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Part II day 2: Shear estimation Galaxy-galaxy lensing in detail

Tangential shear and surface mass I

In an exercise you have derived the relation between tangential shear and
encompassed projected surface mass,

(1) (0) = R(< 0) — (k) (0).

We will re-write equation defining the surface mass excess AX.
Surface mass excess

Assume a single lens at (angular diameter) distance D). Approximate for this
case the expression of the convergence

2 sx AN
%(9,x)=;§2m (%) /0 dx’uﬁx’&x’%

and write Dy for the distance of the source, and D) for the distance between
lens and source. Write all distances as proper, not comoving distances, express
the density contrast in terms of the density, § = Ap/p, and use the critical
density pcrit-
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Tangential shear and surface mass II
Assume that the lens mass distribution p extends over the inverval
[Dy— AD/2; Dy + AD/2].

D\+AD/2
4G DlDls
D,—AD/2

Define the critical surface mass density

_ 4G DDy
gy ._ s
Y. (0) = 2 D,
to write convergence as
3(0)
0) = . 2
w(0) = 5 2

[Why is 3, called critical surface mass?]
With that, we define the surface mass excess

AB(< 0) = (%) (0) Zer = 2(0) — (X) (9).
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Statistical galaxy-galaxy lensing (GGL) I

The convergence or tangential shear defined in the last slides depend linearly
on the mass distribution p, or 3. So it seems to be a first-order statistic.

However, when measured statistically using a population of foreground
galaxies, it can be written as two-point correlation function. The convergence
is then the correlation of background lensing convergence and foreground
galaxy position.

If we write the latter as galaxy over-density d,, we get
(k) (0) = (K(9)dz(F+80)),
— zc;lp/dD (6(D6, D)oy (D10, D))

— 52 [ aD &, (VIDOE+ (D - D)D)
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Statistical galaxy-galaxy lensing (GGL) II

Properties of statistical GGL

e Circular averages of tangential shear: robust against (some) systematic,
e.g. large-scale modes of PSF residuals cancel out.
CFHTLenS: 25% fields had to be discarded for cosmic shear, none for
GGL.

e Simple null tests:
(7« ) around foreground objects (parity mode, should vanish).
(74) around random points, or special points that should not be correlated
with foreground sample such as chip corners, field centres, stars.

e Higher SNR compared to cosmic shear:
correlation with tracers of dense matter regions;
one shape instead of two;

e Can use spectroscopic galaxies for foreground sample
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Parenthesis: galaxy bias I
Simple bias

GGL measures the cross-correlation between galaxies and dark (more
precisely: total) matter, (§;9). This correlation is non-zero since galaxies trace
the underlying matter.

Simplest model: linear, constant, deterministic bias:

dg = bO.
From that it follws that
(0505)(0) = b*(06)(0);  (20)(8) = b(6)(8),
or in Fourier space

Pag(k) = b* Prom (K); Py (k) = bPrm (k).
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Parenthesis: galaxy bias 11

Properties

e The bias depends on the galaxy properties (type, color, luminosity, .. .,
and can be measured for different populations (e.g. early/late-type).

e Bias is redshift-dependent. Difficult to measure since degenerate with
z-dependent selection effects. Volume-limited samples: Bias tends to
increase with z: galaxies are more rare objects at higher z, situated in
more extreme environments (halo centres).
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Sample selection for galaxy bias measurement

CFHTLS Wide — all galoxies (i < 22.5)
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Sample selection in absolute magnitude and redshfit, from (Coupon et al. 2012).
Samples in horizontal boxes have same absolute magnitudes and are
volume-limited.
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Galaxy bias extended I

More complex bias models

~

e Scale-dependence, b(f), or b(k). In particular on small scales, bias is not
constant.

e Non-linear bias

5g=b15+b252+b353+...

e Stochastic bias

Relation between d, is not determinstic (dg = bd) but stochastic. In a
statistical picture, the two fields d, and d can be interpreted a realizations
of random fields with joint pdf p(de,d). The study of stochastic biasing is
trying to quantify this joint pdf.
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Galaxy bias extended II

At second-order level, one can measure the variances of both fields, and
their cross-correlation. If the fields are correlated, one can write down the
following two relations:

62)’
’ (%) T [(625)(620)
introducing a correlation coffecient » = —1...1 between both fields.

