
Part II day 3: Cosmological parameter estimation Numerical simulations

Why do we need N -body simulations for WL I
• WL probes LSS on small, non-linear scales.

Cosmic shear: down to sub-Mpc. Surveys sensitive to k ⇠ 50h/Mpc.
Need theoretical prediction of non-linear power spectrum.
(Semi-)analytical approaches go to k ⇠ 0.5h/Mpc.

• Shear field follows non-Gaussian distribution.
Follows from the fact that � in non-linear regime is non-Gaussian.
Complex survey geometry modify distribution.
At the least, need non-Gaussian covariance for likelihood.
Di�cult from (semi-)analytical models (see previous point).

• Baryonic physics modifies dark-matter halo properties (profile,
concentration, . . .).
Model with hydro-dynamical simulations.

• Systematic e↵ects that correlate to astrophysics or the LSS.
Can use forward modelling for complex physical processes in N -body
simulation.
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Part II day 3: Cosmological parameter estimation Numerical simulations

Why do we need N -body simulations for WL II

Examples
• Blended galaxy images lead to deselection of galaxies in crowded fields,

which are correlated to high-density regions, that are then
under-represented. This leads to biases in inferred n(z), cosmological
parameters.

• ⇠
sys

= correlation between stars and PSF-corrected galaxies = measure of
PSF residuals in galaxy shapes. But: Need to account for chance
alignment between PSF and LSS.

• Test mathematical useful approximations: Born, neglecting lens-lens
coupling, reduced shear g = �/(1 � ) versus shear �. Most of these
e↵ects introduce higher-order correlations, again di�cult to solve unless
Gaussian limits.
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Part II day 3: Cosmological parameter estimation Numerical simulations

Ray-tracing I

Principle of Ray-tracing

• Numerical evaluation of projection integral from particle distribution in
N -body simulation.

• Most algorithms first project particles on multiple lens planes (Blandford
& Narayan 1986), with �z/z of order 0.03 - 0.05.
Corresponds to a finite-sum discretization of the projection integral.

↵ = r✓ =
2

c2

Z �
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r?�(x(�0),�0).

On each lens plane, compute Jacobi matrix Aij = @�i/@j = �ij � @i@j .
Algorithm (Hilbert et al. 2009):
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Fig. 1. Schematic view of the observer’s backward light cone in the multiple-lens-plane approximation. A light ray (red line) experiences a deflec-
tion only when passing through a lens plane (solid blue lines). The deflection angle �(k�1) of a ray passing through the lens plane at distance f (k�1)

K

from the observer is obtained from the matter distribution between f (k�1)
K,U and f (k�1)

K,L projected onto the plane. Using the deflection angle �(k�1) of
the light ray at the previous lens plane and the ray’s angular positions �(k�1) and �(k�2) on the two previous planes, the angular position �(k) on the
current plane can be computed.

Hence,
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For a light ray reaching the observer from angular position � on
the first lens plane, one can compute its angular position on the
other lens planes by iterating Eq. (15) with initial values �(0) =
�(1) = �.

Di�erentiating Eq. (15) with respect to �, we obtain a recur-
rence relation for the distortion matrix:
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With the knowledge of the involved distances and shear matri-
ces, this equation allows us to iteratively compute the distortion
matrix of a light ray from the observer to any lens plane. This
equation requires in practice much fewer arithmetic operations
and memory than the commonly used relations (e.g. by Jain et al.
2000) based on Eq. (13).

For comparison and testing, we will also use the multiple-
lens-plane algorithm to calculate the distortion in the first-order
approximation by:
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3. The ray-tracing algorithm

The methods we use for ray-tracing through N-body simula-
tions to study lensing are generally similar to those used by, e.g.,

Jain et al. (2000) or Vale & White (2003). First, the matter distri-
bution on the past light cone of a fiducial observer is constructed
from the simulation data. Then, the past light cone is partitioned
into a series of redshift slices. The content of each slice is pro-
jected onto a lens plane. Finally, the multiple-lens-plane approx-
imation is used to trace back light rays from the observer through
the series of lens planes to the sources.

The purpose of our ray-tracing algorithm is to simulate
strong and weak lensing in a way that takes full advantage of the
unprecedented statistical power o�ered by the large volume and
high spatial and mass resolution of the Millennium Simulation8.
Therefore, our ray-tracing method di�ers in many details from
previous works. Most notably, we use a multiple-mesh method
and adaptive smoothing to calculate light deflections and distor-
tions from the projected matter distribution on the lens planes.
This allows us to simulate lensing on the full range of scales cov-
ered by the Millennium Simulation, ranging from strong lens-
ing on scales >�1 arcsec to cosmic shear on scales <�1 deg. A
brief outline of our algorithms for the construction of the past
light cones and the lens planes has been given in an earlier work
(Hilbert et al. 2007b). Here, we extend the discussion and pro-
vide a more detailed description.

3.1. The Millennium Simulation

The Millennium Simulation (Springel et al. 2005) is a large
N-body simulation of cosmic structure formation in a flat
�CDM universe. The following cosmological parameters were
assumed for the simulation: a matter density of �m = 0.25 in
units of the critical density, a cosmological constant with �� =
0.75, a Hubble constant h = 0.73 in units of 100 km s�1 Mpc�1,
a spectral index n = 1 and a normalisation parameter �8 = 0.9
for the primordial linear density power spectrum. These cho-
sen parameters are consistant with the 2dF (Colless et al. 2003)
and WMAP 1st-year data analysis (Spergel et al. 2003). The

8 This work concentrates on weak lensing, but the algorithm is also
used for strong-lensing studies (Hilbert et al. 2007b, 2008; Faure et al.
2009).
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and �2 = �2(�, w) of the shear, which may be combined into the
complex shear � = �1 + i�2.

The shear field �(�, w) can be decomposed into a rotation-
free part �E(�, w) and a divergence-free part �B(�, w). For infinite
fields, the decomposition into these E/B-modes is most easily
written down in Fourier space:
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Here, hats denote Fourier transforms, � = (�1, �2) denotes the
Fourier wave vector, and � = �1 + i�2. Care must be taken when
decomposing the shear in fields of finite size, where the field
boundaries can cause artifacts (Seitz & Schneider 1996). These
artifacts can be avoided by using aperture masses to quantify
the shear E- and B-mode contributions (Crittenden et al. 2002;
Schneider et al. 2002).

Equations (3) and (4) are implicit relations for the light path
and the Jacobian. The solution of Eq. (3) to first order in the po-
tential is obtained by integrating along undisturbed light paths:
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The distortion to first order reads:
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The first-order approximation to the distortion contains the Born
approximation, which ignores deviations of the actual light path
from the undisturbed path on the r.h.s. of Eq. (4). Moreover,
lens-lens coupling is neglected, i.e. the appearance of the dis-
tortion on the r.h.s. of Eq. (4). The neglected lens-lens coupling
and corrections to the Born approximation account for the ef-
fect that light from a distant source “sees” a distorted image of
the lower-redshift matter distribution due to higher-redshift mat-
ter inhomogeneities along the line-of-sight. Thus, the first-order
approximation works well in regions where larger matter inho-
mogeneities are absent or confined to a small redshift range, but
fails in regions where noticeable distortions arise from matter
inhomogeneities at multiple redshifts.

Born corrections and lens-lens coupling e�ects may cre-
ate shear B-modes. The perturbative calculation of the shear
B-modes by iteratively solving Eq. (4) is possible (Cooray &
Hu 2002; Hirata & Seljak 2003), but tedious, and the accuracy
of this approach is not known. However, multiple deflections and
lens-lens coupling e�ects are fully included in the multiple-lens-
plane approximation as described below. We will thus use this
approximation to investigate these e�ects and assess the quality
of perturbative calculations of these e�ects.

2.2. The multiple-lens-plane approximation

In the multiple-lens-plane approximation (see, e.g., Blandford &
Narayan 1986; Schneider et al. 1992; Seitz et al. 1994; Jain et al.
2000), a series of lens planes perpendicular to the central line-of-
sight is introduced into the observer’s backward light cone. The

continuous deflection that a light ray experiences while propa-
gating through the matter inhomogeneities in the light cone is
then approximated by finite deflections at the lens planes. The
deflections are calculated from a projected matter distribution on
the lens planes. This corresponds to solving the integral Eqs. (3)
and (4) by discretisation (and using the impulse approximation).

The deflection �(k)(�(k)) of a light ray intersecting the kth lens
plane (here, we count from the observer to the source) at angu-
lar position �(k) can be expressed as the gradient of a lensing
potential �(k):

�(k)(�(k)) = ��(k) �(k)(�(k)). (9)

The di�erential deflection is then given by higher derivatives of
the lensing potential. The second derivatives can be combined
into the shear matrix
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The lensing potential �(k) is a solution of the Poisson equation:

�2
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The dimensionsless surface mass density �(k) is given by a pro-
jection of the matter distribution in a slice around lens plane:
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Here, H0 denotes the Hubble constant, �m the mean matter
density in terms of the critical density, f (k)

K = fK(w(k)) and
a(k) = a(w(k)), with w(k) denoting the line-of-sight comoving dis-
tance of the plane. Furthermore, �m

�
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�
denotes the three-

dimensional density contrast at comoving position
�
�(k), w�

�
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are usually chosen to correspond to the mean redshifts (e.g. Jain
et al. 2000) or comoving distances (e.g. Wambsganss et al. 2004)
of successive planes7. These conditions ensure that every region
of the light cone contributes exactly to one lens plane, which is
the closest plane in redshift or comoving distance.

Given the deflection angles on the lens planes, one can
trace back a light ray reaching the observer from angular po-
sition �(1) = � on the first lens plane to the other planes:
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.

Equation (13) is not practical for tracing rays through many
lens planes. An alternative expression is obtained as follows (see,
e.g., Hartlap 2005; or Seitz et al. 1994 for a di�erent derivation):
the angular position �(k) of a light ray on the lens plane k is re-
lated to its positions �(k�2) and �(k�1) on the two previous lens
planes by (see Fig. 1):
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�
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�
.

