect by a factor of 16. We were left with stars of lower S/N , so it
is not the ideal solution, but it is an acceptable interim measure (as
we demonstrate below) until the more sophisticated solution can be
implemented.

In Figure 6 we show the mean difference between the mea-
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Figure 9. Whisker plots of the mean PSF pattern (left) and of the mean residual after subtracting off the model PSF (right) as a function of position in the
focal plane. The length of each whisker is proportional to the measured ellipticity, and the orientation is aligned with the direction of the ellipticity. There is
still some apparent structure in the plot of the residuals, but the level is below the requirements for SV science. Reference whiskers of 1% and 3% are shown
at the bottom of each plot, and we have exaggerated the scale on the right plot by a factor of 10 to make the residual structure more apparent.

Figure 10. The � statistics for the PSF shape residuals. Negative values are shown in absolute value as dotted lines. The shaded regions are the requirements
for SV data.
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Fig. 9. An illustration of how the various interpolation methods studied in this article handled a turbulent PSF, which in this case is the first image
of set 9. The true ellipticities are plotted on the upper-left corner of the figure and the remaining plots show the predictions of each methods. The
largest whisker in the upper-left corner plot corresponds to an ellipticity of 0.38.

Table 14. Non-turbulent sets: average values of E and �.

Method E(e) �(e) E(R2) �(R2)

RBF 8.26 � 10�4 3.60 � 10�5 4.59 � 10�3 1.45 � 10�4

IDW 1.28 � 10�3 5.67 � 10�5 9.37 � 10�3 2.95 � 10�4

Kriging 7.06 � 10�4 3.16 � 10�5 3.57 � 10�3 1.13 � 10�4

Polyfit 8.37 � 10�4 3.73 � 10�5 5.23 � 10�3 1.64 � 10�4

B-splines 6.28 � 10�4 2.80 � 10�5 6.53 � 10�3 2.06 � 10�4

of FWHM, masking and telescope e�ects. We also observe
star size to have a negligible impact on E(e) for all meth-
ods, but we clearly see that E(R2) significantly increases
(resp. decreases) for star fields with smaller (resp. larger)
FWHM. Finally, all methods reach a slightly higher accu-
racy on masked images, especially with 6-fold masks.

6.3. Results from individual interpolation methods

– Interpolation with radial basis functions (RBF): as shown in
our previous discussion, the RBF interpolation scheme is the
overall winner of our evaluation. According to our bench-
marks, ellipticity patterns were best estimated by a linear
kernel function, whereas a thin-plate kernel was more e�ec-
tive on FWHM values. A neighborhood size between 30 and

Table 15. Turbulent sets: average values of E and �.

Method E(e) �(e) E(R2) �(R2)

RBF 4.36 � 10�2 1.81 � 10�3 4.57 � 10�3 1.44 � 10�4

IDW 4.42 � 10�2 1.79 � 10�3 9.05 � 10�3 2.85 � 10�4

Kriging 4.61 � 10�2 1.79 � 10�3 1.11 � 10�2 3.49 � 10�4

Polyfit 5.82 � 10�2 1.89 � 10�3 5.04 � 10�3 1.58 � 10�4

B-splines 5.97 � 10�2 1.88 � 10�3 6.31 � 10�3 1.99 � 10�4

40 stars was used. Refer to Sect. 3.5 and Table 5 for a de-
scription of RBF interpolation and the definitions of these
kernels. That combination of linear and thin-plate kernels
yields very competitive error statistics on both turbulent and
non-turbulent sets: Tables 14 and 15 as well as plots Fig. 7
show RBF is the most accurate on turbulent sets whereas its
results on non-turbulent sets are the second best behind ordi-
nary Kriging. The possibility of selecting the most suitable
kernel for a given PSF patterns is a very attractive feature of
RBF interpolation.