In the above ratio cosmology dependence (dm correlation function or
power spectrum) mainly drops out!

Allows for model-independent measurement.
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r=-0.5, b=1

Illustration of correlated fields, from [P. Simon, PhD thesis, 2005].
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Galaxy bias II

Question: How would the correlation between d, and ¢ look like for negative
bias b < 07 For example b = —1,r = 1.

Non-linear and stochastic bias

A non-linear bias can mimic stochasticity.

Consider the (made-up) example of deterministic bias with d; = §°.
Exercise:

Calculate r in the case where both fields follow Gaussian pdf’s.
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Galaxy bias II

Question: How would the correlation between 6, and d look like for negative
bias b < 07 For example b = —1,r = 1.

Non-linear and stochastic bias

A non-linear bias can mimic stochasticity.

Consider the (made-up) example of deterministic bias with §; = §°.
Exercise:

Calculate r in the case where both fields follow Gaussian pdf’s.

30 3

N (") N (o BN
J(626)(626)  V(0%)(%)  Vo?15o®  V3-5

Final note: The density field cannot be a Gaussian, since § < —1.

3
= —=~077<1!
5 <
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GGL: model-independent measurement of b/r

Idea:
Combine weak lensing and galaxy clustering to determine b and r.

e Galaxy clustering (57)
e Galaxy-galaxy lensing (046)
e Cosmic shear (§2)

Cosmic shear is the most difficult to measure, so first measurements only used

GC and GGL.

Form ratio:

(056)(0) _br b

(0g0a)(0) B2 7

Any cosmology-dependence, e.g. of clustering, drops out in the ratio.
These density correlations are projected to weak-lensing observables, and b
and r (if constant) can directly be measured.
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GGL: Aperture measures I

How can we trace the galaxy and dark-matter over-densities with weak
lensing?
Use aperture measures

(N)(8), (N Map)(9), (M) (6)

to trace
(63), (3¢0), (6%).

Difficulty: Structure along all redshifts contribute to cosmic shear (Ma2p), not
only mass associated with foreground galaxy sample 9.

Solutions:

e Choose background sample such that maximum lensing efficiency
coincides with foreground redshift.

e Add correction functions with minor dependency on cosmology

(geometry).
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Redshift calibration factors

Aperture measure ratios

B N3 (0)
0=\ o))
7,(9) — <NMaP>(0) 7

VIV (0)(M2,)(6)
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Redshift calibration factors

Aperture measure ratios

(N2)(0)
b(0) =f1(0) (MZ,)(60)
r(0) =fal0) ——oree )

VN2 (0)(M2,)(0)

Calibration factors fi, fo to account for different redshifts/lensing efficiency
(Hoekstra et al. 2001). Calculate those using theoretical model for fiducial
cosmology (fixing power spectrum, geometry), setting b = r = 1:

M2 )(6
RSN (L1510
(N2)(9)
fid, b=1
oo VI O)(M2,)(6)
T (N M) ()
fid,b=r=1
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Redshift calibration factors
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Scale-and cosmology-dependence of calibration factors. From (Simon et al. 2007), GaBoDS
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Galaxy-galaxy lensing in detail

GGL results: model-independent measurement of b/r

effective scale [hy! Mpc]
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Observed ratio R (a), and B-mode (b); b/r (right) from (Hoekstra et al. 2001).
Main result: no scale-dependence found (on observed scales).
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GGL results: model-indep. measurement of b and r I
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GGL results: model-indep. measurement of b and r 11
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Filled boxes, open stars, open crosses = FORE-I, FORE-II, FORE-III.

