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Abstract. Most techniques of Blind Source Separation (BSS) are highly
sensitive to the presence of gross errors while these last are ubiquitous in
many real-world applications. This mandates the development of robust
BSS methods, especially to handle the determined case for which there
is currently no strategy able to separate the outliers from the sources
contributions. We propose a new method which exploits the difference
of structural contents that is naturally exhibited by the sources and the
outliers in many applications to accurately separate the two contribu-
tions. More precisely, we exploit the sparse representations of the signals
in two adapted and different dictionaries to estimate jointly the mixing
matrix, the sources and the outliers. Preliminary results show the good
accuracy of the proposed algorithm in various settings.

Keywords: Blind source separation, robust recovery, outliers, sparse
signal modeling, morphological diversity.

1 Introduction

Multichannel data are nowadays encountered in various domains such as as-
trophysics [4] or remote sensing [8]. Recovering the underlying signals in these
data is generally necessary to analyze them. This extraction of the meaningful
information can be done using Blind Source Separation (BSS). The standard
instantaneous linear mixture model assumes that BSS aims at recovering the n
sources {Si}i=1..n linearly mixed into m ≥ n observations {Xj}j=1..m with t > n
samples. This model can be conveniently recast in the following matrix form:

X = AS + N, (1)

where X ∈ Rm×t designates the linear observations, A ∈ Rm×n the unknown
mixing matrix, S ∈ Rn×t the sources and N ∈ Rm×t a Gaussian noise term
accounting for model imperfections.
This model is too simplistic to represent satisfactorily complex real-world ap-
plications. Indeed, the data can be corrupted by localized and large errors, des-
ignated in the following as outliers O. These deviations from the linear model
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(1) encompass unexpected physical events such as the presence of spectral vari-
ability in hyperspectral unmixing [8], the presence of point-source emissions in
astrophysics [15], and also malfunctions of captors [12], to name only a few. In
the following, we will assume that the data can be better expressed by:

X = AS + O + N, (2)

where O ∈ Rm×t stands for the outliers.

Robust BSS methods in the literature

Despite the unavoidable presence of outliers in some applications, most of the
BSS methods in the literature are highly sensitive to their presence [7] and only
few strategies dedicated to this problem have been developed. They can mainly
be divided into three classes:
– Within the ICA-framework, the authors of [13] promote the mutual indepen-

dence of the sources by using the robust β-divergence instead of the standard
and sensitive Kullback-Leibler divergence. However, since this method only
estimates A, no separation between O and S is performed.

– The “two-step methods”reside in: i) eliminating O from the data and ii) per-
forming the separation on the “outliers-free”observations. This strategy has
been particularly popularized in hyperspectral imaging [12], [19] for which a
precise separation between O and the low-rank matrix AS has been shown to
be possible with the algorithm PCP [6].

– The component separation techniques aim at recovering simultaneously A,S
and O. It has essentially been used in the NMF framework [1, 8, 10, 11]. The
efficiency of these methods strongly depends on the non-negativity assump-
tion, which is not valid in a large number of applications.

In [7], we proposed a component separation method exploiting the sparse rep-
resentations of S and O in a same dictionary to jointly estimate A, S and O.
Even though A is well estimated, this method is unable to accurately separate O
from the sources contributions, especially when the number of sources is close to
the number of observations [7]. Indeed, even if A is perfectly known, separating
O from S is an ill-posed problem since it amounts recovering the sought-after

signals
[
STOT

]T
from the observations X obtained with the sensing matrix [AI]:

Recover S and O given A and X such that X =
(
A I

)(S
O

)
, (3)

where I denotes the identity matrix of size m×m.
Solving (3) requires additional assumptions on the signals such as:
– The outliers do not lie in the span of A or AS is low rank while O is sparse and

broadly distributed [6]. Consequently, if m� n, the outliers can be separated
precisely from the sources contribution but this is not valid if m is close to n.