7 The exact choice for the projection boundaries becomes unimportant
for su�ciently small spacings between the lens planes.
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Part II day 3: Cosmological parameter estimation Numerical simulations

Ray-shooting versus ray-tracing
Two methods are common to propagate photons for the projection:

1. Ray shooting:
Compute cumulative lensing potential � on a grid. Light rays travel on
(unperturbed) straight lines, corresponds to Born approximation.

2. Ray tracing:
Additionally compute deflection angle ↵, change direction of light ray
accordingly.
Light rays travel on straight lines between lens planes, where they change
direction.
Start at observer and shoot backwards. Why?

From Hartlap, PhD thesis 2005
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Ray-shooting versus ray-tracing
Two methods are common to propagate photons for the projection:

1. Ray shooting:
Compute cumulative lensing potential � on a grid. Light rays travel on
(unperturbed) straight lines, corresponds to Born approximation.

2. Ray tracing:
Additionally compute deflection angle ↵, change direction of light ray
accordingly.
Light rays travel on straight lines between lens planes, where they change
direction.
Start at observer and shoot backwards. Why?

5 Ray-Tracing

also the deflections itself are expected to be minute, for practical computation the
necessary gradient is taken in the lens planes for all rays.

The general setup is shown in Fig. 5.1, where each N -body box is projected onto its own
lens plane. This is the preferred situation, because projections of only a fraction of the
box can cause trouble in several respects, as detailed in Sect. 5.2.

w=wsw=0 w=(l−0.5)L

L

l=2l=1 ...

Figure 5.1: General setup of a ray-tracing simulation

From Fig. 5.1, it is easy to show that the angular position of a light ray on the N -th lens
plane is given by
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where ↵̂

(l) is the deflection angle at the l-th lens plane. The infinitesimal deflection angle
is given by

(5.2) d↵̂ =
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c2
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as follows from (3.10) in di�erential form with dw=�dl. In the framework of the approx-
imations listed above, the density contrast is projected plane-parallely onto a lens plane,
and likewise the deflection angle: the deflections are small, and so the light ray essentially
is given by a straight line, and within the flat-sky approximation the ray is perpendicular
to the lens plane. Defining the lensing potential
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The relation of � to the projected density contrast can be seen by projecting the three-
dimensional Poisson-Equation in the same way:
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From Hartlap, PhD thesis 2005
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Part II day 3: Cosmological parameter estimation Numerical simulations

Ray shooting
For cosmic shear ray-shooting is a very good (percent-level) approximation.

However, for galaxy-galaxy lensing this is not the case.
S. Hilbert et al.: Born corrections and lens-lens coupling in cosmic shear and galaxy-galaxy lensing 41

simulation particles on each lens plane at random and using their
positions as lens galaxy positions in the algorithm described in
Sect. 3.4. We then obtain a catalogue of source galaxies by ran-
domly sampling positions in the image plane assuming a uni-
form image distribution over the field-of-view.

The GGL signal we are interested in is given by the mean
tangential shear ��t� (�) at the image positions of the source
galaxies as a function of angular separation � to the positions
of the lens galaxies. In the simple case of unbiased galaxies con-
sidered here, the expected GGL signal can be computed in the
first-order approximation by:

��t� (�) =
1

2�

�
dw

pl(w)q(w)
fK(w)

�
�

d��J2(��)P�

�
t(w),

�

fK(w)

�
, (28)

where J2 is a Bessel function of the first kind, pl(w) is the prob-
ability distribution of the lens galaxies’ distances, the lensing
weight q(w) is given by Eq. (23), and P� denotes again the
3D matter power spectrum. For simplicity, we will consider a
volume-limited sample of lens galaxies with constant comoving
density in the following.

Due to statistical parity invariance, the cross component �� is
expected to vanish when averaged over many source-lens pairs.
The observed mean cross component ���� can therefore be used
as a test for systematic e�ects and “cosmic variance”. As shown
in Fig. 13, ���� is consistent with zero in our ray-tracing.

While the cross component �� provides a test for system-
atic e�ects, the tangential shear �t contains the desired infor-
mation about the matter and galaxy distribution. As can be
seen in Fig. 13, the mean tangential shear ��t� is significantly
smaller (�10�20% at an angular separation of 1 arcmin) in the
ray-tracing than expected from the first-order prediction (28).

The reason for this discrepancy is magnification bias: lenses,
i.e. dense matter structures such as galaxies or clusters with their
dark matter halos, magnify the regions behind them. The magni-
fication reduces the apparent number density of higher-redshift
lens galaxies around lower-redshift lenses in a volume limited
survey (as has been simulated here). Underdense regions, on the
other hand, demagnify the regions behind them, thereby increas-
ing the apparent number density of lens galaxies behind them.
The de-/magnification leads to an anticorrelation between the
positions of high-redshift lens galaxies and the tangential shear
induced by low-redshift structures. The anticorrelation reduces
the signal ��t� compared to the first-order approximation12. We
can suppress the magnification bias in the ray-tracing by switch-
ing o� the deflections and using Eq. (17) to calculate the distor-
tions. In this case our simulations are fully consistent with the
first-order prediction, as is shown in Fig. 13.

The e�ect of the magnification bias on the GGL depends on
the redshift distribution of the sources and the lenses. Moreover,
the shape of the lens luminosity function may be important if the
lens population is selected using a magnitude limit. For example,
the first-order approximation may underestimate ��t� for a lens
population with a very steep luminosity function near the survey
magnitude limit. We reserve a more detailed investigation of this
e�ect with realistic source and lens distributions for future work.

12 Note that in the first-order approximation, magnification e�ects are
neglected. Thus, the positions of galaxies at any given redshift are un-
correlated with the shear induced by galaxies at di�erent redshifts.
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Fig. 13. Galaxy-galaxy-lensing signal for sources at redshift z = 1
and unbiased lens galaxies with a constant comoving mean density
between z = 0 and z = 1. a) Shown are the measured tangential com-
ponent ��t� (�) of the shear from full ray-tracing (diamonds) and ray-
tracing using the first-order approximation (17) (squares), and the first-
order prediction (28) (solid line). b) Measured cross component ���� (�)
from full ray-tracing (diamonds) and first-order ray-tracing (squares).
Error bars denote the standard deviation calculated from a set of 24 sim-
ulated fields of 3 � 3 deg2.

5. Summary

In this work, we have described a new variant of the multiple-
lens-plane algorithm, which is particularly suited for ray-tracing
through very large cosmological N-body simulations. The al-
gorithm di�ers in some important details from previous works.
This allows us to take full advantage of the unprecedented sta-
tistical power o�ered by the large volume and high spatial and
mass resolution of the Millennium Simulation. The features dis-
cussed include: a tilted line-of-sight (to avoid periodic repetition
of structures along the line-of-sight), adaptive slice boundaries
(to avoid the slicing and duplication of bound structures), adap-
tive smoothing of the projected matter distribution on the lens
planes (to reduce shot noise from the particles), a mutliple-mesh
method for calculating the light deflections and distortions at the
lens planes (which takes into account the small-scale and large-
scale structure simultaneously), and a method to include galax-
ies (as lenses and sources) from semi-analytic galaxy-formation
models in the ray-tracing process.

We have used the ray-tracing code and the Millennium
Simulation to investigate the impact of lens-lens coupling and
multiple ray deflections on various cosmic shear two-point
statistics. We have computed convergence power spectra from
a set of ray-tracing realisations. For testing and comparison, we
have also computed a first-order prediction of the convergence

From (Hilbert et al. 2009).

This is because relative distance between light rays from two bg galaxies for
cosmic shear not much a↵ected by coherent deflection.

But distance between light ray from bg galaxy and fg galaxy position (impact
parameter) is a↵ected.
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Part II day 3: Cosmological parameter estimation Numerical simulations

Ray-tracing approximations

• Ray-tracing through N -body output snapshot
boxes: Fixed cosmic time, neglecting LSS
evolution during photon travel time through
box. Limit box size to L <⇠ 300 Mpc.

Larger boxes can be split and projected to
more than one lens plane, but:

• Avoid cutting through halos
• Leads to loss of power on large scales

Use snapshots at di↵erent output times to
account for time evolution.
If box size is small, boxes have to be
concatenated. To avoid photons to encounter
repeated structures at di↵erent epochs:

• Rotate and translate randomly.
• Shoot light rays under an skewed angle.

36 S. Hilbert et al.: Born corrections and lens-lens coupling in cosmic shear and galaxy-galaxy lensing
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Fig. 3. Schematic view of the adaptive slice boundaries to avoid the
truncation or double inclusion of halos that are located near a slice
boundary. Halos near the boundary of slice k and k + 1 are either
included as a whole in slice k or completely excluded depending on
the positions of their centres (a). Halos that are included (excluded) in
slice k, are excluded (included) from slice k+1 even if they have crossed
the slice boundary between redshift k and k + 1 (b).
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Fig. 4. The number NL of lens planes used for the ray-tracing as a
function of the source redshift zS.

Each lens plane is placed at the comoving distance of the cor-
responding snapshot’s redshift. The lens planes serve also as
source planes for the ray-tracing. The resulting number of lens
planes as a function of the source redshift is shown in Fig. 4.

The light deflection angles and distortions resulting from
the projected matter density on the lens planes are computed
by particle-mesh (PM) methods (Hockney & Eastwood 1981).
Mesh methods have the advantage that, once the deflection and
distortion are computed on a mesh (e.g. by Fast Fourier meth-
ods), the computation of the deflections and distortions for many
light rays intersecting the plane is very fast (compared to, e.g.,
direct-summation or tree methods). One disadvantage is that the
used mesh spacing limits the spatial resolution of the projected
matter distribution. However, any N-body simulation providing
the matter distribution for the ray-tracing has a limited reso-
lution as well. In dense regions, the spatial resolution of the
Millennium Simulation is e�ectively determined by the force
softening, which is 5 h�1 kpc comoving. Thus, a mesh spacing of
2.5 h�1 kpc comoving is required to avoid resolution degradation
for the projected matter density. However, a single mesh cover-
ing the full periodic area of the lens plane (i.e. 1.58 h�1 Gpc �
1.66 h�1 Gpc comoving) with such a small mesh spacing would
be too demanding, in particular regarding the memory required
both for its computation and storage. We therefore use a hierar-
chy of meshes instead.