Galaxy clustering: Bias on small scales is not constant, but scale-dependent.
Stronger galaxy clustering than from constant bias. (Simon et al. 2007),
GaBoDS (Garching-Bonn Deep Survey).
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GGL results: model-indep. measurement of b and r 111
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GGL and cosmic shear. (Simon et al. 2007), GaBoDS (Garching-Bonn Deep Survey).
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GGL results: model-indep. measurement of b and r IV

eff. comoving scale [h™*Mpe] eff. comoving scale [h™'Mpe] eff. comoving scale [h™*Mpc]
0 142 284 426 5.68 0 2.14 428 642 856 0 2.76 5.52 8.28 11.04
MR BB s gy T T [ | s A L T [ | B B v T
[ FORE-1 FORE-1I FORE—III ]
L _ +0.11 It _ +0.11 It _ +0.11 ]
i <b>=0.81*11 1 <b>=0.79 %11 1 <b>=0.81*011 1
&3 |p 17 1T o
a 11 11 ]
Q ! I I ] : # % ] : l
a L L
= 1 T l .

|ty Ll 1.
222222 N2 2 222 2 2Nz ZZ%%% % 2%

ollinnnnnnnnnnnnnnnnnnd [Cannnnnnnnnnnannnnnnd| |[lainnnnnnnnnnnnnannnn -
eff. comoving scale [h™*Mpe] eff. comoving scale [h™'Mpc] eff. comoving scale [h™*Mpe]
0 151 3.02 453 6.04 0 1.88 376 564 7.52 0 2.09 4.18 6.27 8.38
Q T [T [Ty ©
<r>=0.813018 1 <r>=0.643518 1 <r>=0.583019
St 1t 1t 3
- [ 1F 1F
g Al [ .[ ] [ ] [ Al
g ¢ %/ 1t ol
— P P 11 P 11 P 11
I i
N il TT G Tt
& e 1L 1L 1|
... ... .. JL... ... s Lo e S
o 5 10 15 200 5 10 15 200 5 10 15 20!
aperture radius [arcmin] aperture radius [arcmin] aperture radius [arcmin]
Bias and correlation coefficient. , GaBoDS (Garching-Bonn Deep Survey).
Martin Kilbinger (CEA) Weak Gravitational Lensing Part II 66 / 120
Part II day 2: Shear estimation Galaxy-galaxy lensing in detail
mcreasing hlmanSlty —
a —/ = 1] 1 e 1 I NENIT] il e -
@ N P T T T e
S IO oL —-21.0 < M, < -20.0 -21.5 <M, < -21.0 S < -2 -
A O o f 3
O] O k- -
o ® —E E
> E E
© = o[ -
_8 o " E 3
-— ~ r e
O c —F -
.q') | N E A \ =
o Rl P P Yl M i B e B e i B
— N -
e < 10 100 100 1000 10*

Projected distance
[ =il
[h7o kpc]

Purple=red early-type galaxies; Green=blue late-type galaxies. From
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GGL: HOD model measurements

increasing luminosity —
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Purple=red early-type galaxies; Green=Dblue late-type galaxies. From (Velander et al. 2014).

e Red galaxies have larger associated mass than blue galaxies.
e Exceess mass increases with luminosity. Light traces mass.
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GGL: HOD model measurements

increasing luminosity —
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Purple=red early-type galaxies; Green=Dblue late-type galaxies. From (Velander et al. 2014).

e Red galaxies have larger associated mass than blue galaxies.
e Exceess mass increases with luminosity. Light traces mass.

e Bump at 1 Mpc for low-luminosity red galaxies, disappears at higher L.
Red satellite galaxies.
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GGL: HOD model measurements

increasing luminosity —
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Purple=red early-type galaxies; Green=blue late-type galaxies. From

e Red galaxies have larger associated mass than blue galaxies.

e Exceess mass increases with luminosity. Light traces mass.

e Bump at 1 Mpc for low-luminosity red galaxies, disappears at higher L.
Red satellite galaxies.

e Bump at slightly larger scale for blue galaxies. 2-halo term, from
clustered nearby galaxies.
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GGL: HOD model
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GGL: M/L parameters
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Modified gravity

General, perturbed Friedmann-Lemaitre Robertson Walker (FLRW) metric:

20 20
ds® = <1 + —2) Adt? — a®(t) (1 — —) di?,
C

Valid for weak fields, (Bardeen) potentials ¥, ® < c2.

e In GR, and absence of anisotropic stress: ¥ = ®.

e In most modified gravity models: ¥ # ®! Very generic signature for MoG.

