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Abstract—One of the most general and acknowledged models
for background statistics characterization is the family of ellip-
tically symmetric distributions. They account for heterogeneity
and non-Gaussianity of real data. Today, although non-Gaussian
models are assumed for background modeling and design of
detectors, the parameters estimation is usually performed using
classical Gaussian-based estimators. This paper analyzes robust
estimation techniques in a non-Gaussian environment and high-
lights their interest as an alternative to classical procedures for
target detection purposes. The goal of this paper is to extend
well-known detection methodologies to non-Gaussian framework,
when the statistical mean is non-null and unknown. Furthermore,
a theoretical closed-form expression for false-alarm regulation is
derived and the Constant False Alarm Rate property is pursued
to allow the detector to be independent of nuisance parameters.
The experimental validation is conducted on simulations.

Index Terms—Elliptical distributions, M-estimation, robust-
ness, adaptive target detection, false alarm regulation.

I. INTRODUCTION

MOST of the classical target detection methods are
derived under Gaussian assumption (see for e.g. [1],

[2], [3]) and need for the statistical characterization of the
background usually through the first and second order parame-
ters (i.e. the mean vector and the covariance matrix). However,
in many applications, the outcome of the detection scheme
to the background diverts from the theoretically expected
Gaussian assumption. The actual distribution may have heavier
tails compared to the expected distribution, and these tails will
strongly increase the observed false-alarm rate of the detector.
Introduced by Kelker in [4] and extended to the complex
case in [5], the family of Elliptically Contoured distribu-
tion accounts for non-Gaussianity by providing a long tailed
alternative to the multivariate Normal model. Although el-
liptical distributions have already been introduced for back-
ground modeling in wireless radio propagation problems [6],
radar clutter echoes modeling [7], hyperspectral background
characterization [8], [9], [10], the parameters estimation is
often performed using classical Gaussian based estimators.
For example, the covariance matrix is generally determined
by the Sample Covariance Matrix (SCM) and the mean
vector with the Sample Mean Vector (SMV): µ̂SMV =
1

N

∑N
i=1 xi, Σ̂SCM =

1

N

∑N
i=1(xi − µ̂SMV )(xi − µ̂SMV )H .
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Indeed, these classical estimators correspond to the Maximum
Likelihood Estimators (MLE) for Gaussian assumption. When
the Gaussian hypothesis is not fulfilled, the performance of
the detector will be deteriorated and the false-alarm rate will
increase. Therefore, elliptical distributions can be used to
derive robust estimators of the parameters and to evaluate
the robustness of the statistical methods[11], [12]. Robust
location and scatter M-estimators were firstly introduced as
a generalization of the MLE. Up until now, they have been
widely studied in statistics literature [13], [14], [15] and have
been used in several signal processing applications, such as
radar detection [16] and hyperspectral imaging [17]. When
the underlying distribution is unknown, M-estimators provide
an alternative approach for robust parameter estimation of
elliptical populations. These can then be substituted in the
detection scheme (two-step Generalized Likelihood Ratio Test
(GLRT)) in place of the unknown mean vector and covariance
matrix. This allows to obtain robust properties for target
detection schemes derived under the Gaussian assumption. It
is worth pointing out that, due to the occurrence of impulsive
environments and outliers in real scenarios, robustness of
statistical procedures is an essential design requirement for
target detection. The detector’s performance has been analyzed
over simulations and real data in [18].
The main contributions presented in this work are the joint
estimation of the covariance matrix and the mean vector of
the data in robust estimation framework, and their associated
Constant False Alarm Rate (CFAR) adaptive detection test.
More precisely, a theoretical closed-form expression for false-
alarm regulation is derived in Proposition III.1. We will show
that the proposed detection method jointly used with robust es-
timates allow not only to overcome the heterogeneity and non-
Gaussianity but also to reach the same performance than the
conventional detector on homogeneous Gaussian background.

In the following, vectors (resp. matrices) are denoted by
bold-faced lowercase letters (resp. uppercase letters). H repre-
sents the Hermitian operator (transpose conjugate). ∼ means
“distributed as”, d= stands for “shares the same distribution as”,
d−→ denotes the convergence in distribution. Im is the m×m

identity matrix, j is the imaginary unit and <(y) represents
the real part of the complex vector y. vec is the operator
which transforms a m×n matrix into a vector of length mn,
concatenating its n columns into a single column and Tr(·)
denotes the trace operator.