The lensing potential � is split into a long-range part �long
and a short-range part �short. The split is defined in Fourier
space by:

�̂long(�) = �̂(�) exp
�
��2

split�
2
�

, and (18)

�̂short(�) = �̂(�)
�
1 � exp

�
��2

split�
2
��
. (19)

The splitting angle �split = rsplit/ fK(w), with comoving splitting
length rsplit and comoving angular diameter distance of the lens
plane fK(w), quantifies the spatial scale of the split. Di�erent
meshes are then used to calculate �long and �short.

First, the particles in each slice are projected onto a coarse
mesh of 16 384 � 16 384 points covering the whole periodic
area of the lens plane using clouds-in-cells (CIC) assignment
(Hockney & Eastwood 1981). The long-range potential �long is
then calculated on this mesh by means of fast Fourier trans-
form (FFT) techniques (Cooley & Tukey 1965; Frigo & Johnson
2005). The splitting length rsplit = 175 h�1 kpc is chosen slightly
larger than the coarse mesh spacing (96 h�1 kpc and 101 h�1 kpc
comoving, respectively), so the coarse mesh samples �long with
su�cient accuracy. For each lens plane, the long-range potential
is calculated once, and the result is stored on disk for later use
during the ray-tracing.

The short-range potential �short is calculated “on the fly”, i.e.
during the actual ray-tracing. The area where the light rays in-
tersect the plane is determined and, if larger than 40 h�1 Mpc
comoving, subdivided into several patches up to that size.
Each patch is covered by a fine mesh with a mesh spacing of
2.5 h�1 kpc comoving and up to 16 384 � 16 384 mesh points.
The fine meshes are chosen slightly larger than the patches in
order to take into account all matter within the e�ective range
of �short, for which we assume 875 h�1 kpc (=5 rsplit). The lim-
ited range of �short ensures that the matter distribution outside the
mesh a�ects only mesh points close to its boundary (i.e. within
the e�ective range), but not the interior mesh points used for the
subsequent analysis. Periodic boundary conditions can therefore
be used for the FFT on the patches without “zero padding”.

In order to reduce the shot noise from the individual parti-
cles, either a fixed or an adaptive smoothing scheme is used for
the matter distribution on the fine meshes. In case of the fixed
smoothing, the particles in the slice are projected onto the fine
mesh using CIC. The resulting matter density on the fine mesh is
then smoothed in Fourier space with a Gaussian low-pass filter

K̂s(�; �s) = exp
�
��

2
s

2
�2
�

(20)

whose filter scale �s = ls/ fK(w) is determined by the lens plane’s
comoving distance w and a fixed comoving filter scale ls. This
is done during the calculation of the short-range potential �short
with FFT methods.

In case of the adaptive smoothing, the mass associated with
each simulation particle contributes

�p(x) =

�����
����

3mp

�r2
p

�
1 � |x�xp |2

r2
p

�2
, |x � xp| < rp,

0, |x � xp| � rp,
(21)

to the surface mass density on the fine mesh. Here, x denotes co-
moving position on the lens plane, xp is the projected comoving
particle position, and rp denotes the comoving distance to the
64th nearest neighbour particle in three dimensions (i.e. before
projection). The adaptive smoothing is essentially equivalent to
the assumption that, in three-dimensional space, each simulation

From (Hilbert et al. 2009).5 Ray-Tracing

Figure 5.3: Illustration of the choice of

projection volume in case of partial projec-

tions of the simulation box, avoiding cuts

through halos.

(0,0)

(m  , m  )1 2

source plane

L

Figure 5.4: Setup of a ray-tracing simu-

lation for large box sizes

and its validity can thus be tested by measuring the strength of this e�ect. To first order,
the rotation angle can be computed by

(5.21) � =
�12 � �21

2(1 � �)
,

where the convergence can be computed as in the symmetric case using

(5.22) � = 1 � 1

2
tr� .

Finally, the shear is given by

(5.23) �1 =
1

2
[(�22 � �11) + �(�12 + �21)] , �2 = �1

2
[(�12 + �21) + �(�11 � �22)] .

5.2 The setup

The detailed setup of a ray-tracing simulation depends on the properties of the N -body
simulation that is used as input, the most important parameter being the size of the sim-
ulation volume. As already mentioned, it is preferable to project a complete N -body box
onto one lens plane for two reasons. First, it is in general not possible to make a plane cut
through the box without cutting halos into two pieces, each of which then would appear
on di�erent lens planes, causing inaccuracies. Second, especially if there is power on scales
larger than the side lengths of the projection volume, discontinuities may arise, because
it is usually necessary to randomly flip, rotate and translate the projection volume before
projection in order to avoid periodic repetition of structure. If now for example a large
filament is cut and assigned to two di�erent projection volumes, and these volumes are

48

From Hartlap, PhD thesis 2005

Martin Kilbinger (CEA) Weak Gravitational Lensing Part II/II 113 / 143

Part II day 3: Cosmological parameter estimation Numerical simulations

Ray-tracing approximations

• Get shear and convergence by FFT, or finite
di↵erences in real space:
Smoothing is necessary to reduce Poisson noise
of N -body discrete particle distribution.

However, other limitation is N -body
resolution.

S. Hilbert et al.: Born corrections and lens-lens coupling in cosmic shear and galaxy-galaxy lensing 39
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Fig. 9. Convergence power spectra P�(�) for sources at redshift z = 1
(lower curves) and z = 2 (upper curves). The simulation results (from
�30 random fields of 3 � 3 deg2) are shown as diamonds with errorbars
(indicating standard deviation calculated from the field-to-field vari-
ance), the corresponding first-order predictions as solid lines. The pre-
dictions using the Peacock & Dodds (1996) prescription together with
the transfer function from Eisenstein & Hu (1999) are given as dot-
ted lines, those obtained from the Smith et al. (2003) fitting formula as
dashed lines. The predictions of a halo model using the concentration
parameters of Neto et al. (2007) are shown as dash-dotted lines.

found, e.g., by Jain et al. (2000), the convergence and shear
power spectra from ray-tracing agree very well, too. On scales
� > 1000, the di�erence between both is well below one percent
in our ray-tracing results.

If the first-order prediction for the convergence power-
spectra is assumed to be correct to very high accuracy, the
smoothing tests can be considered as a test of the accuracy of
our ray-tracing algorithm. Then the results shown in Fig. 9 sug-
gest that the ray-tracing is able to reproduce weak-lensing e�ects
within �3% accuracy on scales 300 <� � <� 20 000.

The comparison of the ray-tracing power spectra with some
of the popular fitting formulae is less encouraging: Both the pre-
scriptions by Peacock & Dodds (1996) (with the transfer func-
tion by Eisenstein & Hu 1999) and Smith et al. (2003) strongly
underpredict the power on intermediate and small scales. These
fitting formulae are based on older simulations, whose matter
power spectra are noticeably di�erent from the power spectra
of more recent, higher-resolution simulations. The deviations
from the simulated convergence power spectra exceed 30% for
� > 10 000, so these fitting formulae seem to be of limited use
for the interpretation of data from future weak-lensing surveys.

A prediction based on the popular halo model (Seljak 2000;
Cooray & Sheth 2002) and the halo concentration-mass relation
of Neto et al. (2007) provides a better fit to the convergence
power spectrum. There are, however, still deviations (�10%), in
particular for higher source redshifts and intermediate scales (i.e.
� � 1�2 � 103). This coincides with the transition region of the
one- and two-halo terms, which is di�cult to model accurately
due to halo exclusion e�ects (see e.g. Tinker et al. 2005, and
references therein), which are not included in our prediction.

As mentioned above, the deviations of the measured power
spectra and the first-order predictions at large � are due to
smoothing e�ects. In Fig. 10, we present the convergence power
spectra from ray-tracing runs of the same set of fields (with a
cumulative area of 80 deg2 and sources at z = 1), but with

103 104 105
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!!" smoothing:
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Fig. 10. Convergence power spectra P�(�) for sources at redshift z = 1.
Compared are the results from ray-tracing (symbols) using various
smoothing schemes (none/Gaussian with fixed scale ls/adaptive) and
the corresponding first-order prediction (lines) obtained projecting and
smoothing the measured 3D power spectra of the actual mass distribu-
tion in the simulation.

di�erent smoothing schemes. In addition to adaptive smooth-
ing, which is intractable analytically, we also employ smoothing
with a Gaussian kernel of fixed comoving size on the lens planes.
The ray-tracing simulations with Gaussian smoothing on the lens
planes show – apart from sampling variance – perfect agree-
ment with the first-order prediction if the smoothing is into taken
into account there. Only the spectrum for the smallest smooth-
ing length shows some aliasing e�ects on very small scales. The
spectrum of the adaptive-smoothing runs happens to match the
spectrum for a Gaussian smoothing length of 10 h�1 kpc comov-
ing quite well, but one should be cautious when considering this
as an “e�ective” smoothing length in a di�erent context.

4.2. Aperture-mass statistics

A suitable cosmic-shear measure that allows one to decompose
the shear signal in a finite-sized field into E- and B-modes is the
aperture mass dispersion (Schneider et al. 1998, 2002). The E-
and B-mode aperture mass at position � on the sky and scale �
are defined by:

M2
E,B(�,�) =

�
d2�� Q

�
�� � �,�� �t,�(��, �� � �). (24)

In this work we use the polynomial filter function Q proposed
by Schneider et al. (1998):

Q (�,�) =
6|�|2
��4

�
1 � |�|

2

�2

�
· (25)

The tangential and cross components of the shear are defined by

�t(��, �) = ��
�
�(��)e�2i�(�)

�
, (26a)

��(��, �) = ��
�
�(��)e�2i�(�)

�
, (26b)

where �(�) is the polar angle for the direction defined by �.
An estimate for the aperture mass dispersion

�
M2

E,B

�
(�) as

a function of the filter scale � can be computed from a given
shear field by a spatial average. Figure 11a shows the E-mode
aperture mass dispersion measured from our set of simulations.