Some characteristics
e U is Newtonian potential. Time-like. Quantifies time dilation.
e U is gravitational action on non-relativistic objects (e.g. galaxies).
e & is space-like. Describes spatial curvature.

e U + & is gravitational action on relativistic objects (e.g. photons;
lensing!). [Photons travel equal parts of space and time. This is the origin
for the factor two in GR equations compared to Newtonian mechanics!|
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Testing GR 1

Idea of a null test
Measure difference in potentials to test GR: Galaxy clustering for W, weak
lensing for ¥ + .

Modified Poisson equation
Potentials are related to density contrast ¢ via Poisson equation. Generalise to
account for MoG, and write in Fourier space:

KU(k,a) = 4nGa® (14 pu(k,a)] po(k,a);
k2 [\f!(k:, a) + (k, a)] = $1Ga? [l + S(k,a)] pd(k, a)
With free parameters/functions u, . GR: p =3 = 0.
71/ 120
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Testing GR II

Probes of Bardeen potentials
Assuming linear, deterministic bias (b =const, r = 1).

o Galaxy clustering measures ¥ and b;  (07) o b*Py.
e GGL measures ¥ + ® and b; (0g0) X bPy 4.

— form ratio to get rid of cosmology dependence!
However, bias still remains, need another observable.

e RSD anisotropy parameter; 8= %%ﬂtﬁ).

TODO: Add pi, sigma plot, equation, Samushia et al. 2014.
E¢ parameter

(99)

1
e = 57052
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weak gravitational lensing from
hotometric survey (e.g. Euclid)

gravitational action on
relativistic particles

light deflection
ohserver B ..-—-""_____- ’

dark—matter hzlo M eculiar velocihes D

. gravitational action on
non—telativistic objects

redshift

i galaxy clustering from
‘{pectroscoplc survey (e.g. DESI)
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Testing GR: results I

SDSS (Reyes et al. 2010)
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from SDSS galaxy clustering
B=0.309 £ 0.035 (redshift-space distortions)
Tegmark et al. (2006)
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Galaxy-galaxy lensing: Testing GR

Testing GR: results II

Introducing new observable to exclude small scales:

Yon(R) = AZen(R) = () AZgm(Ro)

2 R

R\ 2

=T dR' R' Zjrmgm(R') — Zgm(R') + (%) Yem(Ro),
Ry

(Baldauf et al. 2010).

Define in analogy Y4,.

Then modified Fg probe of gravity:
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Galaxy-galaxy lensing: Testing GR

Testing GR: results II1
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Part II day 2: Shear estimation Back to the aperture mass: Filter function relation

Recall: Aperture-mass definition

Yesterday we introduced the aperture-mass as convolution of the shear field
with a filter @,

My (6,9) = / 829 Qo(|9 — ') 7 (9)

and claimed that this was equivlaent of convolving the convergence with
another filter U,

Map(6,9) = [ &0 Up([6 — 9/)) P9, 3)

(Kaiser et al. 1994, Schneider 1996).
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Relation between U and () I

First, place aperture at center, 1 = 0. Assume that the filter function Uy (1)
has support [0; 6], (note that 6 can be co.)
Introduce angle-averaged convergence,

(0= 5- [ don(o.p)

and write aperture-mass

0
Ma®) = [ 409030} ()0).

Integrate in parts, defining

9 Uy(9) =: d)fi"éﬁ) —  Xo(®) = /O ’ Ay’ 9 Uy(9')
to get ,
Manl®) = o0 0N~ [ a0 Ua(0) 1,
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Relation between U and () II

To get rid of the boundary term, we demand that U be a compensated filter
function, i.e.

Xo(0) = /Oecwwgw) 0.

This means, that M, is not sensitive to a constant convergence K.
Why?
This makes it independent of the mass-sheat degeneracy.