II. ELLIPTICAL DISTRIBUTIONS

In this section, we present the class of complex elliptically
contoured distributions [5], (see [19] for a complete review).
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Definition II.1. A m-dimensional random complex vector z
has a complex elliptical (CE) distribution if its characteristic
function is of the form:

Φz(c) = exp
(
j <(cH µ)

)
φ(cH Σ c) (1)

for some function φ : R+ → R, called characteristic generator,
a positive semidefinite matrix Σ, called scatter matrix and
µ ∈ Cm the location vector. We shall write z ∼ CE(µ,Σ, φ).

From z ∼ CE(µ,Σ, φ), it does not follow that z has a
probability density function (p.d.f) fz(.). If it exists, then it
has the form:

fz(z) = |Σ|−1hm
(
(z− µ)H Σ−1 (z− µ)

)
(2)

where hm is any function such as (2) defines a p.d.f. in Cm.
The function hm is usually called density generator and it
is assumed to be only approximately known. In this case
we may write CE(µ,Σ, hm) instead of CE(µ,Σ, φ). The
scatter matrix Σ describes the shape and orientation of the
elliptical equidensity contours. If the second-order moment
exists, then Σ reflects the structure of the covariance matrix
M, i.e. the covariance matrix is equal to the scatter matrix
up to a scalar constant Σ = γM. Note that while the scatter
matrix is always defined up to a scalar constant, the covariance
matrix does not exist for some CE distributions (e.g. Cauchy
distribution). We are interested in the information contained in
the structure of the matrix, but not on its scale. The class of
elliptical distributions includes a large number of well-known
distributions, as for instance the multivariate Gaussian [20],
the K-distribution [21] or the multivariate t-distribution [5].

Let us now review some robust procedures particularly
suited for estimating the scatter matrix and the mean vector
of elliptical populations.

A. M-Estimators

When the density generator hm is unknown, M-estimators
provide a robust alternative for parameter estimation of ellipti-
cal populations. They have been introduced in this context as a
generalization of MLE. Assume z1, z2, ..., zN an independent
and identically distributed (i.i.d.) sample from a CE(µ,Σ, hm)
with N > m. The complex M-estimators of location and
scatter are defined as the joint solutions of:

µ̂N =

N∑
i=1

u1(ti) zi

N∑
i=1

u1(ti)

, Σ̂N =
1

N

N∑
i=1

u2

(
t2i
)
(zi − µ̂N ) (zi − µ̂N )H ,

(3)

where ti =
(
(zi − µ̂)H Σ̂

−1
(zi − µ̂)

)1/2
and u1(.), u2(.)

denote any real-valued weighting functions on the quadratic
form ti. Remark that t2i here is nothing but the Mahalanobis
distance and the main purpose of u1(.) and u2(.) is to attenuate
the contribution of highly outlying samples. The choice of
u1(.) and u2(.) does not need to be related to a particular
elliptical distribution and therefore, M-estimators constitute
a wide class of estimates that includes the MLE for the

particular case u1(t) = −h′m
(
t2
)
/hm

(
t2
)

and u2
(
t2
)

=
u1(t). Existence and uniqueness have been proven in the real
case, provided functions u1(.), u2(.) satisfy a set of general
assumptions stated by Maronna [14]. Ollila has shown in
[22] that these conditions hold also in the complex case. The
solutions (µ̂N , Σ̂N ) are estimates for the parameters (µ,Σ0):

Σ0 = E
[
u2
[
(z− µ)H Σ−10 (z− µ)

]
(z− µ) (z− µ)H

]
.

(4)
For elliptical distributions, the implicit equation (4) admits a
solution Σ0 and one has: Σ = σΣ0.
Hence, σ is obtained solving the following equation given in
[23] and recapped here. Multiplying (4) by Σ−10 and taking
trace yields:

E
[
ψ2(σ|t|2)

]
= m (5)

where t ∼ CE(0, Im) and ψ2(s) = su2(s).
We present now an example of M -estimators of location and
scatter.

