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Part II day 1: E- and B-modes | Very brief reminders from day I

Reminder from last year ...
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Books, Reviews and Lecture Notes

e Bartelmann & Schneider 2001, review Weak gravitational lensing,
Phys. Rep., 340, 297 arXiv:9912508

e Kochanek, Schneider & Wambsganss 2004, book (Saas Fee) Gravitational
lensing: Strong, weak & micro. Download Part I (Introduction) and Part
IIT (Weak lensing) from my homepage
http://www.cosmostat.org/kilbinger.

e Kilbinger 2015, review Cosmology from cosmic shear observations
Reports on Progress in Physics, 78, 086901, arXiv:1411.0155

e Bartelmann & Maturi 2017, review Weak gravitational lensing,
Scholarpedia 12(1):32440, arXiv:1612.06535

e Henk Hoekstra 2013, lecture notes (Varenna) arXiv:1312.5981

e Sarah Bridle 2014, lecture videos (Saas Fee) http:
//archiveweb.epfl.ch/saasfee2014.epfl.ch/page-110036-en.html

o Alan Heavens, 2015, lecture notes (Rio de Janeiro)
www.on.br/cce/2015/br/arq/Heavens_Lecture_4.pdf
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Science with gravitational lensing

What has gravitational lensing ever done for us?
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Science with gravitational lensing

Outstanding results
Dark matter is not in form of massive compact objects (MACHOs).
Microlensing rules out objects between 10~7 and few 10 M.
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Part II day 1: E- and B-modes | Very brief reminders from day I

Science with gravitational lensing

Outstanding results
Detection of Earth-like exoplanets with microlensing.
Masses and distances to host star similar to Earth.
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Science with gravitational lensing

Outstanding results
Structure of QSO inner emission regions.
Microlensing by stars in lens galaxies.

[J. Wambsganss]
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Science with gravitational lensing

Outstanding results
Dark matter profiles in outskirts of galaxies.
Measuring halo mass to very large galactic scales.

—-21.0 < M, < -20.0

Projected excess mass
AT [hoq Mg pc™?]

10 100 1000 10*
Projected distance QR
[hyo~" kpc] N
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Science with gravitational lensing

Outstanding results
Galaxy clusters are dominated by dark matter.
Bullet cluster and others: bulk of mass is collisionless.

Martin Kilbinger (CEA) 6 / 117




Part II day 1: E- and B-modes | Very brief reminders from day I

Science with gravitational lensing

Outstanding results
Observation of very-high (z > 7) galaxies.
Galaxy clusters as “natural telescopes”.

(Hoag et al. 2017)
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Science with gravitational lensing

Outstanding results

Hints of inconsistency of our cosmological model at low and high 27
Planck and WL in tension? Also WL cluster masses for Planck SZ clusters;
Hy from cepheids + SL.

I I I I
12k KiDS-450 |
CFHTLenS (MID J16)
WMAP9+ACT+SPT
1ok Planck15 ]
0
)
08} _
0.6 | _
1 1 1 1
0.16 0.24 0.32 0.40
Qn,

(Hildebrandt et al. 2017)

Martin Kilbinger (CEA) Weak Gravitational Lensing Part II 6 / 117




Part II day 1: E- and B-modes | Very brief reminders from day I

Science with gravitational lensing

Outstanding results
General relativity holds on cosmological scales.
Joint WL and galaxy clustering cosmology-independent GR test.
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(Reyes et al. 2010)
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Science with gravitational lensing

Outstanding results

Dark matter is not in form of massive compact objects (MACHOs).
Detection of Earth-mass exoplanets.

Structure of QSO inner emission regions.

Dark matter profiles in outskirts of galaxies.

Galaxy clusters are dominated by dark matter.

Observation of very-high (z > 7) galaxies.

Hints of inconsistency of our cosmological model at low and high 27
General relativity holds on cosmological scales.