We insert the expression for the derivative of the circularly averaged
convergence from the TD,

d{r)(9) _di(<d) dy(<d) 2 () (9) — d()(?)
dv dd dv A dv
to get
%
2 d(~7) (¥
Mup(®) = [ 003(0) |5 X000) ) (0) - S
0
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Part II day 2: Shear estimation Back to the aperture mass: Filter function relation

Relation between U and () III

The second term is again integrated by parts. The boundary term vanishes as
before and we are left with

0
Man(0) = [ a0 [ﬁéxm—dﬁ—? (1) (9).

This can be transformed back to the form
Mip() = [ #9Qu9) ()(0)

and we get the relation between U and Q:

%)

9
Q9(19) = @/O do’ 19,U9(19/) — Ug(f}).
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Relation between U and () IV

Some properties

e If U has finite support, so has . [This follows from U being
compensated|. That means that aperture-mass can be obtained from
shear on finite region.

[This is not true when computing x from v without filters. Formally, this
relation requires all of R?.]
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Reminders: lensing potential and convergence I

On day I we defined thee lensing potential ¢ at sky 2D coordinate 8 for a
source galaxy at comoving distance y, in a flat universe

. 2 X /X_X/ ! !
¢(9,x)—c—2/0 dx Y o(x'0,x').

The lensing convergence k is given by a 2D Poisson equation,
1
k= =A.
5OV

We pulled the 2D Laplacian through the integral, and add the 3-component
A,y to yield the 3D Laplacian.

We then used the 3D Poisson equation to transform the 3D potential ¢ to the
density contrast 9,

B SHZO
T 2a

AD 5,

Martin Kilbinger (CEA) Weak Gravitational Lensing Part II 82 / 120




Part II day 2: Shear estimation Spherical-sky lensing projections

Reminders: lensing potential and convergence I1
and obtained

3 HO ? X /(X - X/)X/ / /
= 20m (=2 v ' /) ).
(0, x) > ( . ) /O dx a0 6 (x'0,x")

Finally, we introduced a source galaxy distribution p(x)dx = p(z)dz to get the
convergence for a population of galaxies

Xlim X1lim

Kk(0) = /dxp(x)/f(B,x)I /dXG(X)X5(X9>X)

0 0
with the lensing efficiency

3 H0>2 Qrn /Xlim / / X/_X
Giy)==(=2) == dy' p
(x) 2(C 760 X p(x) v

We then introduced the variance of the convergence,

(k9 + 0)k(9)) = (kK)(0),
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Reminders: lensing potential and convergence III
and wrote it in Fourier space to define the convergence power spectrum

(R()&"(£)) = (2m)20p (£ — £) Py (L)

End reminder.

Spherical transformations

The Fourier transformation is only defined on a flat space. To perform Fourier
transforms on fields define on the spherical sky is fine on small scales, but
breaks down on very large angles. The Fourier transform should be replaced
by a spherical harmonic transformation.

However, we have to go back one step further: Convergence and shear are
defined as second derivatives of the lensing potential,

1 1 1
R = 5 (8181 7 (9282) ¢ = §V2¢; = 5 (8181 — (9282) ¢; Y2 = 8182¢.
These derivatives are defined in flat space and should als be replaced on the
sphere.

So, we have to start again with the lensing potential.
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Lensing potential on the sphere I

The lensing potential ¢ from a population of source galaxies with redshift
distribution p;(z) is given, in analogy to x(6@ defined above, as

oo

_2 [ .
wW)@!Pxéuw&Mqu%,

where the lensing efficiency ¢; is given as

«mzjdwmv

X

X — X
X

[Note: On day I we defined the lensing efficienty G for the convergence, which
is different from ¢ by just the “Poisson” prefactor,

G(x) = g (%)2 GS(Z;) /:Hm dx’p(x')xlx_, X = g <%)2 %Q(X)-]
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Lensing potential on the sphere I1
Let us now derive the angular harmonics spectrum of ¢ (spherical analogue of
power spectrum)
Decompose potential into spherical harmonics,

o0

¢
P(O) = Y Y Yem(0);  tem = /82 d24(0)Y5,,(0).

=0 m=—4

Completely analogous to CMB temperature — both 1 and T are scalar fields.