From (Hilbert et al. 2009).

• From Cartesian flat-sky simulations, lens planes are by construction
parallel:

• Neglects sky curvature.
• Gradient of potential not orthogonal to light ray

This limits simulated field of view to a few degreees.
With convergence maps created on say grids of 10242 pixels ! resolution
of around 0.2 arcmin.

• Newtonian physics, neglects GR e↵ects. Also, MoG simulations not
possible under Newtonian approximation.
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Further methods

• Compute lensing Jacobian on the fly while running N -body simulation
(White & Hu 2000).
Circumvents lens plane projections, allows for slightly higher time
resolution.

Easy for ray-shooting where photon tractories are known before hand,
more di�cult for ray tracing (Li et al. 2011).

• Store density field at di↵erent time steps on surface moving towards box
center (= observer) with speed of light, use those after run ends for
lensing projections (Teyssier et al. 2009).

• Full-sky simulations, for large upcoming surveys, CMB lensing.
Create spherical concentric shells around observer on the fly, project onto
lens spheres. (Fosalba et al. 2008, Das & Bode 2008, Teyssier
et al. 2009, Becker 2013).

• General-relativity simulations.

• Modified gravity simulations.
Take ⇠ 5 times compared to Newtonian ones.
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Hydro-dynamical simulations I
Important processes to simulate:

• Gas pressure, R ⇠ 1 - 0.1 Mpc, suppression of structure formation, gas
distribution is more di↵use than dark matter

• Baryonic cooling, R < 0.1 Mpc (k > 10/Mpc), gas condenses into stars
and galaxies, more strongly clustered than dark matter

• AGN and SN feedback

Simulation methods
Dark matter usually simulated as (very massive) particles.

Hydrodynamic physics often simulated in cells on a grid (adaptive).

Non-resolved physical processes, e↵ective treatment within cell (“sub-grid
physics”).

Hydrodynamical simulation can often not reproduce observational results,
e.g. on AGN feedback. Need to calibrate simulations with observations.
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Hydro-dynamical simulations II
Influence on WL

• Need to know total (dark + baryonic) power spectrum to 1-2% at k up to
10h/Mpc.

• Baryons (15% of total matter) behave di↵erently than dark matter, but
dark matter is influenced by this, e.g. slightly follows distribution of
baryons

• P strongly influenced for ` � 1000 to 3000 (depending on statistical
errors).

Mitigation of baryonic e↵ects

• Removing small scales from survey analysis.

• Model baryonic e↵ects e.g. with halo model. Fit to simulations,
marginalise over nuisance parameters or di↵erent models.

• Self-calibration using combination of observations. E.g. additional
observations of halo structure (Zentner et al. 2008), power spectrum and
bi-spectrum (Semboloni et al. 2013).
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WL covariance
General definition

Covariance of data vector d = {di}, i = 1 . . . m:

Cij = h�di�dji = hdidji � hdiihdji,
Examples of d:

di = P(`i); di = ⇠
+

(#i); di = hM
ap

(✓i).

Case of data vector = ⇠̂±

Recall the estimator for ⇠±:

⇠̂±(✓) =

P
ij wiwj ("

t,i"t,j ± "⇥,i"⇥,j)P
ij wiwj

.

Very roughly:
C ⇠ h⇠±⇠±i ⇠ h""""i.

With weak-lensing relation " = "s + �:

C ⇠ h("s)4i + h("s�)2i + h�4i ⌘ D + M + V
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WL covariance components

• D = �4

" : Poisson noise from intrinsic ellipticities, shape noise

• M : mixed term

• V : shear covariance, cosmic variance, if shear field approximated having
Gaussian distribution (which it does not):
V ⇠ 3h�2i.
Otherwise, need to account for connected 4-pt (tri-spectrum) term.

Gaussian covariance of power spectrum P

h(�P)2i(`) =
1

f
sky

(2`+ 1)

✓
�2

"

2n̄
+ P(`)

◆
2

.
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Non-Gaussian covariance
Mode coupling

• Couples di↵erent `-modes, leads to saturation of information content on
small scales

• Tri-spectrum coupling on small scales
• Coupling of small with large scales: halo sample variance (HSV), beat

couping, super-survey covariance (SSC) (Takada & Hu 2013).
SSC descreses faster with f

sky

than other terms ! sub-dominant for large
surveys.

Modelling

• Tri-spectrum from halo model (+ PT)
• N -body simulations, but: di�cult to include SSC
• From data, by spatial averaging over sub-fields, or Jackknife.

Spatial averaging: number of independent lines of sight n

For non-singular covariance of data vector with length m, need n > m.
For precision covariance (error bars on cosmo parameters of < 5%, need
n > 10m (Taylor et al. 2013).
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Likelihood function

Gaussian likelihood

L(d|p, M) = (2⇡)�m/2|C(p, M)|�1/2

⇥ exp


�1

2
(d � y(p, M))t C�1(p, M) (d � y(p, M))

�
.

with d = data vector, C = covariance matrix, y = model, p = (cosmo)
parameter vector, M = cosmological model.

But: True likelihood is non-Gaussian.

Model non-Gaussianity of observables:

• N -body simulations (very time-consuming)

• Transform data to be more Gaussian

• Approximate Bayesian Computation (ABC) sampling
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Bayesian parameter inference

Martin KilbingerWL: higher-order stats. / 45

Constraining parameters

29

p(�|x, m) =
L(x|�, m)P (�|m)

E(x|m)

Martin Kilbinger Bayesian model selection in cosmology with PMC RA E Science day 14/06/2010 /23

Bayes’ theorem

• In cosmology, we often have:

• data

• parametrised theoretical model(s)
to predict the data

• We want: best parameters/model
to describe data, with confidence regions

• Bayes’ theorem:

Evidence

Likelihood:
probability of data given
parameters and model Prior

Posterior:
probability of parameters

given data and model

m : model

d : data

✓ : model parameter

p(✓|d, m) =
L(d|✓, m)⇡(✓|m)

E(d|m)

Power Spectrum Present

Dunkley et al (2008)

Angular power spectrum (WMAP5)

3

Monday, June 14, 2010
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� : parameters
x : data
m : model

Bayes’ theorem

Parameter constraints = integrals over the posterior

For example:

Approaches: Sampling (Monte-Carlo integration), Fisher-matrix approximation,  
frequentist evaluation, ABC, …

Z
dn⇡ h(�)p(�|x, m)

h(�) = � : mean
h(�) = 1

68%

: 68% credible region
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WL peak counts: Why do we want to study peaks?

Martin KilbingerWL: higher-order stats. / 45

Weak-lensing peak counts

21

• WL peaks probe high-density regions ↔ non-Gaussian tail of LSS 
• First-order in observed shear: less sensitive to systematics, circular average! 
• High-density regions ↔ halo mass function, but indirect probe: 

• Intrinsic ellipticity shape noise, creating false positives, up-scatter in S/N 
• Projections along line of sight

linc.tw Chieh-An Lin (CEA Saclay)

Weak-lensing peak counts

• Local maxima of the projected mass
• Probe the mass function
• Non-Gaussian information

ABC: an application to weak-lensing peak counts Cosmo21, Chania — May 26th, 2016 4

Chapter 5 — Peak-count modelling

Figure 5.9: Similar to Fig. 5.4, comparison between four cases on the large field. Here, Case 1 is only
indicative since it is still the result from the small field.

Galaxy redshift, redshift errors, tomography One can either suppose a constant source
redshift or generate sources from a distribution law. If a model for photo-z or other redshift
errors is provided, our forward model generates without any di�culties a series of realis-
tic observed redshifts for galaxies. To better extract cosmological information, performing
tomographic studies is also feasible.

Galaxy shape noise & intrinsic alignment Another extension for our model is the noise
model. When isotropy for galaxy shape orientation is assumed, Gaussian noise is added.
Beyond Gaussian noise, some physically-motivated models for IA can be added easily. In this
case, one needs to identify pairs of galaxy and hosted halo. The galaxy orientation can be
provided by an IA model depending, on its type and the distance to the halo center.

Inversion & filtering A large number of options are available for our model to make a mass
map. For example, using a �-peak approach, one could compute directly the convergence
signal without worrying about the inversion problem (see Sect. 4.4), while a more realistic
way would be simulating shears and using inversion techniques (Kaiser & Squires 1993, Seitz &
Schneider 1995, etc.) to get convergence maps. Besides, one can also adopt an aperture-mass
approach: convolving the shear field with a zero-mean filter. By definition, the aperture mass
is already a smoothing, while both �-peak methods require in addition filtering techniques,
linear or nonlinear ones, to reduce noise (see further Chap. 8). For all three modelling
approaches, taking masking into account is not necessarily trivial. Reducing the e�ective
survey area, determining near-mask areas with a higher noise level (Liu X. et al. 2014), or
filling missing data with inpainting (method: Pires et al. 2009b, data application: Jullo et al.
2014), are di�erent options.

S/N determination In most studies, the noise level in S/N is a global value derived from
the whole survey, which yields a global significance. However, in reality, depending on mask
and the galaxy spatial distribution, the local noise level is not uniform. Taking the local
significance into account would make the modelling more accurate (see also Chap. 8).

100 PhD thesis of Chieh-An Lin

linc.tw Chieh-An Lin (CEA Saclay)

Weak-lensing peak counts

• Local maxima of the projected mass
• Probe the mass function
• Non-Gaussian information

ABC: an application to weak-lensing peak counts Cosmo21, Chania — May 26th, 2016 4

interpretation ?

modelling

counting
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WL peak counts. What are peaks good for?

chieh-an.lin@cea.fr Chieh-An Lin (CEA/SAp-AIM)

What is peak counting?