Most important properties of gravitational lensing
Lensing probes total matter, baryonic + dark.
Independent of dynamical state of matter.
Independent of nature of matter.
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Cosmic shear, or weak cosmological lensing

Light of distant galaxies is deflected while travelling through inhomogeneous
Universe. Information about mass distribution is imprinted on observed
galaxy images.

e Continuous deflection: sensitive to
projected 2D mass distribution.

e Differential deflection:
magnification, distortions of
images.

e Small distortions, few percent
change of images: need statistical
measurement.

e Coherent distortions: measure
correlations, scales few Mpc to few
100 Mpc.
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Cosmic shear deflection angle

We derived the deflection angle as integral over the potential gradient
(continuous deflection along the line of sight):

N T
\Y *@/\\N/E’f/&@\}/@ source
= (x)

observer &sE=== T

/

a8, x) = C%/OX dx' X ;X [Vﬂ)(w(x'),x') - Vﬁb(o)(x’)} :

Geometrical relation: (Unobervable) unlensed source position 3 is observed
lensed position (direction of incoming light ray) € minus deflection angle

B(O,x) =0 —a(f,x) =6 — Ve(0);
with the lensing potential
2 [ oox=xX o
0,y) = —/ dy’ 0,v).
b(8,x) = R d(x'6,x")
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Convergence and shear

The lens equation is the mapping from lens to

soure 2D coordinates. The linearized lens
equation

0B
(9_§j = Aij = 0i5 — 0,059,

is described by the symmetrical 2 x 2 Jacobi
matrix,
l—r—m —72
A= ,
—72 l—r+m

Which defines convergence x and shear 7.
e convergence k: isotropic magnification

e shear v: anisotropic stretching
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E- and B-modes: recap from part I

Shear patterns

We have seen tangential pattern in the shear field due to mass over-densities.
Under-dense regions cause a similar pattern, but with opposite sign for ~.

That results in radial pattern.

Projected matter density Distortion field

convergence K

-0.041 0.095 0.23

tangential distortions around mass peaks

shear

Source galaxies at z = 1, ray-tracing simulations by T. Hamana
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E- and B-modes: recap from part I

Shear patterns

We have seen tangential pattern in the shear field due to mass over-densities.
Under-dense regions cause a similar pattern, but with opposite sign for ~.
That results in radial pattern.

Under idealistic conditions, these are the only possible patterns for a shear
field, the E~-mode. A so-called B-mode is not generated.

E |
’ . ‘ mode ‘ . ’ ’ Ry ‘
6 & o
mass mass
1=0 oS v N 0o
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E- and B-modes: recap I

Origins of a B-mode
Measuring a non-zero B-mode in observations is usually seen as indicator of
residual systematics in the data processing (e.g. PSF correction, astrometry).

Other origins of a B-mode are small, of %-level:

e Higher-order terms beyond Born appproximation (propagation along
perturbed light ray, non-linear lens-lens coupling), and other (e.g. some
ellipticity estimators)

e Lens galaxy selection biases (size, magnitude biases), and galaxy
clustering

e Intrinsic alignment (although magnitude not well-known!)
e Varying seeing and other observational effects (table ronde topic!)

e Non-standard cosmologies (non-isotropic, TeVeS, ...)
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E- and B-modes: recap II

Measuring E- and B-modes
Separating data into E- and B-mode is not trivial.

To directly obtain x¥ and xB from +, there is leakage between modes due to
the finite observed field (border and mask artefacts).

One can quantify the shear pattern, e.g. with respect to reference centre
points, but the tangential shear ~; is not defined at the center.

Solution: filter the shear map. (= convolve with a filter function ). This also
has the advantage that the spin-2 quantity shear is transformed into a scalar.

This is equivalent to filtering x with a function U that is related to Q.
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E- and B-modes: recap III

The resulting quantity is called aperture mass M,y (), which is a function of
the filter size, or smoothing scale, 6. It is only sensitive to the E-mode.

If one uses the cross-component shear v, instead, the filtered quantity, M
captures the B-mode contribution only.

End of recap from part I.
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Convergence as potential field
Again convergence k and shear ~:

9Bi
% =A;; = dij — 0,051

l—Kk—m —2
A= .
( —72 1—F6+71>

From this, write x and v as second derivatives of the potential.

Martin Kilbinger (CEA) Weak Gravitational Lensing Part II

Convergence as potential field
Again convergence k and shear ~:

9B _
06, —

l—Kk—m —Y2
A= )
( -2 1—H+’71>

From this, write x and v as second derivatives of the potential.

Aij = bi5 — 0:0;9;

1 1 1
k=3 (0101 + 0202) Y = §V2¢3 n=g (0101 — 0202) 5 y2 = 0102%.
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Convergence as potential field
Again convergence k and shear ~:

0P
affj =Aij = 0i5 — 0;054;

A — l—k—=m —72 .
—72 l—k+m
From this, write x and v as second derivatives of the potential.

1 1 1
F=3 (0101 + 0202) ¢ = §V2¢; Mn=3 (0101 — 0202) 5 y2 = 01029).

We can now define a vector field u for which the convergence is the
“potential”, with
u = VK.