– Inverse distance weighted interpolation (IDW): the IDW
methods (see Sect. 3.4) obtains the second best average E(e)
behind RBF over all sets as seen in Table 13. It does so
thanks to very competitive E(e) results on turbulent sets, just
behind RBF (Table 15). But IDW’s estimates of the FWHM
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star size to have a negligible impact on E(e) for all meth-
ods, but we clearly see that E(R2) significantly increases
(resp. decreases) for star fields with smaller (resp. larger)
FWHM. Finally, all methods reach a slightly higher accu-
racy on masked images, especially with 6-fold masks.

6.3. Results from individual interpolation methods

– Interpolation with radial basis functions (RBF): as shown in
our previous discussion, the RBF interpolation scheme is the
overall winner of our evaluation. According to our bench-
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kernel function, whereas a thin-plate kernel was more e�ec-
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scription of RBF interpolation and the definitions of these
kernels. That combination of linear and thin-plate kernels
yields very competitive error statistics on both turbulent and
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show RBF is the most accurate on turbulent sets whereas its
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nary Kriging. The possibility of selecting the most suitable
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CFHTLenS 9

Figure 1. The star-galaxy cross correlation function �sg(�) for the eight
individual exposures in example field W1m0m0 as a function of angular
separation (triangles, where each panel is a different exposure). The mea-
sured angular correlation function in each exposure can be compared to
the predicted angular star-galaxy correlation (equation 8, shown as a curve)
calculated using only the zero separation measure �sg(0) (shown offset,
circle). The correlation between the exposures and angular scales is shown
in the covariance matrix of the data points in the upper right panel. Each
block shows one of the eight exposures and contains a 6 � 6 matrix show-
ing the correlation between the angular scales. The greyscale bar shows the
amplitude of the values in the matrix.

is a reasonable model for the measured star-galaxy correlation. We
also repeated the analysis for our sample fields using the measured
stellar object ellipticities in contrast to the model PSF ellipticity.
Whilst our measurement errors increased, our findings were un-
changed such that for the remainder of our systematics analysis we
conclude that we can safely consider only the zero-lag star-galaxy
cross correlation function �sg(0) as calculated using the model PSF
ellipticity.

3.3 Estimating the level of PSF anisotropy contamination

Assuming the linear shear measurement model of equation 3 is a
good description of the systematics within the data, the systematic
error contribution �� to the cosmological measure of the two-point
shear correlation function � = ��obs�obs� is given by

��sys = AT
sysCAsys , (9)

which can be estimated from the data via8

��obs = �T
sgC�1�sg . (10)

When calculating ��obs from a very large area of data, such that
the PSF is fully uncorrelated with the intrinsic ellipticity, measure-
ment noise and cosmological shear, the first three terms in the right

8 Note that for a single exposure image, equations 9 and 10 reduce to the
more familiar results of Bacon et al. (2003) with ��sys = A2�e�e�� and
��obs = ��obse��2/�e�e��.

hand side of equation 6 are zero and ��obs = ��sys. In this case
the PSF correction is deemed successful when ��obs is found to
be consistent with zero. This method for data verification has been
applied to many previous weak lensing surveys (see for example
Bacon et al. 2003) but only in an ensemble average across the full
survey area and for single stacked images. By taking an ensemble
average of ��obs across the survey, one explicitly assumes that the
true level of PSF contamination that we wish to estimate is indepen-
dent of the variations in the quality of the data. For ground-based
observations where the data quality varies considerably we might
expect our ability to remove the PSF to be reduced in some particu-
lar instances, for example poorer seeing or low signal-to-noise data.
By determining ��obs averaged across the survey we could easily
miss a small fraction of the data which exhibit a strong PSF resid-
ual. In the worst case scenario, as the CFHTLS PSF exhibits strong
variation in direction and amplitude between exposures, PSF resid-
ual effects could easily cancel out in an ensemble average (see Sec-
tion 5.2 for further discussion on this point). We therefore choose to
apply this methodology to individual one square degree MegaCam
fields (hereafter referred to as a field), in order to identify fields
with exposures that exhibit a strong PSF residual.