What do we gain from peak counting?
• Additional and complementary

information and constraints
compared to 2nd order shear

• Non-Gaussian information

Figure from Dietrich & Hartlap 2010

red/orange: cosmic shear

green: shear & peak

CAMELUS: A New Model to Predict Weak Lensing Peak Counts IWCS2, Nice — September 9th, 2014 8
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WL peaks: A fast stochastic model

Martin KilbingerWL: higher-order stats. / 45

Fast simulations for WL peak counts

25

linc.tw Chieh-An Lin (CEA Saclay)

A new model to predict weak-lensing peak counts

Public code in C: Camelus@GitHub See also Lin & Kilbinger (2015a)

ABC: an application to weak-lensing peak counts Cosmo21, Chania — May 26th, 2016 7

Replace N-body simulations by Poisson distribution of halos

Lin, MK & Pires 2016

Simulating 
1-halo term

Martin Kilbinger (CEA) Weak Gravitational Lensing Part II/II 125 / 143

Part II day 3: Cosmological parameter estimation Higher order statistics: peak counts

WL peaks: histograms

Martin KilbingerWL: higher-order stats. / 4526

Fast simulations for WL peak counts
Hypotheses:

1. Clustering of halos not important for counting peaks  
(along los: Marian et al. 2013) 

2. Unbound LSS does not contribute to WL peaks

Test:

chieh-an.lin@cea.fr Chieh-An Lin (CEA/SAp)

Results (on a small field)

Field of view = 54 deg2; 10 halo redshift bins from z = 0 to 1; galaxies on regular grid, zs = 1.0

A New Model to Predict Weak Lensing Peak Counts IAS — January 27th, 2015 30
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WL peaks: cosmological parameters

chieh-an.lin@cea.fr Chieh-An Lin (CEA/SAp)

Dependance on parameters

Lin & Kilbinger (2015a)

A fast stochastic approach for constraints using peaks Irfu — Jul 2nd, 2015 20
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WL peaks: data vector choices

Martin KilbingerWL: higher-order stats. / 45

WL peak counts: 
parameter constraint strategies

30

Data vector x = x(ti). Different cases:

- Abundance of peaks ni as fct. of SNR ν (PDF; binned histogram) or 
- SNR values νi at some percentile values of peak CDF) 

- with or without lower cut νmin.
Cosmology with the shear-peak statistics 5

Figure 2. Construction of the function S. The solid black line
is the cumulative SNR distribution of peaks detected in one
of our 35 realizations of the fiducial cosmology. The horizontal
dashed lines are the logarithmically spaced percentiles from
f
min

= 0.5 to f
max

= 0.98 at which the cumulative SNR dis-
tribution is sampled. The corresponding SNR values denoted
by the vertical dashed lines are the values in our data vector.

gives the SNR at which the cumulative distribution ex-
ceeds the fth percentile for n

bin

values of f ranging from
f
min

to f
max

. Figure 2 illustrates how S is constructed.
We measured S(⌦

m

, �
8

) for n
bin

= 5 logarithmically
spaced values from f

min

= 0.50 to f
max

= 0.98. At the
fiducial cosmology these percentiles corresponds to SNR
values of 3.5� and 5.7�, respectively. Typically several
hundred peaks per 36 sq. deg. field were detected so that
the 98%ile could be reliably measured.

We used bilinear smoothing splines (Dierckx 1993)
to interpolate S(⌦

m

, �
8

) on the grid covered by our N-
body simulations. In this section splines are a su�cient
description of the variation of S over our parameter space
because we only seek to qualitatively demonstrate the
ability of the peak statistics to constrain cosmological
parameters and to illustrate some of its properties. We
will use a more quantitative approach in the following
sections.

Figure 3 shows the confidence contours derived from
this statistics in the ⌦

m

-�
8

plane. They have a shape
similar to that seen in constraints derived from clus-
ter cosmology (e.g., Henry et al. 2009) and cosmic shear
(Fu et al. 2008, e.g.,) for a CFHTLS like 180 sq. deg.
surey. In order to achieve this, we scaled the covariance,
which we computed for the individual 36 sq. deg. fields
back to the full survey. The similarity of the constraints
is of course no surprise since the peak statistics measures
the same density fluctuations as clusters of galaxies and
cosmic shear.

Although the spline interpolation is mostly illustra-
tive, we defined a figure of merit (FoM), in analogy to
the FoM of the Dark Energy Task Force (Albrecht et al.
2006), as the inverse of the area inside the 95% confidence
contour. We used this FoM to characterize how the peak
statistics changes when parameters entering the function
S are modified. Here in particular we examined the de-

Figure 3. Confidence contours of the aperture mass peak
statistics. Shown are the 1-, 2-, and 3� confidence contours
of the S statistics. The white cross denotes the fiducial cos-
mology.

pendence of the cosmological constrains on the minimum
significance of a detection.

The detection threshold employed in the produc-
tion of Fig. 3 is very low and a sizable fraction of the
peaks detected in this way are simply due to shape noise
(Dietrich et al. 2007) and do not carry cosmological in-
formation. However, at such a low detection threshold
most peaks not caused by noise fluctuations are also not
due to a single massive halo but caused by the alignment
of LSS along the LOS. We demonstrate that these low
significance peaks indeed carry cosmological information
by comparing the FoM of the statistics in Fig. 3 to the
FoM resulting from the same function S with a detection
threshold of 4.5�. While the constraints in Fig. 3 cor-
respond to a FoM of 40, the higher detection threshold
results in a FoM of only 20. We note that the 95% con-
fidence interval is not fully contained in the support of
our flat prior. For the low SNR detection, the 95% con-
fidence interval is cut o� by the prior only at the high
⌦

m

/low �
8

end. The prior terminates the banana shaped
confidence region at both ends for the high SNR detec-
tion constraints. Consequently, the true figures of merit

c� 2009 RAS, MNRAS 000, 1–11

CDF

Dietrich & Hartlap (2010)

xi  = SNR values …
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(2000) as

�2
pix =

�2
�

2
1

ngApix
. (20)

We have �� = 0.4 and ngApix is chosen to be 1, so that
�pix � 0.283. We can also estimate �noise with Eq. (18) and ob-
tain �noise � 0.024. This shows that a real map is in general
dominated by the noise (Fig. 3). Even for a peak at � = 5, the
lensing signal is only at the order of � = 0.12, less than half of
the pixel noise amplitude.

5. Results

5.1. Validation of our model: comparison to N-body runs

To validate our model, we compare it to the N-body simulations.
We compute peak abundance histograms from both simulations,
together with two intermediate steps. This results in four cases
in total:

case 1: full N-body runs;
case 2: replacing N-body halos with NFW profiles with the

same masses;
case 3: randomizing angular positions of halos from case 2;
case 4: fast simulations, corresponding to our model.

These cases form a progressive transition from full N-body
runs towards our model. More precisely, case 2 tests the hypothe-
sis corresponding to the second step of our model (see Sect. 3.1),
i.e. di�use, unbound matter contributes little to peak counts.
Case 3 additionally tests the assumption made in the third step
(halo clustering plays a minor role). Finally, case 4 completes
our model with the missing first step. As a result, the halo pop-
ulation and their redshifts are identical to N-body runs in case 2
and case 3.

Figure 4 shows the peak abundance histograms for the four
cases. In this section, the field of view is 53.7 deg2, since we
are limited by the available information of ray-tracing for the N-
body runs. For cases 1 and 2, we compute the average in each
histogram bin for 8 noise maps. For cases 3 and 4, this is done
with 8 realizations (of randomization and of fast simulations,
respectively), and 8 noise maps, thus 64 maps in total. Hence, the
error bars refer to the combination of the statistical fluctuation
due to the random process, and the shape noise uncertainty.

For low peaks, with � � 3.75, we observe that npeak(�) re-
mains almost unchanged between the di�erent cases. This is not
suprising because in this regime, npeak(�) is mainly contributed
by noise. This argument is supported by the noise-only peak his-
togram, shown as the magenta dashed line. The lower panel of
Fig. 4 shows that there exist some systematic over-counts in this
regime at the order of 10%. The cause of this bias is ambiguous.
One possibility might be the use of NFW profiles for ray-tracing
simulations. It might also come from the subtraction of the mean
� value from the maps. We leave this to future studies. Another
observation in this regime is that by adding the signal to the noise
field, the number of peaks with � � 2.75 decreases. This proves
that the e�ect of noise is not additive for peak counts.

In the regime of � � 3.75, we observe that replacement
by NFW profiles creates an enhancement for very high peaks,
� � 5.75, whereas an under-count is produced for medium peaks,
3.75 � � � 5.75. One possibility to explain this could be NFW
profiles. With the presence of the noise, peaks can be shifted
from the center of halos, thus some peak heights are determined
by the profile value at these shifted positions. If NFW profiles

systematically overestimate mass in the center region and un-
derestimate elsewhere, then peak histograms would match to the
scenario presented in Fig. 4. It could also be an e�ect of tilted
M-c relation. We might over-estimate cNFW for large M and en-
der estimate for small M. Between case 1 and case 2, the di�er-
ence in medium-peak bins is only few percent. This shows that
neglecting lensing contribution from unbound matter is a good
approximation for peak counting.

Comparing case 2 and case 3, we discover that position ran-
domization decreases peak counts by 10%–50%. Apparently,
decorrelating angular positions breaks down the two-halo term,
so that halos overlap less on the field of view and decreases high-
peak counts. Yang et al. (2011) showed that high peaks with
� � 4.8 are majorly contributed by one single halo, and about
12% of total high-peak counts are contributed by multiple ha-
los. This number is in agreement with the under-count from our
hypothesis of randomization.