– This ill-posed problem can also be handled using sparsity-based regulariza-
tion [7], [2]. Nonetheless, the compressibility of S and O in a same dictionary
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is not sufficient to solve (3): it also necessary that every sample of
[
STOT

]T
be sparse. This condition is rarely verified in practice (e.g. O is column-sparse
such as in [7], [8]). However, if the structural contents of the sources and the
outliers are different, it is possible to separate the two signals by representing
sparsely each signal in one specific dictionary (morphological diversity prin-
ciple [14]). The two dictionaries then help discriminating between the two
contributions.
In the following, we will assume that the morphologies of the outliers and

the sources are different in order to separate the two contributions [14]. This
additional assumption is usually valid in imaging problems. For instance, in
hyperspectral imaging, stripping lines created by malfunctions of captors (the
outliers) have a different geometry than the spatial distributions of the observed
components (the sources) [12]. Similarly in astrophysics, point source emissions
(outliers) have a different morphology than the components of interest which are
more broadly distributed [15], [4].

Contributions

We introduce a new robust BSS algorithm, coined rGMCA, enforcing the spar-
sity of the sources and the one of the outliers in different transformed domains.
It exploits the difference of morphology between outliers and sources to separate
the two contributions and estimates precisely the mixing matrix, the sources
and outliers, without restrictive hypothesis on low-rankness or non-negativity.
A review of the morphological diversity principle is provided in section 2. The
algorithm rGMCA is detailed in section 3. Last, numerical experiments are pre-
sented in section 4, showing the good performances of the rGMCA algorithm.

Notations

The Moore-Penrose pseudo-inverse of the matrix M is designated by M† and its
transpose by MT . The jth column of M is denoted Mj , the ith row Mi, and the
i, jth entry Mi,j . The norm ‖M‖2 denotes the Frobenius norm of M, and more
generally ‖M‖p designates the p-norm of the matrix M seen as a long vector.
The soft-thresholding operator is denoted Sλ(M), where

[Sλ(M)]i,j =

{
Mi,j − sign(Mi,j) ∗ λi if |Mi,j | > λi

0 otherwise

2 Sparsity and morphological diversity

We aim at separating the outliers from the sources by assuming that their mor-
phological/structural contents are different. For this purpose, we introduce two
appropriate dictionaries: ΦO and ΦS. These dictionaries are key to separating
the two contributions. They are chosen so that the corresponding expansion
coefficients of O and S are sparse:

Oj = αOj
ΦO, ∀j ∈ {1..m} and Si = αSi

ΦS, ∀i ∈ {1..n} ,
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where
{
αOj

}
j=1..m

and {αSi}i=1..n are composed of few significant samples. For

instance, wavelets can be used to represent sparsely natural images and curvelets
for smooth curves to cite only two [14].
The morphological diversity between the sources and the outliers implies that
each component {Oj}j=1..m or {Si}i=1..n has its sparsest expansion coefficients
in ΦO or ΦS respectively:

∀i ∈ {1..n} ,∀j ∈ {1..m} ,
∥∥OjΦ

T
O

∥∥
0
<
∥∥OjΦ

T
S

∥∥
0

and
∥∥SiΦT

S

∥∥
0
<
∥∥SiΦT

O

∥∥
0
.

Therefore, it is possible to solve (3) by seeking for the sparsest representations,
in the spirit of the MCA (Morphological Component Analysis) algorithm. The
latest aims at separating k different morphological components of a monochan-
nel signal, given k appropriate dictionaries, by maximizing the sparsity of the
expansion coefficients of each morphological component in its corresponding dic-
tionary. The good performances of MCA support the utilization of the sparsity
to separate different morphological components [14].
In the next section, we will present how, we exploit the morphological diversity
between the sources and the outliers to separate the two contributions. Besides,
the sparse representations of S will be also used to discriminate between the
sources. Indeed, sparsity has been shown to be a powerful criterion to unmix the
sources [5].