For the individual analysis of a one square degree field, we
can no longer assume that ��obs = ��sys as the three noise terms
in the right hand side of equation 6 can be significant simply from
a chance alignment of cosmological shear, random measurement
noise or intrinsic ellipticities with the PSF. Using one square de-
gree patches of the CFHTLenS ‘clone’ (see Section 3.1) we find
��obs > ��sys even when Asys = 0. To illustrate this point we
multiply each component in equation 6 by the inverse PSF covari-
ance C�1 to define Aobs,

Aobs = C�1�sg = Anoise + A� + Asys , (11)

such that Aobs would be equal to Asys, the scale of the true residual
PSF signal in each exposure, if the noise terms Anoise and A�

could be ignored, where

Anoise = C�1�(�int + �) e�� , (12)

A� = C�1�� e�� . (13)

For each CFHTLenS field we first calculate C�1 from the measured
PSF model in each exposure. We then calculate the distribution of
values we measure for Anoise and A� for each field, keeping C
fixed, but varying �int + � and � using all 184 independent simula-
tions from the ‘clone’. Figure 2 compares the distribution of values
measured for each component of Anoise (dashed) and A� (dotted)
for all simulated realizations of the fields, normalized to the total
number of exposures in the survey. This can be compared to the
total discrete number of exposures with Aobs as measured from the
complete CFHTLenS data set (circles). Note that we use a scalar
symbol here as we show the distribution of measurements over all
exposures in the survey rather than the vector which contains the
measurement across all exposures in a particular field. This figure
shows that the combined distribution of Anoise and A� (solid) as
measured from the simulated data is generally consistent with the
observed distribution of Aobs over all CFHTLenS MegaCam imag-
ing. We do, however, observe some outliers from the expected dis-
tribution and indications of an increased width of the observed dis-
tribution from the simulated distribution. This comparison reveals
the presence of a systematic PSF residual signal in a small fraction
of our data.

Before we further develop our method to identify problem-
atic data in Section 3.4, we should pause to note a general cause

c� 0000 RAS, MNRAS 000, 000–000

(Heymans et al. 2012)
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Quantifying PSF residuals II

158 C. Heymans et al.

4.2 Field selection

For each field we calculate the systematics test parameter U (equa-
tion 14) applying the calibration corrections described in Sec-
tion 4.1. We then calculate the probability that !ξ obs is consistent
with zero systematics [p(U = 0) as detailed in Section 3.4] and
set an acceptance threshold on this probability using a method that
we demonstrate in Fig. 4. Here, in the upper panel, we show the
measured systematic error observable #(!ξ obs) where the sum is
taken over all fields (hatched area includes the 1σ bootstrap error
on the measure). This can be compared with the distribution of val-
ues obtained from all the different realizations of the CFHTLenS
‘clone’ (solid line). The ‘clone’ distribution shows the probability of
measuring #(!ξ obs) from the full survey area if there were no PSF
residuals in the data. Note that by definition !ξ obs at zero-lag is a
positive quantity (see equation 10) so even for the simulated ‘clone’
catalogues which have zero systematics, by definition, #(!ξ obs) is
non-zero. For comparison we also show the distribution of #(!ξ obs)
that would be measured simply from a random correlation between

Figure 4. Comparison of the measured #(!ξobs) (hatched) where the sum
is taken over all fields (upper panel) or over the fields with a measured
probability of zero systematics p(U = 0) > 0.11 (lower panel). These
measures can be compared with the probability distribution of measuring
#(!ξobs) from the same number of fields realized in the systematics-free
CFHTLenS ‘clone’ (solid line). For the full data set (upper panel), we find
that the measured #(!ξobs) far exceeds what is expected from the simula-
tions. Once a conservative cut is applied to the data (lower panel) removing
25 per cent of the data, we find the measured #(!ξobs) is fully consistent
with the expected distribution for the same number of simulated fields. For
comparison, we also show the probability distribution of #(!ξobs) as mea-
sured from a random correlation between the pure cosmic shear γ and the
range of CFHTLenS PSFs (dashed line).

the pure cosmic shear γ and the range of CFHTLenS PSFs (dashed
line). The significance of this signal reiterates the points made in
Section 3.3 of how important it is to take into account both the
random intrinsic ellipticity noise and underlying cosmic shear in
this type of systematics analysis.