The impact of the mass function is shown by comparing case
3 to case 4. Peak counts are more numerous in our forward model
based on the mass function of Jenkins et al. (2001). This excess
compensates the deficit from randomization. However, as shown
by Fig. 2, the real mass function in N-body runs is coherent to
the analytical model that we use, except for the low-mass deficit
tails from N-body runs. To test the impact from this, we run fast
simulations with di�erent lower limit for the halo sampling, and
we discover that peak counts do not depend on the lower sam-
pling limit Mmin when Mmin remains lower than 1013 M�/h. This
proves that the deficit tails are not the cause of the peak count
enhancement. Lack of explanation, we may have to test with
another N-body simulation set to understand the origin of this
e�ect.

Fig. 5. Similar plot to Fig. 4, but on a larger field. Cases 2, 3, and 4 are
carried out for 859 deg2. Case 1 should only be taken as an indication
since its size of field is the same as in Fig. 4, and therefore 16 times
smaller than cases 2–4. Note that the fluctuation from high � bins is
much reduced compared to Fig. 4.

Figure 5 shows a similar study of case 2, 3 and 4 for a larger
field of 859 deg2. One can recover the same e�ects: increase
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Fig. 3. Confidence regions derived from Lcg, Lsvg, and Lvg with xabd5. The solid and dashed lines represent Lcg in the left panel and Lvg in the right
panel, while the colored areas are from Lsvg. The black star stands for �in and grey areas represents the non-explored parameter space. The dotted
lines are di�erent isolines, the variance Ĉ55 of the bin with highest S/N in the left panel and ln(det Ĉ) for the right panel. The contour area is
reduced by 22% when taking into account the CDC e�ect. The parameter-dependent determinant term does not contribute significantly.

4. Testing the copula transform

4.1. Formalism

Consider a multivariate joint distribution P(x1, . . . , xd). In gen-
eral, P could be far from Gaussian so that imposing a Gaussian
likelihood could induce biases. The idea of the copula technique
is to evaluate the likelihood in a new observable space in which
the Gaussian approximation is better. Using a change of vari-
ables, individual marginalized distributions of P can be approx-
imated to Gaussian ones. This is achieved by a series of suc-
cessive 1-dimensional, axis-wise transformations. The multivari-
ate Gaussianity of the transformed distribution is not garanteed.
However, in some cases, this transformation tunes the distribu-
tion and makes it more “Gaussian”, so that evaluating the like-
lihood in the tuned space is more realistic (Benabed et al. 2009;
Sato et al. 2011).

From Sklar’s theorem (Sklar 1959), any multivariate distri-
bution P(x1, . . . , xd) can be decomposed into the copula density
multiplied by marginalized distributions. A comprehensible and
elegant demonstration is given by Rüschendorf (2009). Readers
are also encouraged to follow Scherrer et al. (2010) for detailed
physical interpretations and Sato et al. (2011) for a very peda-
gogical derivation of the Gaussian copula transform.

Consider a d-dimensional distribution P(x), where x =
(x1, . . . , xd) is a random vector. Let Pi be the marginalized 1-
point PDF of xi, and Fi the corresponding CDF. Sklar’s theorem
shows that there exists an unique d-dimensional function c de-
fined on [0, 1]d with uniform marginal PDF, such that

P(x) = c(u)P1(x1) · · · Pd(xd), (11)

where ui � Fi(xi). The function c is called the copula density.
On the other hand, let qi � ��1

i (ui), where �i is the CDF of the
normal distribution with the same means µi and variances �2

i as

the laws Pi, such that

�i(qi) �
� qi

��
�i(q�)dq�, (12)

�i(qi) �
1

�
2��2

i

exp
�
������

(qi � µi)2

2�2
i

�
����� . (13)

We can then define a new joint PDF P� in the q-space that corre-
sponds to P in x-space, i.e. P�(q) = P(x). The marginal PDF and
CDF of P� are nothing but �i and�i, respectively. Thus, applying
Eq. (11) to P� and �i, one gets

P�(q) = c(u)�1(q1) · · · �d(qd). (14)

By uniqueness of the copula density, c in Eqs. (11) and (14) are
the same. Thus, we obtain

P(x) = P�(q)
P1(x1) · · · Pd(xd)
�1(q1) · · · �d(qd)

. (15)

We note that the marginal PDFs of P� are identical to a multi-
variate Gaussian distribution � with mean µ and covariance C,
where C is the covariance matrix of x. The PDF of � is given by

�(q) � 1
�

(2�)d det C
exp

�
��������

1
2

�

i, j

(qi � µi)C�1
i j (q j � µ j)

�
������� . (16)

Finally, by approximating P� to �, one gets the Gaussian copula
transform:

P(x) = �(q)
P1(x1) · · · Pd(xd)
�1(q1) · · · �d(qd)

. (17)

Why is it more accurate to calculate the likelihood in this
way? In the classical case, since the shape of P(x) is unknown,
we approximate it to a normal distribution: P(x) � �(x). Apply-
ing the Gaussian copula transform means that we carry out this
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Fig. 2. Middle panel: the likelihood value using xabd5 on the �m-�8 plane. The green star represents the input cosmology �in. Since log�8 and
log�m form an approximately linear degenerency, the quantity �8 � �8(�m/0.27)� allows us to characterize the banana-shape contour thickness.
Right panel: the marginalized PDF of �8. The dashed lines give the 1-� interval (68.3%), while the borders of the shaded areas represent 2-�
limits (95.4%). Left panel: the log-value of the marginalized likelihood ratio. Dashed lines in the left panel give corresponding value for 1 and 2-�
significance levels, respectively.

Gaussian (labelled vg) log-likelihoods as

Lcg � �xT (�)�C�1(�obs) �x(�), (8)

Lsvg � �xT (�)�C�1(�) �x(�), and (9)

Lvg � ln
�
det�C(�)

�
+ �xT (�)�C�1(�) �x(�). (10)

Here, the term�C�1(�obs) in Eq. (8) refers to�C�1(�in), where �in is
described in Sect. 2.2. By comparing the contours derived from
di�erent likelihoods, we aim to measure (1) the evolution of the
�2 term by substituing the constant matrix with the true vary-
ing �C�1, and (2) the impact from adding the determinant term.
Therefore, Lsvg is just an illustrative case to assess the influence
of the two terms in the likelihood.

3.2. The �2 term

The left panel of Fig. 3 shows the comparison between confi-
dence regions derived from Lcg and Lsvg with xabd. It shows a
clear di�erence of the contours between Lcg and Lsvg. Since the
o�-diagonal correlation coe�cients are weak (as shown in Ta-
ble 3), the variation of diagonal terms of C plays a major role in
the size of credible regions. The isolines for Ĉ55 are also drawn
in Fig. 3. These isolines cross the�m-�8 degenerency lines from
Lcg and thus shrink the credible region. We also find that the iso-
lines for Ĉ11 and Ĉ22 are noisy, and that those for Ĉ33 and Ĉ44
coincide well with the original degeneracy direction.

Table 4 shows the values of both criteria for di�erent like-
lihoods. We observe that using Lsvg improves significantly the
constraints by 24% in terms of FoM. Regarding ��8, the im-
provement is weak. As a result, using varying covariance ma-
trices breaks down part of the banana-shape degenerency and
shrinks the contour length, but does not reduce the thickness.

We show in the left panels of Fig. 4 the same constraints de-
rived from two other observables xpct5 and xcut5. We see a similar
CDC e�ect for both. We observe that xpct5 has less constraining
power than xabd5, and xcut5 is outperformed by both other data
vectors. This is due to the cuto� value �min. Introducing a cuto�
at �min = 3 decreases the total number of peaks and amplifies
the fluctuation of high-peak values in the CDF. When we use

percentiles to define observables, the distribution of each com-
ponent of xcut5 becomes wider than the one of the corresponding
component of xpct5, and this greater scatter in the CDF enlarges
the contours. However, the cuto� also introduces a tilt of the
contours. Table 5 shows the best-fit � for the di�erent cases.
The di�erence of the tilt could be a useful tool to improve the
constraining power. This has also been observed by Dietrich &
Hartlap (2010). Nevertheless, we do not procced any joint analy-
sis since xabd5 and xcut5 contain essentially the same information.

3.3. Impact from the determinant term

The right panel of Fig. 3 shows the comparison between Lsvg and
Lvg with xabd5. It shows that adding the determinant term does
not result in significant changes of the parameter constraints. The
isolines from ln(det Ĉ) explain this, since the graidents are per-
pendicular to the degenerency lines. We observe that including
the determinant makes the contours slightly larger, but almost
negligibly so. The total improvement of the contour area com-
pared to Lcg is 22%.

However, a di�erent change is seen for xpct5 and xcut5.
Adding the determinant to the likelihood computed from these
observables induces a shift of contours toward the higher-�m
area. In the case of xcut5, this shift compensates the contour o�-
set from the varying �2 term, but does not improve significantly
either ��8 or FoM, as shown in Table 4. As a result, using the
Gaussian likelihood, the total CDC e�ect can be summed up as
an improvement of at least 14% in terms of thickness and 38%
in terms of area.

The results from Bayesian inference is very similar to the
likelihood-ratio test. Thus, we only show their ��8 and FoM in
Table 6 and best fits in Table 7. We recall that a similar analy-
sis has been done by Eifler et al. (2009) on shear covariances.
Our observations agree with their conlusions: a relatively large
impact from the �2 term and negligible change from the deter-
minant term. However, the total CDC e�ect is more significant
in the peak-count framework than for the power spectrum.
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Approximate Bayesian Computation (ABC)
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p(�|x, m) =
L(x|�, m)P (�|m)

E(x|m)
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Bayes’ theorem

• In cosmology, we often have:

• data

• parametrised theoretical model(s)
to predict the data

• We want: best parameters/model
to describe data, with confidence regions

• Bayes’ theorem:

Evidence

Likelihood:
probability of data given
parameters and model Prior

Posterior:
probability of parameters

given data and model

m : model

d : data

✓ : model parameter

p(✓|d, m) =
L(d|✓, m)⇡(✓|m)

E(d|m)

Power Spectrum Present

Dunkley et al (2008)

Angular power spectrum (WMAP5)

3

Monday, June 14, 2010

� : parameters
x : data
m : model

xLikelihood: how likely is it that model prediction                 reproduces data    ?x

mod(�)
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Fig. 6. Example for the p-value determination. The x-axis indicates a
one-dimensional observable, and the y-axis is the PDF. The PDF is ob-
tained from a kernel density estimation using the N = 1000 realizations.
Their values are shown as bars in the rug plot on the top of the panel.
The shaded area is the corresponding p-value for given observational
data xobs.