Express w in terms of the shear.
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Convergence as potential field

Again convergence k and shear ~:

0B
aﬁf, =Aij = 0ij — 0:0;%;
J

A — I —r-—m 2 ‘
—2 l—k+m
From this, write x and  as second derivatives of the potential.

1 1 1
r=3 (0101 + 0202) Y = §V2¢; n=3 (0101 — 0202) 5 y2 = 0102%.

We can now define a vector field w for which the convergence is the

“potential”, with
u = Vk.

Express w in terms of the shear.

w — 81/1 _ %(818161 +818282)/<¢ ) _ < 81”}/1 —|—82’YQ >
Ok 5((91(91(92 + 828202)/i —8271 + 81’)/2 '
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E- and B-mode potential, convergence, and shear I

Thus, from a shear field ~, to linear order, the corresponding convergence is
derived from a gradient field w, and is curl-free, V x u = 01us — douy; = 0, as
can easily be seen.

This is the E-mode, in analogy to the electric field.

However, in reality, from an observed shear field, one might measure a
non-zero curl component.
This is called the B-mode, in analogy to the magnetic field.

Definition:

VZikE =V - u;

V2B =V x u,

and potentials
V2¢E’B — 2KJE’B.

Note that ¥ and P do not correspond to physical mass over-densities.
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E- and B-mode potential, convergence, and shear II
These can be written in complex notation,

Y=yP B k= kP ikD,
and the shear

1 . 1
Y1+iye = 3 (0101Y" — 9209p™) =01 009"+ | D1 009p™ + 2 (81019" — 92059°) | .

Now, we can compute the E-, B-, and mixed EB-mode power spectrum.

and can derive (from §(£) = e*#k(£), see last years’ TD) for the correlators of
v in Fourier space

A)F*(£)) = (2m)%5p (£ — €) [PE(0) + P2(0)]
(A(0)A(£)) = (2m)%0p (£ + £')e"? [PE(6) — P2 (0) + 2iPFP(0)] .
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Real-space correlation function (2PCF)

Fourier-transforming the last two expressions results in shear two-point
correators in real space,

(VO (0 +9)) = (y7") () =F [(7(O)7" (£))] (9);
() () =F [(3(0OF(€))] (9);

But these correlators are very closely related to the shear two-point
correlation functions £, and £_, that we defined on day 1 (part I):

E+(0) = (yye) (9) + (yxvx) (9)

§-(9) = (mm) (9) — {rxvx) (9)
18 / 117
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Recall: 2PCF

Correlation of the shear at two points yields four quantities

() . 7777777 . . ,,,,, PN
(Y57 \\ \,

Parity conservation — (1yx) = {(yxY) =0

The two components of the shear two-point correlation function (2PCF) are
defined as

£+ (0) = () (19) + <’7><’7><> (19)
E-(9) = () (9) — {rxvx) (9)

Due to statistical isotropy & homogeneity, these correlators only depend on .
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Real-space correlation function (2PCF)

Fourier-transforming the last two expressions results in shear two-point
correators in real space,

(VO (6 +9)) = (y7") () =F [(7(O)7" (£))] (9);
() () =F [(3(OF(€))] (9);

But these correlators are very closely related to the shear two-point
correlation functions £, and £_, that we defined on day 1 (part I):

E+(0) = (yye) (9) + (yxvx) (9)
E-(9) = () (9) = (yxvx) (9)

Choose ¥ = (¢,0). Then, 74 = —v1 and 1 = —7s.

= (v7") = {m7) + (2r2) = &4
(vy) = (mm) — (r2r2) + 2i{my2) = - + 2.
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2PCF and E-/B-mode power spectra I

We generalize the relation between 2PCF and convergence power spectrum P
from day 1,

£ (0) = o /0 " aee3o(e0) Py (0

™

£_(9) = — /O " 001 (09) Pu(l),

s

to include E- and B-mode power spectra:

£.(0) = % /0 s 0Jo(09) [PE(0) + P2 (0)]
E_(9) = % /0 b deeJ,(09) [PE(0) — P2(0)]

(and we don’t look any further at £, which vanished for a parity-symmetric
universe. )
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2PCF and E-/B-mode power spectra II

We have thus two observables (£,,£_) and two unknowns (PZ, PB). Surely,
these two power spectra can be deduced from the observations?
The above equations can be inverted using the orthogonality of the Bessel
function:
p(l— 1)

E Y
(or, alternatively, go back to the 2D Fourier integrals and use the
orthogonality of the plane wave basis functions exp(ifd))
resulting in

/ " 4993, (691, (¢'9) =
0

PE@) = [ " 499 €4(9)30(69) + £ (9)Ta(69)],
PB(t) =x /0 99 €4 (9)T0(69) — E_(9)a(0) .