The harmonics expansion coefficient is, after insertion of the expression for v,
and Fourier-transforming the 3D potential (note: in R3, not on the sphere),

2 > dy 3k . ik
= — [ dY: (8, i d(k; y)e kT
Yem = 5 [ dQY5,(0,9) /O ., q(x) / 2n)? (ks x)e

Insert spherical harmonics expansion of the plane wave basis function,

00 L
e* T =4r> " > i jo(kx) Yem (8, ) Yem Ok, ),
{=0 m=—/¢
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Lensing potential on the sphere I11

and make use of orthogonality relation of the spherical harmonics

/ dQng(G, @)Yz/m/ ((9, SD) = 5[6’ 5mm’a

to yield

e = 5z | a0 [ 0 01e0) Ve B, ).

Angular harmonics (cross-)spectrum (between redshift bins ¢ and j) of the
lensing potential is defined as

(o i Vbrme 59 = 000 Omms Co (£).

Using once more the orthogonality of the Yy,,’s, we get finally

8 > d < dy’ ’ ) ) , ,
50 = 2= [~ a0 [T Xa) [ b a5 o)
0 0

ctm X

=3 FQm <E> ] /0°° gl [T ald) o je(kx)je (kX" ) P (k5 2, X);

2 c x ax) Jo x alx) /) K
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Shear on the sphere I

Preparation
Define complex derivative operator

8 o— 81 +82.

From that we get
00 = 0101 — 0202 + 2101 05.

Thus, we can rewrite the shear

1
Y1 = 5 (8161 — 8232) w; Y2 = (9182¢.

in complex form
1 , 0
¥ =35000; v =5 0.

The corresponding derivative on the sphere is called edth derivative 0 (Castro
et al. 2005).
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Shear on the sphere I1

We write

10) = S8 0u(0); +(6) = £ 5 3*%(0).

Inserting the spherical harmonics expansion of ¢ — 2°¢ edth derivatives of
Yom.

This defines a new object, the spin-weighted spherical harmonics sY ¢y, .
[Note: Spin s = 2 because second-derivatives; each derivative 0 (0 *) raises
(lowers) spin by one.]

Therefore,
(71 £i72)(0) = Z +2Yem +2Y em (0);
m
2iem = [ d29(8) Y, (0);
S
2iem = [ d277(6) -5 0)
S2
Sy

Part II day 2: Shear estimation Spherical-sky lensing projections

Shear on the sphere III

These objects 427, are eigen functions of 0:
Hl,8) Yom(0) = 02V (0);  E(L,5) —Yim(8) = (D7) Yo (0).

with the spin pre-factor (Bernardeau et al. 2012)

) 1/ = /(0= 1)L+ 1)(¢+2),

And we get the relation between shear and potential coefficients,

1
+2Yem = 55(5, 2) Vo
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Shear on the sphere IV

Now it is easy to write down the shear angular harmonics spectrum, again for

bins ¢ and j to be general:
2 2 [e’s) o0 / /
34 (@) / d_XQi(X)/ dx’ ¢;(x')
2 "\ e o x alx) Jo X alX)

© Jk . .
></ ﬁpm(kaXaX’)Jé(kX)Jﬂ(kX/)
0

2 2
(0 == 1(4,2)
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Flat-sky approximation

Going back to flat sky from the full spherical expression, we replace again the
edth by the ordinary flat-space derivatives.
(Hu 2000) calculates the derivatives of the spherical harmonics as

0 1Y 0 (6, ) m €291 £105)% Yo (0, ©)

and we get a slightly different expression for the shear power spectrum, with

the replacement
F2(0,2) = (0 — 1)+ 1)(L+2) — ¢

[Note: this is a slightly strange approach, since we first expand the field into
spherical harmonics, and then perform the flat-sky approximation of the
derivatives. More consistent would be to start with the Fourier transform. But
I don’t know how to derive the ¢* factor in this case without making
additional assumptions, see later.]
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Limber approximation I

In short:
We use the identity of the Bessel functions

je(z) = \/%Julm(a?)

and replace Bessel function J,1;,2(kx) by a Dirac delta ép(¢ — kx) (maximum
of Bessel function).
Thus:

e Only modes ¢ 4 1/2 ~ ky contribute.

e Only modes at x &~ x’ contribute.
We knew this already from linear perturbation theory, which holds on
large scales:
There, the density contrast scales with the linear growth factor,

5(k,x) = D1 (x)bo(k) = Ps(k,x,X") = D2 (x)Pso(k).