Fig. 7. This figure shows the PDF from two di�erent models (denoted
by �1 and �2) and the observation xobs. The dashed lines show 1-� in-
tervals for both models, while the shaded areas are intervals beyond the
2-� level. In this figure, the model �1 is excluded at more than 2-�,
whereas the significance of the model �2 is between 1 and 2-�.

to move a step further, and bypass the likelihood estimation al-
together.

Based on an accept-reject rule, approximate Bayesian com-
putation (ABC) is an algorithm that provides the posterior dis-
tribution of a complex stochastic process when evaluation of the
likelihood is expensive or unreachable. There are only two re-
quirements: (1) a stochastic model for the observed data that
samples the likelihood function of the observable and (2) a mea-
sure, called summary statistic, to perform model comparison.
We present below a brief description of ABC. Readers can find
detailed reviews of ABC in Marin et al. (2011), and Sect. 1 of
Cameron & Pettitt (2012).

The idea behind ABC can be most easily illustrated in the
case of discrete data as follows. Instead of explicitly calculating
the likelihood, one generates first a set of parameters {�i} as sam-
ples under the prior P(�), and then for each �i simulates a model
prediction X sampled under the likelihood function P(·|�i) (we
put here X in upper case to emphasize that X is a random vari-
able). Keeping only those �i for which X = xobs, the distribution
of the accepted samples PABC(�) equals to the posterior distribu-

tion of the parameter P(�|xobs) given the observed data, since

PABC(�) =
�

X
P(X|�)P(�)�X,xobs

= P(xobs|�)P(�)

= P(�|xobs), (27)

where �X,xobs is Kronecker’s delta. Therefore, {�i} is an iid sample
from the posterior. It is su�cient to perform a one-sample test:
using a single realization X for each parameter � to obtain a
sample under the posterior.

ABC can also be adapted to continuous data and parameters,
where obtaining a strict equality X = xobs is pratically impossi-
ble. Hence, sampled points are accepted with a tolerance level �,
say |X� xobs| � �. What is retained after repeating this process is
an ensemble of parameters � that are compatible with the data,
and that follow a probability distribution, which is a modified
version of Eq. (27):

P�(�|xobs) = A�(�)P(�), (28)

where A�(�) is the probability that a proposed parameter � passes
the one-sample test within the error �:

A�(�) �
�

dX P(X|�) |X�xobs |��(X). (29)

The Kronecker delta from Eq. (27) has now been replaced with
the indicator function of the set of points X that satisfy the tol-
erance criterion. The basic assumption of ABC is that the proba-
bility distribution (28) is a good approximation of the underlying
posterior, such that

P�(�|xobs) � P(�|xobs). (30)

Therefore, the one-sample test with tolerance generates samples
under P� . This means that the fact that only one model for a given
parameter � is tested does not add additional noise compared to
ordinary Monte Carlo sampling.

A further addition to the ABC algorithm is a reduction of the
complexity of the full model and data. This is necessary in cases
of very large dimensions, for example when the model produces
entire maps or large catalogues. The reduction of data complex-
ity is done with the so-called summary statistic s. For instance,
in our peak-count framework, a complete data set x is a peak cat-
alogue with positions and S/N values, and the summary statistic
s is chosen here to be s(x) = xabd5, xpct5, or xcut5, respectively,
for the three cases of observables introduced in Sect. 2.2.

For a general comparison of model and data, one chooses a
metric D adapted to the summary statistic s, and the schematic
expression |X � xobs| � � used above is generalized to
D(s(X), s(xobs)) � �. We highlight that the summary statistic
can have low dimension and a very simple form. In practice, it
is be motivated by computational e�ciency, and it seems that a
simple summary can still produce reliable constraints (Weyant
et al. 2013).

The integral of Eq. (28) over � is smaller than unity, and
the deficit represents just the probability that a parameter is re-
jected by ABC. This is not problematic since density estimation
will automatically normalize the total integral over the posterior.
However, a more subtle issue is the choice of the tolerance level
�. If � is too large, A(�) is close to 1, and Eq. (30) becomes a
bad estimate. If � is too small, A(�) is close to 0, and sampling
becomes extremely di�cult and ine�cient. How, then, should
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ABC can be performed if: 

• it is possible and easy to sample from L 
 

ABC is useful when: 

• functional form of L is unknown 
• evaluation of L is expensive 
• model is intrinsically stochastic

Probability = p/N in frequentist sense. 

Magic: Don’t need to sample N models. 
One per parameter     is sufficient  
with accept-reject algorithm.

�
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Fig. 6. Example for the p-value determination. The x-axis indicates a
one-dimensional observable, and the y-axis is the PDF. The PDF is ob-
tained from a kernel density estimation using the N = 1000 realizations.
Their values are shown as bars in the rug plot on the top of the panel.
The shaded area is the corresponding p-value for given observational
data xobs.

Fig. 7. This figure shows the PDF from two di�erent models (denoted
by �1 and �2) and the observation xobs. The dashed lines show 1-� in-
tervals for both models, while the shaded areas are intervals beyond the
2-� level. In this figure, the model �1 is excluded at more than 2-�,
whereas the significance of the model �2 is between 1 and 2-�.

to move a step further, and bypass the likelihood estimation al-
together.

Based on an accept-reject rule, approximate Bayesian com-
putation (ABC) is an algorithm that provides the posterior dis-
tribution of a complex stochastic process when evaluation of the
likelihood is expensive or unreachable. There are only two re-
quirements: (1) a stochastic model for the observed data that
samples the likelihood function of the observable and (2) a mea-
sure, called summary statistic, to perform model comparison.
We present below a brief description of ABC. Readers can find
detailed reviews of ABC in Marin et al. (2011), and Sect. 1 of
Cameron & Pettitt (2012).

The idea behind ABC can be most easily illustrated in the
case of discrete data as follows. Instead of explicitly calculating
the likelihood, one generates first a set of parameters {�i} as sam-
ples under the prior P(�), and then for each �i simulates a model
prediction X sampled under the likelihood function P(·|�i) (we
put here X in upper case to emphasize that X is a random vari-
able). Keeping only those �i for which X = xobs, the distribution
of the accepted samples PABC(�) equals to the posterior distribu-

tion of the parameter P(�|xobs) given the observed data, since

PABC(�) =
�

X
P(X|�)P(�)�X,xobs

= P(xobs|�)P(�)

= P(�|xobs), (27)

where �X,xobs is Kronecker’s delta. Therefore, {�i} is an iid sample
from the posterior. It is su�cient to perform a one-sample test:
using a single realization X for each parameter � to obtain a
sample under the posterior.

ABC can also be adapted to continuous data and parameters,
where obtaining a strict equality X = xobs is pratically impossi-
ble. Hence, sampled points are accepted with a tolerance level �,
say |X� xobs| � �. What is retained after repeating this process is
an ensemble of parameters � that are compatible with the data,
and that follow a probability distribution, which is a modified
version of Eq. (27):

P�(�|xobs) = A�(�)P(�), (28)

where A�(�) is the probability that a proposed parameter � passes
the one-sample test within the error �:

A�(�) �
�

dX P(X|�) |X�xobs |��(X). (29)

The Kronecker delta from Eq. (27) has now been replaced with
the indicator function of the set of points X that satisfy the tol-
erance criterion. The basic assumption of ABC is that the proba-
bility distribution (28) is a good approximation of the underlying
posterior, such that

P�(�|xobs) � P(�|xobs). (30)

Therefore, the one-sample test with tolerance generates samples
under P� . This means that the fact that only one model for a given
parameter � is tested does not add additional noise compared to
ordinary Monte Carlo sampling.

A further addition to the ABC algorithm is a reduction of the
complexity of the full model and data. This is necessary in cases
of very large dimensions, for example when the model produces
entire maps or large catalogues. The reduction of data complex-
ity is done with the so-called summary statistic s. For instance,
in our peak-count framework, a complete data set x is a peak cat-
alogue with positions and S/N values, and the summary statistic
s is chosen here to be s(x) = xabd5, xpct5, or xcut5, respectively,
for the three cases of observables introduced in Sect. 2.2.

For a general comparison of model and data, one chooses a
metric D adapted to the summary statistic s, and the schematic
expression |X � xobs| � � used above is generalized to
D(s(X), s(xobs)) � �. We highlight that the summary statistic
can have low dimension and a very simple form. In practice, it
is be motivated by computational e�ciency, and it seems that a
simple summary can still produce reliable constraints (Weyant
et al. 2013).

The integral of Eq. (28) over � is smaller than unity, and
the deficit represents just the probability that a parameter is re-
jected by ABC. This is not problematic since density estimation
will automatically normalize the total integral over the posterior.
However, a more subtle issue is the choice of the tolerance level
�. If � is too large, A(�) is close to 1, and Eq. (30) becomes a
bad estimate. If � is too small, A(�) is close to 0, and sampling
becomes extremely di�cult and ine�cient. How, then, should
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Example: let’s make soup.

Goal: Determine ingredients from final result. 
Model physical processes? Complicated. 
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Example: let’s make soup.

Goal: Determine ingredients from final result. 
Model physical processes? Complicated. 
Easier: Make lots of soups with different ingredients, compare.
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Example: let’s make soup.