The conclusion we can draw from the upper panel of Fig. 4 is
that when we consider the full data set, the sum of the measured
star–galaxy cross-correlation is very significant compared to the
expectation from the simulated ‘clone’ catalogues. We therefore set
a criterion that selects only those fields above a tunable threshold
probability that !ξ obs is consistent with zero systematics [p(U =
0)]. By increasing the cut on p(U = 0) the measured systematic
error observable #(!ξ obs) decreases rapidly as using p(U = 0)
for our selection criteria preferentially rejects the fields with the
strongest systematic residual errors. As the number of fields in the
analysis decreases, the #(!ξ obs) expected from the ‘clone’ also
decreases. This is because it is summed only over the number of
fields remaining in the analysis and there are fewer positive numbers
to sum. We continue this rejection process until the 1σ confidence
region on our measured systematic error observable #(!ξ obs) is
in agreement with the peak of the probability distribution expected
for this quantity from the same number of fields in the ‘clone’
simulations (lower panel). It is interesting to note that the variance of
the simulated distributions also becomes consistent with the 1σ error
on the measured #(!ξ obs) when the threshold selection is optimized
in this way. This process sets a threshold of p(U = 0) > 0.11 below
which we label the field as ‘failed’. This leaves us with 75 per cent of
CFHTLenS fields which pass the systematics test. We investigate the
impact of this cut for two-point cosmic shear statistics in Section 5.

For a complete and detailed account of the analysis, we should
clarify at this point that the field selection and empirical c2 additive
calibration correction described here and in Section 4.1 are actually
calculated using a two-step iteration. We first select fields apply-
ing only the multiplicative m calibration correction (equation 18) as
calculated from our simulated image analysis in Miller et al. (2012).
This first-pass field selection safeguards that the empirical c2 cali-
bration correction we calculate from the selected data is unrelated to
the PSF. The additive correction that is empirically calculated from
these selected fields is then applied to the full survey. We then rerun
our systematics analysis on the full survey to reselect fields which
pass the systematics tests when both the multiplicative and first-pass
additive calibration corrections are included. This safeguards that
in the first-pass iteration, the additive error term, now corrected by
the c2 calibration, did not mask the presence of PSF residuals, or
appear as a PSF residual in exposures where the PSF is predomi-
nantly in the e⋆

2 direction. At this second-pass iteration, we lose two
fields and gain seven fields into our selected clean data sample. Fi-
nally, we empirically recalculate the additive calibration correction
c2 for this final set of selected fields to improve the accuracy of the
correction on the final field sample. This recalculation introduces a
small per cent level adjustment to the first-pass measure and is the
c2 calibration that is presented in equation (19).

Finally, we discuss duplicate fields, originally imaged with an
i′.MP9701 filter, and reimaged, after this initial filter was damaged
in 2007 October, with the replacement i′.MP9702 filter. In general,
we do not distinguish between these two periods of i′ imaging,
although the different filter response curves are of course accounted
for in our photometric redshift analysis (Hildebrandt et al. 2012).
For the purposes of this discussion, however, we will refer to these
two filters as i ′

1 and i ′
2. Duplicate fields were reimaged in order to

calibrate and assess the impact of the change of filter mid-survey,
in addition to some cases where preliminary concerns about the

C⃝ 2012 The Authors, MNRAS 427, 146–166
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Histogram of probability p that
⌃⇠obs ⇠ ⌃|⇠sys| is not zero (sum over
all pointings), from simulations.

Shaded region = data.