Fixed Point Estimators: The Fixed Point Estimators (FPE)
firstly introduced in [24], satisfy the following implicit equa-
tions:

µ̂FP =

N∑
i=1

zi(
(zi − µ̂FP )H M̂−1

FP (zi − µ̂FP )
)1/2

N∑
i=1

1(
(zi − µ̂FP )HM̂−1

FP (zi − µ̂FP )
)1/2

, (6)

M̂FP =
m

N

N∑
i=1

(zi − µ̂FP ) (zi − µ̂FP )H

((zi − µ̂FP )H M̂−1
FP (zi − µ̂FP ))

, (7)

which correspond to the particular cases of (3) for u1(t) = t−1

and u2
(
t2
)

= mt−2. They are specified by fixed point equa-
tions and can be easily computed using a recursive algorithm.
If the limit of the algorithm exists, it must be a solution.
Although, the theoretical convergence of the procedure has
not been proven, the empirical behavior is suitable.
The main results on the statistical properties of M̂FP are
recalled here in the elliptical distribution framework (when µ
is assumed to be known): M̂FP is a consistent and unbiased
estimate of Σ; its asymptotic distribution is Gaussian and
its covariance matrix is fully characterized in [25]; for N
sufficiently large, M̂FP behaves as a Wishart matrix with
m
m+1 N degrees of freedom (see [26] for a detailed perfor-
mance analysis). Remark that the distribution of M̂FP does
not depend on the true underlying elliptical distribution. In
order to establish consistency and asymptotic normality, the
population distribution cannot be too heavily concentrated
around the center. Consistency and asymptotic distribution of
M̂FP are demonstrated for the joint location-scatter estimation
in the real case in [24]. For identification purposes, one may
define a normalization constraint on the matrix estimate, e.g.
Tr(M̂FP ) = m.

B. Asymptotic distribution of the M -estimators
Let us specify the asymptotic distribution of the M -

estimators. Assume z1, z2, . . . , zN an i.i.d. sample from a
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CE(µ,Σ, hm). Then, one has:
√
Nvec

(
(Σ̂N −Σ0)

) d−→

CN
(
0, ν1 (ΣT

0 ⊗Σ0) + ν2 vec(Σ0)vec(Σ0)H
)
,

with:

ν1 =
E [ψ2

2(σt2)]

m (m+ 1) (1 + [m(m+ 1)]−1E [σt2ψ′2(σt2)] )
2 , (8)

ν2 =
E [(ψ2(σt)−mσ)2]

(m+ E [σt2 ψ′2(σt2)] )
2 −

ν1

m
, (9)

where ν1 > 0 and ν2 ≥ −ν1m and σ solves Eq. (5).
Remark that the classical SCM verifies the previous conditions
under Gaussian assumption taking ν1 = 1 and ν2 = 0. These
results were investigated in [14], [23] firstly in the real case,
and extended to the complex case in [19], [27] when the mean
vector is completely known.

III. MAIN RESULTS

In non-Gaussian context, the Adaptive Normalized Matched
Filter (ANMF) detector, proposed in [28], takes advantage of
its invariance properties and delivers better results than the
other Gaussian-based detectors, such as the Adaptive Matched
Filter (AMF) and the Kelly test, [29]. If the background does
not fulfill the Gaussian hypothesis, the detector performance
can be deteriorated, increasing the false-alarm rate. To account
for heterogeneity and non-Gaussianity of the background, a
possible way is to use of the ANMF test built with robust
estimates. If some a priori knowledge of the noise statistics
(e.g., K -distribution, t-distribution, etc.) is available, then Σ
and µ should be estimated by the MLE Σ̂ and µ̂ of the
assumed elliptical model. When there is no reliable statistical
information on secondary data, they are assumed to be i.i.d.
random samples from an unknown CE distribution. Then, prac-
tically any robust M-estimator could be used in the detection
scheme. For heavy-tailed non-Gaussian background robustness
of the selected M-estimator is perhaps the most important
design criterion.