— comoving integrals separate.
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Limber approximation II

The shear harmonic spectrum then simplifies to:

2 2
3 (HO) ] /°° dk
°Q, (22 ki
2 c 0 K3

« [T I ) e [T ) () o |
/O X3/2 a(X) 5D(f + 1/2 kX)/O X/3/2 a(X/) 5[)(@ + 1/2 kx )Pm(k%X

The comoving integrals are solved trivially with the Dirac delta, yielding a
further k=2 due to a variable transformation dy = d(kyx)/k.
We then substitute (¢ + 1/2)% = (kx)3, and perform another variable

transformation
dk k=2 =d[(0+1/2)x k™% = (£ +1/2)dxx ?k~? = dx(£ + 1/2)7", and get

Cii(6) = % [gﬂm <%)2r/dx%13m <¥;x) .

CL(0) = B(4,2)
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Approximations accuracy I

Most pre-2014 used the flat-sky approximation (#2(¢,2) ~ ¢*) and further
¢+ 1/2 ~ (. Then the prefactor cancels.

This standard Limber approximation is accurate to 1% (10%) for £ < 60(4).

The next logical approximation is extended Limber, with ¢ + 1/2 kept in
prefactor and power-spectrum argument. This is actually a worse
approximation than standard Limber, since the approximated prefactor
converges only with O(¢1).

Better is hybrid, with ¢ in prefactor denominator, but ¢ 4+ 1/2 in integral.

Even better is second-order Limber.
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Approximations accuracy II

e 1
o . N
4"4“ llllll N
g 01 N\ -
Vak N
/. N,
7 Y
10° Y/ ]
7 < 0.01
= 7. =
S H =
~ L) %
/[ L
7/ L1F] — —- |2 0.001
Y ExtL1Fl - - - -
) ExtL1FIHyb — | IL1FI/FuII§ph-1: - =
. ExtL1FI/FullSph-1l - - - -
. Exél;(lfzpé} 0.0001 +ExtL1)l(:IHyb/Fﬂllsgh-1I —_ -
IExtL1Sph/FullSph-1l
ExtL2FIHyb |ExtL2FI/FullSph-1|
ExtL2Sph —— |ExtL2FIHyb/FullSph-1l \
. FuliSph ) IExtL2Sph/FullSph-1l —— |
10 L L 1e-05
10 100 10 100

From (Kilbinger et al. 2017).
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Spherical correlation function I

For the correlation function on the sphere, the Bessel functions Jg 4 are
replaced by the reduced Wigner D-matrices,

£(0) = 1= DU+ DOOG0); El6) = = S0+ )T (), (6).
=2 =2

These are defined as follows:

4m .
Dﬁs’(aaﬁa _7) = Z 20 & 14 Ylfm(e );YEm(el790,)

— exp ¥ d’,, (8) exp®®

Angles:

B = angle between (6, ¢) and (¢’,¢’).

ozh]: angle to rotate éy about (97 s&) [(9/7 cp’)] perpendicular to connecting line
between (6, ) and (0, ).

(Chon et al. 2004).
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Spherical correlation function II

0.1 : :
IExtL2Sph/FullSph-11 —— 1
IExtL2Sph(Hankel)/FullSph-11 - - - - IEX{t}E}ng::ggm -
Lo IExtL1FIHyb/FullSph-11 — - 50°
IExtL1Sph/FullSph-1l PR /
0.01 | 0.1 HExtL2FIHyb/FullSph-1l . - /1
’ IExtLZSph/FuIISph b —— /|
2 001 -
& 0001 |
N
< 0.001 |
0.0001 |
0.0001 |
10-5 | | | 10-5 | L
1 10 100 1 10 100
¥ [arcmin] ¥ [arcmin]

From (Kilbinger et al. 2017).
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Shear bias

For basiealls all shape measurement methods: observed shear # true shear.