Magenta: simulations without LSS.
KiDS: Cosmological Parameters 41

Figure D8. The large-scale two-point correlation function with
� > 2 deg before (open symbols) and after (closed symbols) cor-

recting each tomographic slice for the additive bias shown in

Fig. D6. Each tomographic slice (increasing in redshift from left
to right) and KiDS-450 patch (labelled from top to bottom) is

shown. The hashed region shows the amplitude of the correction

and associated error. The cosmological signal (shown solid) is ex-
pected to be consistent with zero on these scales.

additive systematic biases in the measurement. We seek a
similar method for cosmic shear to validate our additive cal-
ibration strategy. There is no null signal, as such, but the
cosmic shear signal on very large scales is expected to be
consistent with zero within the statistical noise of KiDS-
450. Fig. D8 shows the measured �+ on angular scales � >
2 deg, before (open symbols) and after (closed symbols) cor-
recting each tomographic slice for the additive bias shown
in Fig. D6. The hashed region shows the amplitude of that
correction and associated error. After correction the large-
scale signal is consistent with zero, and with the best-fit
cosmological signal. This verifies the calibration correction.
It also sets an upper limit on the angular scales that can be
safely analysed for �+. We set this limit at 1 deg, where the
measured amplitude of �+ is more than an order of mag-
nitude larger than the large-scale cosmic-shear signal that
would be subtracted in error with this empirical calibration
strategy. On smaller scales of � � 5 arcmin, where the cos-
mic shear signal-to-noise peaks (see Fig. 3), this large-scale
cosmic-shear subtraction is completely negligible. Note that
there is no equivalent upper � limit for ��. Additive terms
do not typically contribute to the �� statistic as for square
geometries �ctct� = �c�c��.

D5 Star-galaxy cross correlation

We measure the correlation between star and galaxy ellip-
ticities to determine if any tiles exist in our sample with a
significant residual contamination resulting from an imper-

Figure D9. Amplitude of the star-galaxy shear cross-correlation

statistic ��obs summed over all KiDS-450 data tiles (hashed) and

mock tiles (solid). The contribution from cosmic shear to this
statistic is shown by the dashed histogram. In KiDS-450 we do

not reject any tiles based on this test since the value of ���obs

is fully consistent with the expectation from simulations which

model chance alignments between galaxies and the PSF due to

cosmic shear, shape noise and shot noise.

fect correction for the PSF. We use the method described in
Heymans et al. (2012) to assess the significance of galaxy-
PSF shape correlations in order to identify problematic tiles.
Previous surveys have used this strategy to flag and remove
significant fractions of the data: 25 per cent (CFHTLenS;
Heymans et al. 2012), 9 per cent (RCSLenS; Hildebrandt
et al. 2016) and 4 per cent (KiDS-DR1/2; Kuijken et al.
2015).

Briefly, the method uses the fact that most galaxies in a
tile have been observed in five di↵erent sub-exposures, with
di↵erent PSFs. It assumes that intrinsic galaxy ellipticities
average to zero, and uses the degree of shape correlation
between the corrected galaxies and the PSF models in the
di↵erent sub-exposures to estimate the amount of PSF print-
through in the tile’s measured shear field. This PSF contam-
ination is then cast in the form of a non-negative contam-
ination, ��obs, to the 2-point galaxy ellipticity correlation
function in that tile (see eq. 10 in Heymans et al. 2012).
Mock shear maps with realistic noise properties are used
to generate distributions of this statistic in the absence of
systematic errors, in order to assess the significance of the
measured values.

The hashed bar in Fig. D9 shows the value of the ��obs

statistic, measured in each 1 deg2 tile, and then summed over
the full KiDS-450 sample. For comparison, the histogram
in Fig. D9 shows the distribution of ���obs measured for
184 systematic-free mock realisations of the KiDS-450 sur-
vey. We find that the star-galaxy cross correlation measured
in the data agrees well with the signal measured from our
systematic-free mocks.