ANMF built with robust estimates

We replace the covariance matrix and the mean vector
by robust M -estimators of scatter and location as they are
consistent estimators of the covariance matrix up to a positive
scalar and the mean vector within the class of CE distributions
(two-step GLRT). Thus, the ANMF for both the mean vector
and the covariance matrix estimation takes the form

ΛANMF Σ̂,µ̂ =
|pH Σ̂

−1
N (x− µ̂N )|2

(pH Σ̂
−1
N p)

(
(x− µ̂N )H Σ̂

−1
N (x− µ̂N )

) H1

≷
H0

λ .

(10)
where p is the steering vector describing the signal which
is sought, µ̂N and Σ̂N stand for any couple of M -estimators
and N stresses their dependency with the number of secondary
data. Note that the ANMF falls into the class of homogeneous
functions H(·) of degree 0, i.e. the resulting detector does not

depend on the scale factor of the matrix. When robust M -
estimators are used jointly with the ANMF, the false-alarm
can be regulated according to the following proposition.

Proposition III.1. The theoretical relationship between the
PFA and the threshold for the ANMF, built with M -estimators
of location and scatter µ̂N and Σ̂N , is given by:

PFAANMF Σ̂,µ̂ = (1− λ)a−12F1 (a, a− 1; b− 1;λ) , (11)

with a = σ1(N−1)−m+2 and b = σ1(N−1)+2, where N
is the number of secondary data and m the dimension of the
vectors. σ1 is related to the particular choice of M -estimators
and is obtained according to:

σ1 =
E [ψ2

2(σt2)]

m (m+ 1) (1 + [m(m+ 1)]−1E [σt2ψ′2(σt2)] )
2 .

(12)

Proof: The “PFA-threshold” relationship for the ANMF
detector is perfectly known in Gaussian context and when the
used estimators are the SMV and a Wishart matrix obtained
with the SCM. The “PFA-threshold” is derived in [30] and is
recalled here:

PFAANMF Σ̂,µ̂ = (1− λ)a−12F1 (a, a− 1; b− 1;λ) , (13)

where a = (N − 1) − m + 2 and b = (N − 1) + 2 and
2F1(·) is the hypergeometric function [31]. The statistical
behavior of the M -estimators has been described in Section
II-B. It has been shown that, for N large enough, M -estimators
statistically behave as Wishart distributed matrices. Therefore,
their distribution rely on the asymptotic variance of the con-
sidered M -estimators, σ1, detailed above. Compared with the
classical SCM-SMV, the only change is the correction factor
σ1 acting on (N − 1). For the general case of M -estimators,
the relationship in Eq. (13) is verified for N large enough
replacing N − 1 by (N − 1)/σ1.
This allows to give an approximated “PFA-threshold” rela-
tionship for the M -estimators and for functions in the class
of homogeneous functions of degree 0 (as it is the case for
the ANMF). Indeed, we note that the test statistic in Eq. (10)
stays the same if one substitutes Σ̂ by Σ̂/Tr(Σ̂). Thus, for N
sufficiently large, the “PFA-threshold” relationship is given by
Proposition III.1. This function only depends on the size m of
the vectors and on the number N of secondary data used for
the estimation stage as well as the asymptotic variance σ1 of
the considered M -estimators.

Note that the variance of the mean estimator will not affect
the distribution as it appears both at the numerator and the
denominator and subsequently, it disappears.x

Although FPE do not belong to the class of M -estimators
(as they do not satisfy the conditions of Maronna [14]), these
results can also be extended to the FPE. The approximated
“PFA-threshold” is obtained replacing in Eq. (13) N − 1 by
m
m+1 (N − 1) as σ1 = m+1

m which is an extension of [32] for
unknown mean vector.
The CFAR property of this detector in any heterogeneous
and/or non-Gaussian background is reached when the FPE are
used. On the other hand, as the background is non-Gaussian
and/or heterogeneous, the statistical distribution of the ANMF
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built with the SCM estimate cannot be predicted by Eq. (13),
but it will surely vary with the background. The ANMF built
with any M -estimators (and particularly FPE) does overcome
the non-Gaussianity and/or heterogeneity of the data. This
implies, thanks to the properties of the CE distributions, that
the detector behaves according to the same distribution regard-
less of the true CE, i.e., it is distribution-free (see [33]). In
addition, the asymptotic variance σ1, which is always greater
than 1, quantifies the loss of performance for the detector over
optimality in Gaussian distributed background. Despite this
small loss in Gaussian case, M -estimators bring robustness
to the detection scheme and allow for false-alarm regulation
within the class of CE distributions. The improvement pointed
for false alarm regulation leads to a better performance in
terms of probability of detection. Notably, the SNR required
to detect a target can be considerably decreased.