So, in principle, the E-/ and B-mode power spectra can be computed
separately, but not in practice, since this requires information about the shear
correlation that is unobservable, towards 0 and oo separation.

— We have to further filter the field for a better separation.
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Aperture-mass

A few slides ago we introduced the aperture-mass as convolution of the shear
field with a filter @),

My (6,9) = / 829 Qo |9 — B')) 1 ()

and claimed that this was equivlaent of convolving the convergence with
another filter U,

Map(6,9) = [ &0 Up([8 — 9')) P9, 1)
(Kaiser et al. 1994, Schneider 1996).

Exercise for next session (where you’ll need stuff from today’s TD): What is
the relation between U and Q)7
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Convolution with shear
Parenthesis:

Eq. (3) involves the tangential shear ~; with re-
spect to the aperture centre 1; it should be writ-
ten 4 (9, 9').

This “field” +; is thus defined locally, and can- ¥ -9
not be represented globally.

How can this expression be written as convolu-

tion with v = v + iy27 5
91
Solution:
’Yt(’ﬁ, 19’) = - R (,ye—Qicp) ) & (,ye—Qiarctan |192_19’2|/|191_19/1|>
— Map((97 19) - — é}%/dQﬂl ,7(19/>e—2iarctan[|q92_19’2|/|191_19/1|]
=R (Qp * ) (V)
with Q) (9) = — Qg(9)e 2 arctan(V2/d1]
eI EhT

Part II day 1: E- and B-modes | E-/B-mode estimators

E-/B-mode separation with M, I

It is clear that M,, (M) is sensitive to the E-mode (B-mode) of the shear
field ~.

When chosing ) such that its support is finite, with Q(0) = 0 for 6 > 0,ax,
the E-/B-mode separation is achieved on a finite interval.

To get this separation at the second-order level, let’s take the variance of the
aperture-mass: Square M,,(6,v) and average over circle centres ¥ (Schneider
et al. 1998).
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E-/B-mode separation with M, 11

Square M,,(0,9) and average over circle centres 9:
(2,)0) = [ 0 Us(9 ~ 9') [ @0 TUa(|9 ~ 8") (<58 (0")
:/d219/ Ug(ﬁ/) /d219” U9(19//)</’{,EIQE>(|’!9/ i 19//‘)
= / d?9 Uy (9) / d2y’ Ug(v9")

., Al ieer
X / (2ﬂ)2e—2lw / —(%)Ze%w (2m)*0p (£ — £') P (0)

_ / (;ifz ( / d219e2w‘9Ug(19)>2P;E(€)

:i/dMUQ(ee)PE(z).
21

Note: Typically, the filter function U depends on the scale ¥ normalized to the
radius 0, Up(¥) = U(¥/0). In Fourier space this then becomes U (6¢).
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E-/B-mode separation with M,, 111

For popular choices of U, U? is a narrow pass-band filter function.
pop )

polynomial Gaussian
9 92 1 92
zzl—62) (542 9] < 6 1 92 92
w62 92 37 62 _1_(1_ 92 _ 9
Uy () { ; ( ) ( ) o L (1 292) exp ( 292)
6 9> 92
—5 77 |1 — 5 |9 < @ 92 92
w02 02 02 _9° _ 9
Qo (V) { 5 ( ) clse 197 €XP < 262)
J 2 —
Un) S Z exp ()
) | | | Ug(8) poly
5 -
B 7 Qe(®) poly 7
2 06 Ug(®) Gauss - )
5 ' Qq(0) Gauss
> 04 - i
g o02r¢ |
£ o
o2t /o |
04 L L 1 1 L
0 0.5 1 1.5 2 25 2)

0/0

Martin Kilbinger (CEA) Weak Gravitational Lensing Part II 27 / 117




Part II day 1: E- and B-modes | E-/B-mode estimators

E-/B-mode separation with M,, IV

Filter functions in Fourier space:

0.1r¢r

001 ¢

0.001 ¢

le-04 | -

le-05

le-06 <
0.1
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E-/B-mode separation with M,, V

Thus, the aperture-mass dispersion filters out a small range of /-modes around
¢ ~ const 0~ 1.

For example, for the polynomial filter from (Schneider et al. 1998), the peak is
00 ~ 5.