Questions: 
• What aspect of data and simulations do we compare? (summary statistic) 
• How do we compare? (metric, distance) 
• When do we accept? (tolerance) 
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Parameter constraints: ABC

40

• Summary statistic 
 
s = x (data vector for 2 cases) 

• Metric  D: two cases  
 
 
 
 

• ABC algorithm: iterative importance 
sampling (PMC) with decreasing 
tolerance

A&A 593, A88 (2016)

Fig. 4. Distribution of evaluated parameter points on the �m-�8 plane.
This figure can be considered as a slice of points with the same wde

0 .
There are in total 46 slices of 816 points.

we use

xmod
i =

1
N

N�

k=1

x(k)
i , (32)

Ĉi j =
1

N � 1

N�

k=1

�
x(k)

i � xmod
i

� �
x(k)

j � xmod
j

�
, (33)

�C�1 =
N � d � 2

N � 1
�C
�1
, and (34)

P̂i(xi) =
1
N

N�

k=1

1
hi

W

�
������

xi � x(k)
i

hi

�
������ (35)

for the estimations, where d is the dimension of x, W is the
Gaussian kernel, and hi = (4/3N)1/5�̂i. Note that the model pre-
diction xmod is nothing but the average over the realization set;
the inverse covariance matrix is unbiased (Hartlap et al. 2007) to
good accuracy (see also Sellentin & Heavens 2016); and Eq. (35)
is a kernel density estimation (KDE).

We evaluated the copula likelihoods, given by Eq. (31), on a
grid. The range of wde

0 is [–1.8, 0], with �wde
0 = 0.04. Concerning

�m and �8, only some particular values were chosen for eval-
uation in order to reduce the computing cost. This resulted in
816 points in the �m-�8 plane, as displayed in Fig. 4, and the
total number of parameter sets was 37536. For each parameter
set, we carried out N = 400 realizations of our model, to es-
timate L using Eqs. (31)–(35). Each realization produced data
vectors for three cases: (1) the Gaussian kernel; (2) the starlet
kernel; (3) MRLens, so that the comparisons between cases are
based on the same stochasticity. The aperture mass was not in-
cluded here because of the time consuming convolution of the
unbinned shear catalog with the filter Q. The FDR � of MRLens
was set to 0.05. A map example is displayed in Fig. 5 for the
three cases and the input simulated � field.

Table 2. Definition of the data vector x for PMC ABC runs.

Filter �ker [arcmin] or � Number of bins d
Gaussian �ker = 1.2, 2.4, 4.8 9 � bins 27

Starlet �ker = 2, 4, 8 9 � bins 27
Map tanh �ker = 2.125, 4.25, 8.5 9 � bins 27
MRLens � = 0.05 6 � bins 6

Notes. The 9 bins of � are [1, 1.5, 2, . . ., 4, 4.5, 5, +�[, and the 6 bins of
� are [0.02, 0.03, 0.04, 0.06, 0.10, 0.16, +�[. The symbol d is the total
dimension of x, and � stands for the input value of FDR for MRLens.

4.4.2. Population Monte Carlo approximate Bayesian
computation

The second analysis adopts the approximate Bayesian compu-
tation (ABC) technique. ABC bypasses the likelihood evalua-
tion to estimate directly the posterior by accept-reject sampling.
It is fast and robust, and has already had several applications
in astrophysics (Cameron & Pettitt 2012; Weyant et al. 2013;
Robin et al. 2014; Paper II; Killedar et al. 2016). Here, we use
the Population Monte Carlo ABC (PMC ABC) algorithm to con-
strain parameters. This algorithm adjusts the tolerance level iter-
atively, such that ABC posterior converges. A detailed descrip-
tion of the PMC ABC algorithm can be found in Sect. 6 of
Paper II.

We ran PMC ABC for four cases: the Gaussian kernel, the
starlet kernel, the aperture mass with the hyperbolic tangent
function, and MRLens with � = 0.05. For the three first lin-
ear cases, the data vector x was composed of three scales. The
S/N bins of each scale were [1, 1.5, 2, . . ., 4, 4.5, 5, +�[, which
result in 27 bins in total (Table 2). For MRLens, x was a 6-
bin � histogram, which is the same as for the analysis using the
likelihood.

Concerning the ABC parameters, we used 1500 particles in
the PMC process. The iteration stoped when the success ratio
of accept-reject processes fell below 1%. Finally, we tested two
distances. Between the sampled data vector x and the observed
one, xobs, we considered a simplified distance D1 and a fully
correlated one D2, which are respectively defined as

D1
�
x, xobs

�
�

�����

i

�
xi � xobs

i

�2

Cii
, (36)

D2
�
x, xobs

�
�
��

x � xobs�T C�1 �x � xobs�, (37)

where Cii and C�1 are now independent from cosmology,
estimated using Eqs. (33) and (34) under (�m,�8, wde

0 ) =
(0.28, 0.82,�0.96). Note that D1 has been shown in Paper II to be
able to produce constraints which agree well with the likelihood.
However, with multiscale data, bins could be highly correlated,
and therefore we also ran ABC with D2 in this paper.

5. Results

5.1. Comparing filtering techniques using the likelihood

We propose two methods to measure the quality of constraints.
The first indicator is the uncertainty on the derived parameter �8.
Here, we define �8 di�erently from the literature:

�8 �
�
�m + �

1 � �

�1�� ��8

�

��
· (38)
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Approximate Bayesian computation

ABC’s accept-reject process is actually a
sampling under P� (green curve):

P�(�|xobs) = A�(�)P(�),

where P(�) stands for the prior (blue curve) and

A�(�) �
�

dx P(x|�) |x�xobs|��(x),

is the accept probability under � (red area). One
can see that

lim
��0

A�(�0)/� = P(xobs|�0) = L(�0),

so P� is proportional to the true posterior when
�� 0.

A fast stochastic approach for constraints using peaks Irfu — Jul 2nd, 2015 B 5
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Approximate Bayesian computation

Lin & Kilbinger (2015b)
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Fig. 10. Weights of particles from t = 8 with s(x) = xabd5. The weight
is represented by the size and the color at the same time.

Fig. 11. Comparison between credible regions derived from Lcg (col-
ored areas) and ABC (solid and dashed lines).

that the CDC e�ect can increase the constraining power up to
22%. The main contribution comes from the additional variation
of the �2 term and the contribution from the determinant term
is negligible. These observations conform a previous study by
Eifler et al. (2009).

We also perform a copula analysis, which makes weaker as-
sumption than Gaussianity. In this case, the marginalized PDF is
Gaussianized by the copula transform. The result shows that the
di�erence with the Gaussian likelihood is small. This is dom-
inated by the CDC e�ect if a varying covariance is taken into
account.

Discarding the Gaussian hypothesis on the PDF of observ-
ables, we provide two straightforward ways to use the full PDF
information. The first one is the true likelihood. The direct eval-
uation of the likelihood is noisy due to the high statistical fluc-
tuations from the finite number of sample points. However, we
find that the varying-covariance copula likelihood, noted as Lvc
above, seems to be a good approximation to the truth. The sec-
ond method is to determine directly the p-value for a given pa-
rameter set, and this approach gives us more conservative con-
straints. We outline that both methods are covariance-free, avoid-
ing non-linear e�ects caused by the covariance inversion.

At the end we show how approximate Bayesian computation
(ABC) derives cosmological constraints using the accept-reject
sampling. Combined with importance sampling, this method re-
quires less computational ressources than all the others. We
prove that by reducing the computational time by a factor of 300,
ABC is able to yield consistent constraints from weak-lensing
peak counts. Furthermore, Weyant et al. (2013) showed in their
study that ABC is able to perform unbiased constraints using
contaminated data, demonstrating the robustness of this algo-
rithm.

A comparison between di�erent data vectors is done in this
study. Although we find for all analyses that xabd5 outperforms
xpct5 by 20%–40% in terms of FoM, this is not necessarily true
in general when we use a di�erent percentile choice. Actually,
the performance of xpct depends on the correlation between its
di�erent components. However, the xpct family is not recom-
mended in practice due to model biases induced for very low
peaks (S/N < 0). In addition, our study shows that the xcut fam-
ily is largely outperformed by xabd. Thus, we conclude that xabd

seems to be good candidates for peak-count analysis, while the
change of contour tilt from xcut could be interesting when com-
bining with other information.

The methodology that we show for parameter constraints can
be applied to all fast stochastic forward models. Flexible and ef-
ficient, this approach possesses a great potential whenever the
modeling of complex e�ects is desired. Our study displays two
di�erent parameter-constraint philosophies. On the one hand,
parameteric estimation (Sects. 3 and 4), under some specific
hypotheses such as Gaussianity, requires only some statistical
quantities such as the covariances. However, the appropriateness
of the likelihood should be examined and validated to avoid bi-
ases. On the other hand, non-analytic estimation (Sects. 5 and
6) is directly derived from the PDF. The problem of inappropri-
ateness vanishes, but instead the uncertainty and bias of density
estimation becomes a drawback. Depending on modeling perti-
nence, an aspect may be more advantageous than another. Not
studied in this work, an hybrid approach using semi-analytic es-
timator could be interesting. This solicits more detailed studies
on trade-o� between the unappropriatenss of analytic estimators
and the uncertainty of density estimation.
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sampling. Combined with importance sampling, this method re-
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prove that by reducing the computational time by a factor of 300,
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contaminated data, demonstrating the robustness of this algo-
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change of contour tilt from xcut could be interesting when com-
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be applied to all fast stochastic forward models. Flexible and ef-
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parameteric estimation (Sects. 3 and 4), under some specific
hypotheses such as Gaussianity, requires only some statistical
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6) is directly derived from the PDF. The problem of inappropri-
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ABC wider but less elongated and less bent contours than Gaussian with const cov.  
KDE smoothing effect?
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Clowe D, Bradač M, Gonzalez A H, Markevitch M, Randall S W & al. 2006 ApJ

648, L109–L113.

Martin Kilbinger (CEA) Weak Gravitational Lensing Part II/II 139 / 143

Bibliography

Bibliography II
Coupon J, Kilbinger M, McCracken H J, Ilbert O, Arnouts S & al. 2012 A&A

542, A5.

Das S & Bode P 2008 ApJ 682, 1–13.

Eifler T, Schneider P & Krause E 2010 A&A 510, A7.
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