This agreement is further explored in Fig. D10. For
each tile we determine the probability p(U = 0) that deter-
mines how likely it is that its measured ��obs is consistent
with zero systematics (see Heymans et al. 2012 for details).
Fig. D10 shows how the measured cumulative probability
distribution for the KiDS-450 tiles agrees well with a uniform
distribution. As such even the small handful of tiles with low

MNRAS 000, 1–48 (2016)

[Hildebrandt et al. 2016, KiDS-450]
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Part I day 2: Measurement of weak lensing Photometric redshifts

Redshift estimation I
Redshifted galaxy spectra have di↵erent colors.
Photometric redshifts = very low resolution spectra.
#bands between 3 (RCS) and 30 (COSMOS). Typical are 4-5 optical filters
(g, r, i, y, z), maybe with UV (u) and IR (I, J, K).

!"#$#%&$'()

'&*+"(,$

!"#$%#&"%' ()*"++,"# -../

-.!/01203/4#56/0778

[from Y. Mellier]

4000 Å-break strongest feature
! ellipticals (old stellar
population) best, spirals ok,
irregular/star-burst (emission
lines) more unreliable.
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Redshift estimation II

Properties

• Redshift desert z ⇡ 1.5 � 2.5, neither 4000 Å-break nor Ly-break in
visible range, very hard to access from ground.

• Confusion between low-z dwarf ellipticals and high-z galaxies. Confusion
between Balmer and Lyman break. Catastrophic outliers, typically a few
to a few 10

• Need UV band and IR for high redshifts! But: UV very ine�cient, IR
absorbed by atmosphere, have go to space.

• Need spectroscopic galaxy sample for comparison, calibration, or
cross-correlation. In general Nspec ⌧ NWL.

• Typical accuracy of photo-z’s �/(1 + z) ⇠ 0.05 (depending on filters).
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Part I day 2: Measurement of weak lensing Photometric redshifts

Redshift estimation III

Redshift accuracy and cosmology
To interpret weak lensing correlations in cosmological context, the redshift
distribution needs to be known accurately!
To first order:

P(` ⇠ 1000) / ⌦�3.5
de �2.9

8 z̄1.6|w|0.31 (Huterer et al. 2006)

Methods

• Template fitting.
Redshifted synthetic or observed templates of various types are fitted to
flux in observed bands.
Examples LePhare (Ilbert et al. 2006)), BPZ (Beńıtez 2000), HyperZ
(Bolzonella et al. 2000).
Spectroscopic sample for calibration, priors.

• Machine-learning.
Learn data using training set (of spectroscopic sample).
Examples: ANNz (Collister & Lahav 2004).
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Part I day 2: Measurement of weak lensing Photometric redshifts

Redshift estimation IV

• Matching photometric properties to spectroscopic sample (?) (direct
calibration).

• Spatial cross-correlation with spectroscopic survey (clustering redshifts)

Spectroscopic sample has to be representative in some properties, depending
on the method:

• Template fitting: Same magnitude limit as photometric sample

• Neural networks: Cover redshift range, properties (colors)

• Matching: Cover (color) parameter space

• Clustering: Cover redshift range, sky overlap
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Clustering redshifts (slide from Vivien Scottez)

Part I day 2: Measurement of weak lensing Estimating shear statistics

Estimator of second-order functions I

Remember the shear two-point correlation function (2PCF)?

⇠±(#) = h�t�ti (#) ± h�⇥�⇥i (#)

Unbiased estimator of ⇠± just involves sums over galaxy pairs:

⇠̂±(✓) =

P
ij wiwj ("t,i"t,j ± "⇥,i"⇥,j)P

ij wiwj
.

Sum over galaxy pairs with angular distance within bin of ✓.

• Unbiased estimator (for bin size ! 0, and in absence of intrinsic
alignment)

• No need for random catalogue, or mask geometry, since ⇠ = 0 in absence
of lensing.