Analogous equations for B- and mixed modes are

2 - 1 r2 B .
(a2)6) = - [ aeet 0Py
(Mup0)(0) = 5 [ LT 60PER(0)

In complex notation, the last three expressions can be written as

(MZ2,)(0) £ (M3)(6) + 2i(Map M )(6) = L / deeU?(0¢) [PE £ PP + 2iPFB] (0).

2
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Aperture-mass dispersion and 2PCF' 1
The above recipe to get the aperture-mass variance can be implemented in an
estimator as follows: For an aperture with center 9 and radius @, average the
observed galaxy ellipticities weighted by the filter ). Square, average over
many centers 9J:

This is however not very efficient due to
masked regions and field boundaries.
Solutions:

e Inpainting of missing data (Starck
et al. 2000), using fast algorithms
for convolution (Leonard
et al. 2012).

e Compute 2PCF first, integrate to
get aperture-mass dispersion.

From [P. Simon, PhD thesis, 2005].
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Aperture-mass dispersion and 2PCF 11

Aperture-mass dispersion from 2PCF
M, depends on v, thus we expect that (MZ,) depends on (yyy) ~ 2PCF.
Simple calculation: Use

s

(M2)0) = 5 [ dceT60PE ()

and insert

PR = [ 40964 0)0(09) + E-0)Iu(e0).

wiz)6) = [ ey 7 () e+ (5) o).

A

Ty (z) = /OOO dtt Jo 4(xt)U?(2).

Result:

with
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Aperture-mass dispersion and 2PCF' 111

The functions T4 (x) have support [0;2], thus the above integral extends to 26.
Therefore, the maximum distance to compute the shear correlation &4 is

Ymax = 20.

Remember the diagram from Part 17

filter with
~ map 0 M,p, 1 maps
sum over pajrs o?
(auto-correlatjon)
filter with
2 2
é-:l: T <Map>7 <MJ_>
Maybe this makes a bit more sense now. ..
32 / 117
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Aperture-mass dispersion measurements

CFHTLS 2007 versus CFHTlenS 2013.

108 : -5
2010 3.0-10°° 1210 E-mode ——=—
2010° 10107 ¢ B-mode —=— 1
1.510° a 6 | WMAP7 ------- i
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® 0.010° E 6 | e L W )
1.010° | . 2 60107 1 ‘EE
1,010 Rz 6 bl 4
A . S 40100 f | 4y
o8 50100} %ﬂ g 20100 | g
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From (Fu et al. 2008). From (Kilbinger et al. 2013).
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Part II day 1: E- and B-modes | E-/B-mode estimators

Ring statistic |
The problem of the unaccessible zero lag shear correlation for an E- and
B-mode decomposition remains. How can we construct a E-/B-mode
second-order correlation with a minimum galaxy separation ¥,;, > 07

Solution: Correlate shear on two con-
centric rings (Schneider & Kilbinger
2007).

What are the minimum and maximum
distances in this configuration?

Figure from (Eifler et al. 2010).
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Part II day 1: E- and B-modes | E-/B-mode estimators

Ring statistic 11

Filter functions (in the original paper called Z1 instead of T.) depend on
geometry of circles, and free-to-choose weight functions over the rings.

(RR)zn = [ 5 (€+@0) Tyon) 26 (@) T-(z,1).

n

where 7 = Omin /PO max < 1 is ratio of minimum to maximum separation of the
configuration.

General E-/B-mode decomposition on a finite interval (in log 9).
(Schneider & Kilbinger 2007) worked out the conditions on 7'y to have finite
support, with 0 < Ypnin < Ymax < 00:

ﬁmax 79max
/ d1919T+(19):O:/ dy 9® T (V) ;
Y

min ﬁmin

0 0
max do max dy
— T (V) =0= — T (V).
/19 v (¥) /19 G ¥)

min
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Part II day 1: E- and B-modes | E-/B-mode estimators

Ring statistic measurements

CFHTLS 2007 versus CFHTLenS 2013.
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From (Eifler et al. 2010). From (Kilbinger et al. 2013), optimised ring
statisc following (Fu & Kilbinger 2010).
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Part II day 1: E- and B-modes | E-/B-mode estimators

COSEBIs |

ﬁmax 19max
/ d1919T+(19):()=/ d9 93 T, (9) ;
Y

min 19min
Y 9
max ) max )
— T =0= — T_(9) .
/19min 19 (19) /ﬂmin 193 ( )

Under these conditions the functions Tt can be freely choosen. Idea of
(Schneider et al. 2010): Define modes E,,, B,, using polynomials of order n + 1.
Define family of orthogonal polynomials that provide all information about
E-/B-modes on finite interval:

Complete Orthogonal Set of E-/B-mode Integrals.