IV. SIMULATIONS

In this section, we validate the theoretical analysis on
simulated data. The experiments have been realized over a
K-distribution with shape parameter ν = 0.5 for m = 10
dimensional vectors, N = 50 secondary data and the compu-
tations have been made through 106 Monte-Carlo trials. The
true covariance is chosen as a Toeplitz matrix whose entries
are Σi,j = ρ|i−j| and where ρ = 0.4. The mean vector is
arbitrarily set to have all entries equal to (3 + 4j). Under
a K-distribution, as shown on Fig. 1, the theoretical “PFA-
threshold” relationship in Eq. (11) is in perfect agreement
with the Monte-Carlo simulations for the FPE, while for the
SCM-SMV, the theoretical “PFA-threshold” relationship in Eq.
(13) is not valid anymore (since the Gaussian assumption is
not respected anymore). We have left the theoretical “PFA-
threshold” relationship for Gaussian estimators (black curve)
for information.
It is worth pointing out that on both Gaussian and K-
distribution contexts, the false alarm regulation for the FPE
leads to the same results. Thus, the curve just depends on
the size of the vector m and on the number of secondary
data N . This fact emphasizes the maximal invariance obtained
with the ANMF built with the FPE, i.e. the distribution of
the detector under only background hypothesis remains the
same for all different impulsive distributions within the class
of CE distributions. This has been referred to as the CFAR
property: one of the most attractive properties of the ANMF
(FPE) detector is its distribution invariance to the true matrix
(CFAR-matrix), to the true mean vector (CFAR-mean) and to
the underlying distribution itself (CFAR texture), i.e. the dis-
tribution of the detector remains the same even for impulsive
distributions and for different parameters of the corresponding
distributions. This CFAR texture property is highlighted in
Fig. 2. The experiments were conducted for m = 3 with
N = 21 secondary data and the computations have been
made through 106 Monte-Carlo trials for different impulsive
distributions. Note that the detector behaves according to the
same distribution regardless of the true elliptical distribution.
However, this is the case only for the FPE and not for the
other M -estimators.
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Fig. 1: PFA-threshold for the ANMF under a K-distribution
with shape parameter ν = 0.3 for m = 10 and N = 50
when (1) the SCM-SMV are used (red and black curves) (2)
Proposition III.1: the FPE are used (yellow and green curves)
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Fig. 2: PFA-threshold for the ANMF built with the FPE for
different underlying distributions Gaussian and K-distribution
with shape parameter ν and m = 3 and N = 21.

V. CONCLUSION

We have detailed the class of elliptically symmetric distri-
butions as a general model for background characterization.
Elliptical distributions account for heterogeneity and long tail
distributions. Once established that real data can not fit a
multivariate Normal distribution, the use of the Gaussian max-
imum likelihood estimates (SCM and SMV) do not provide the
optimal parameter estimation. We propose the use of robust
estimates for the mean vector and the covariance matrix. We
have described the M-estimators, notably the FPE. The joint
estimation of both parameters is a new challenging problem
that opens many unknowns and it will be further investigated.
We introduce here the use of these estimates on classical
detection method. For false alarm regulation purposes, we have
derived the theoretical relationship to set the proper threshold
for a fixed probability of false alarm. Finally, we have vali-
dated the theoretical analysis over simulations. We conclude
that the robust estimation tools presented in this paper offer
a versatile alternative to Gaussian estimates. We remark that
proposed M-estimators in Gaussian environment are capable of
reaching the same results as the SCM and SMV. On the other
hand, they outperform the classical estimation methods in case
of non-Gaussian impulsive noise. This adaptability and their
robustness make them suitable estimates in most scenarios
and suggests its use in signal processing applications where
covariance matrix and mean vector are both unknown and have
to be estimated from the background.
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