This is called shear bias.
Reminder: Write as multiplicative and additive bias:

(€9P%) = 42P5 = (1 4+ my)yf + ¢ i =1,2.

There is also ellipticity bias, which is different:

e = (1 +met™e 4 ¢y i=1,2

(2 (X

Typical values:

year  program m c o(c)
2006 STEP I 0.1 103
2012 CFHTLenS 0.06 0.002

2013 great3 0.01 1073

2014 DES 0.03-0.04 1073

2016 KiDS 0.01-0.02 8-10~*

2021 Euclid required 2-1072  5.107%
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Shear bias and simulations I

From the STEP I shear measurement challenge (Heymans et al. 2000).

T T T T
' 4
— L ! N
o L 2 ' HDA
o 0
—GH i
. H N
o =Sl I
) Vv
S : 1
- PMH =MByHH .
V : @ |
RN <
. MJ
| L | L | L
-0.2 0 0.2
<m>
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Shear bias and simulations II

From the great3 shear measurement challenge (Mandelbaum et al. 2015).
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Shear bias and simulations III
Interprete with caution!

e Small biases because simulations are not realistic enough? E.g. constant
PSF, analytical galaxy light distributions, simplistic noise, (constant
shear)

e Simulation (challenges) only address part of the problem. Usually no
blended galaxy images, star-galaxy separation, color effects, ...

e (Calibrated or un-calibrated?

Amplitude of m, ¢ not that important, since they can be calibrated emirically.
What counts are Am, Ac after calibration!

More on this in a few slides.
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Shear bias and simulations IV

A very general statement (see Part I day 2):

Most ellipticity estimators are non-linear pixel light distribution. Noise then
creates biases in the estimator. This is called noise bias.

Thus, observed shear needs to be de-biased (calibrated) using simulations.

There are a few unbiased estimators:
e Not normalised to total flux: maybe unbiased, but very large variance

e Bayesian estimators, sample posterior distribution, unbiased if correct
model, likelihood and prior.
Prior needs to be estimated from simulations or deep survey!
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Sources of bias

Reminder:

e Noise bias
e Model bias

e Model-fitting method: incorrect model, complex galaxy morphology

e Direct estimation: inappropriate filter function for weighted moments;
truncated eigenfunction decomposition

e Ellipticity gradients

e Color gradients

e PSF residuals
o CTI (charge transfer inefficiency)

e Selection effects (population biases). Detection probability depends on
ellipticity, orientation with PSF, pixel scale

e New: Environmental effects
e Unresolved faint galaxies
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Shear calibration

The bias should be robust for method to be calibratable.
Define sensitivity as dependence of bias with respect to parameters, or

|Om /0p;|, forp = set of parameters.

A method is calibratable, see (Hoekstra et al. 2016), if
e the sensitivity is small (otherwise simulation sampling in p too costly)
e does not depend on too many parameters

e those parameters can be measured accurately (e.g. intrinsic ellipticity
dispersion o. from Euclid Deep Survey — requirement on accuracy of
measured o. sets area of calibration fields)

e those parameters can be reasonably simulated to estimate sensitivity

e difficult if parameter is correlted with shear signal (e.g. local galaxy
density with large-scale structure, correlated with shear signal,

magnification)
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Shear calibration: Unresolved faint galaxies I

—0.043 -

—0.044
Overall values on y-axis (ampli-
tude of m) not really important,

% —0.045 | will be corrected for.

T
—e—i
|

] Need simulation up to very high
} ] depth, until plateau in m is
i /10'4! reached (Om/Omyy, = 0).

L//////////%//////////%///y
| | |

—0.046

T
—e—i

Error bars need to decrease to
match hashed region.

ooap bl oowb
26 27 28 29

m

lim
Multiplicative bias m (here p) for galaxies 20 < m <
24.5 as function of limiting magnitude of simulated

galaxies. From (Hoekstra et al. 2016).
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Shear calibration: Unresolved faint galaxies II

N T ] ~0.043 —— ]
-0.04 - E\ . . . .
The bias depends on the local density of E The bias depends on the number density of
3 galaxies: it will increase towards high density faint galaxies: magnification will affect the
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