The COSEBIs contain nearly all information that is in £, and &_, except the
very large scales. These are outside the survey, and cannot be decomposed
into E-/B-modes, but form an ambigous mode. This mode is contained in
£4(0), for which the filter Jo(0¢) — const for arbitrarily large ¢ — 0.
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Part II day 1: E- and B-modes | E-/B-mode estimators

COSEBIs 11

Polynomials can be linear in 6 (Lin-COSEBIs), or linear in z = log
(Log-COSEBISs).

o
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] COSEBI linear filter functions W,, (= U?)
COSEBI linear filter functions T+, in real in Fourier space. From (Schneider et al.
space. 2010).
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COSEBIs III
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COSEBI logarithmic filter functions T4, in real space.

Martin Kilbinger (CEA) Weak Gravitational Lensing Part II 39 / 117
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COSEBIs IV

Lin-COSEBIs  +

N Log-COSEBIs  x
0.04 ¢ 2PCFs -
+ angular range [1°,400’]

0.03 r | 7parameters LS 1

0.05

u— + 2 redshift bins

0.02 + o :

X =
001 | % +++++++++ 1
' XXWM:&&&#&HA—H%—}
O I I I I I I I I I
5 10 15 20 25 30 35 40 45 50

nmax

Inverse Fisher-matrix (allowed parameter) volume as function of COSEBIs maximum mode.
From (Asgari et al. 2012).

Log-COSEBIs show faster convergence of available information with n.
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Band-power spectrum I

The power spectrum P, can be estimated from shear data using methods from
the CBM,

(Pseudo-Cy, Bayesian, . ..)

from pixellised maps.

A much faster but biased method is a band-power estimate from the 2PCF.

Recall the expressions
PE(E) = [ 40 9(€0(0)30(e0) + € (2)Ja(®)],
PR = [~ A9 0[€-(0)30(e9) € (2)3u(e9)].

To estimate these improper integrals as direct sums over observed £+ between
Ymin and Y nax would introduce large biases.
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Band-power spectrum II

\\\\\\\‘ T \\\\\\\‘ L
I 12 P (1) (K,=0)
77777 12 P)obsOl> <K+:1>
1073 | 1 P (1) .
S 10
105 & 7/
:// \\\‘:\\‘ \\\\\‘ \\\\\‘
10t 107 103 104
1
~ gmax
PO =2 [ 400 (K26 (6)Io(68) + (1 — K4 )E-(6)3u(60)
Gmin
From (Schneider et al. 2002).
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Part II day 1: E- and B-modes @ E-/B-mode estimators

Band-power spectrum III
However, we can add another integration in bands of ¢, between £,,,;;, and £y,x,

Pom e [0 = 2 [ Y L 0)gs ) 0 ta0)] + (- K06 @0 (000) — -]}

: : 9
T J Ll © J Omin
where A; = In(4;,/¢;) is the logarithmic width of the band, and
8
@ =) o @= (- 2) 0 -she@.
10-3 = E
This strongly reduces i ]
the bias. I ]
= 10 & 3
. vy r E
You will use the o ; 1
program pallas.py in i 1
the TD this afternoon 1070 & 173
that implements this C \ ]
. r annnnnml__nnnannml—nnnnansdln M nabinm b
estimator. L 10t 102 10° 10t 10° |
10-8 | | | L
101 102 103 10 105
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Part II day 1: E- and B-modes Galaxy-galaxy lensing: motivation

Galaxy-galaxy lensing: Overview

Correlation between high-z galaxy shapes and low-z galaxy positions.
E.g. average tangential shear around massive galaxies.
Provides mass associated with galaxy sample.

e Galaxy halo profiles from kpc to Mpc
e Mass-to-light ratio

In combination with other tracers of matter (galaxy clustering, cosmic shear,
velocity correlations, X-ray emission, ...):

e Galaxy bias. Properties such as linearity, scale-dependence, stochasticity
e Test of General Relativity

Can be done quasi model-independent since two or more observables trace
same matter field, but with different biases.
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Part II day 1: E- and B-modes Galaxy-galaxy lensing: motivation

Tangential shear and projected overdensity

Tangential shear at distance 0 is related to total overdensity within this radius:
(1) (0) = R(< 0) — (%) (6).

No assumption about mass distribution is made here!

End of day 1.
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