• No need to pixellise data, can use brute-force or tree codes/linked lists
(adaptive pixellisation, e↵ective smoothing)
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Part I day 2: Measurement of weak lensing Estimating shear statistics

Estimator of second-order functions II

athena - configuration file

open
angle

Tree code: correlating two ‘nodes’ (2D regions).

Martin Kilbinger (CEA) WL Part I/II 76 / 138
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Estimator of second-order functions III

From the 2PCF estimator, the aperture-mass dispersion and other
second-order functions can be derived:

� map

⇠±
filter with

T±

Q

filter with

�2sum over pairs
(auto-correlation)

Map,? maps

hM2
api, hM2

?i
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Part I day 2: Measurement of weak lensing Estimating shear statistics

Estimator of second-order functions IV
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Figure 7. The measured shear correlation functions ξ+ (top panel) and ξ−
(bottom), for the four Wide patches. The error bars correspond to Poisson
noise.

χ2/degree of freedom (d.o.f.) of 14.9/15 = 0.99, corresponding to
a non-null B-mode probability of 46 per cent. Even if we only take
the highest six (positive) data points, we find the χ2 per d.o.f. to
be χ2/d.o.f. = 4.12/6 = 0.69, which is less than 1σ significance.
The non-zero B-mode signal at around 50–120 arcmin from F08 is
not detected here.

The top-hat shear rms B mode is consistent with zero on all
measured scales, as shown in the middle panel of Fig. 8. Note,
however, that of all second-order functions discussed in this work,
⟨|γ |2⟩ is the one with the highest correlation between data points.
The predicted leakage from the B to the E mode is smaller than the
measured E mode, but becomes comparable to the latter for θ >

100 arcmin, where the leakage reaches up to 50 per cent of the E
mode.

The optimized ring statistic for η = ϑmin/ϑmax = 1/50 is plotted
in the lower panel of Fig. 8. Each data point shows the E and B
modes on the angular range between ϑmin and ϑmax, the latter of
which is labelled on the x-axis. The B mode is found to be consistent
with zero; a χ2 null test yields a 35 per cent probability of a non-zero
B mode.

We first test our calculation of COSEBIs on the CFHTLenS
Clone with noise, where we measure a B mode of at most a few
×10−12 for n ≤ 5 and ϑmax ≤ 250 arcmin. Even though this is a
few orders of magnitudes larger than the B mode due to numerical
errors from the estimation from theory, it is insignificant compared
to the E-mode signal. When including the largest available scales
for the Clone however, ϑmax ∼ 280 arcmin, the B mode increases
to be of the order of the E mode. This is true independent of the
binning or whether noise is added. We presume that this is due
to insufficient accuracy with which the shear correlation function
is estimated from the simulation on these very large scales, from
only a small number of galaxy pairs. Further, for n > 5 a similarly
large B mode is found for some cases of (ϑmin, ϑmax). Again, the
accuracy of the simulations is not sufficient to allow for precise

Figure 8. Smoothed second-order functions: aperture-mass dispersion
⟨M2

ap⟩ (left panel), shear top-hat rms ⟨|γ |2⟩ (middle) and optimized ring
statistic RE (right), split into the E mode (black filled squares) and B mode
(red open squares). The error bars are the Clone field-to-field rms. The
dashed line is the theoretical prediction for a WMAP7 cosmology (with zero
E-/B-mode leakage); the dotted curve shows the Clone lines-of-sight mean
E-mode signal. For ⟨M2

ap⟩ and ⟨|γ |2⟩ the WMAP7-prediction of the leaked
B mode is shown as red dashed curve; the shaded region in the middle
panel corresponds to the 95 per cent WMAP7 confidence interval of σ 8 (flat
(CDM). For the shear top-hat rms, negative points are plotted with dashed
error bars.

 at C
EA

 SA
C

LA
Y

 on January 6, 2015
http://m

nras.oxfordjournals.org/
D

ow
nloaded from

 

(Kilbinger et al. 2013)

End of day 2.
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