3 The algorithm rGMCA

The use of sparsity in our strategy is twofold: it allows for an accurate separation
between the outliers and the sources by exploiting their morphological diversity
and it is also used to discriminate between the sources. In order to exploit si-
multaneously these two aspects, we propose to estimate jointly A, S and O by
minimizing the following cost function:

minimize
A,S,O

1

2
‖X−AS−O‖22 + λ

∥∥SΦT
S

∥∥
1

+ β
∥∥OΦT

O

∥∥
p,q
, (4)

where the first term designates the data fidelity term, well suited to deal with the
remaining Gaussian noise, and the second and third terms enforce respectively
the sparsity of S and O in their corresponding dictionary. In the following, we will
assume that the outliers corrupt entire columns of the data such as in [8]. Con-
sequently, we will promote this structure by using the `2,1 norm (p = 2, q = 1).
Despite the non-convexity of the proposed problem, it can be tackled using Block
Coordinate Relaxation [16]. Alternatively estimating A, O and S propagates the
errors from one variable to the others, and thus performs poorly if not initialized
with a good accuracy. We propose instead to fully exploit the structure of the
problem by using the scheme presented in Alg.1 to minimize (4):

– Estimating A and S jointly for fixed O: it exploits the joint sparsity of the
sources to retrieve more precisely A from the denoised observations X−O.

– Estimating O and S for fixed A such as in (3): it provides a precise separation
of the two contributions by using their morphological diversity.

We found that this scheme was the less prone to be trapped into local minima.
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Algorithm 1 rGMCA Algorithm

1: procedure rGMCA(X, n)
2: Initialize Ã(0) (randomly or with a PCA), S̃(0) = 0 and Õ(0) = 0.
3: while k < K do

4: Set S̃(0,k) ← S̃(k−1) and Ã(0,k) ← Ã(k−1)

5: while i < I do . Joint estimation of A and S

6: Update S̃(i,k) with (6)

7: Update Ã(i,k) with (7)
8: Set S̃(k) ← S̃(i−1,k) and Ã(k) ← Ã(i−1,k)

9: Set S̃(0,k) ← S̃(k) and Õ(0,k) ← Õ(k−1)

10: while j < J do . Joint estimation of S and O

11: Update S̃(j,k) with (5)

12: Update Õ(j,k) with (8)
13: Set S̃(k) ← S̃(i−1,k) and Õ(k) ← Õ(i−1,k)

return S̃(k−1), Ã(k−1), Õ(k−1).

3.1 Estimation of A and S

Estimating A and S for fixed O amounts to minimize the following cost function:

argmin
S,A

1

2
‖X−O−AS‖22 + λ

∥∥SΦT
S

∥∥
1
.

This problem is similar to the GMCA algorithm [5], performed on the residual
X − O. This algorithm was first proposed in [5], as well as its fast version
that we use to speed-up rGMCA. This fast version seeks directly for the sparse
coefficients αS and A:
– The estimate of αS, for fixed A, is obtained by minimizing:

argmin
αS

1

2

∥∥(X−O)ΦT
S −AαS

∥∥2
2

+ λ ‖αS‖1 . (5)

This can be solved using ISTA or FISTA [3] or with a projected least square
as it is proposed in [5] (generally faster than using a proximal method):

αS = Sλ
(
A†
(
(X−O)ΦT

S

))
. (6)

– The estimate of A is given by:

A =
(
(X−O)ΦT

S

)
α†S. (7)

Details on GMCA can be found in [5].

3.2 Estimation of S and O

Estimating S and O for fixed A corresponds to the ill-posed problem presented
in (3). In the spirit of the MCA algorithm [14], we estimate alternatively the
sparse coefficients αS and αO by working directly in their associated transformed
domains with the following updates:
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– The estimation of the αS is given by (5), which is solved using FISTA.
– The estimation of the αO is given by :

argmin
αO

1

2

∥∥(X−AS) ΦT
O − αO

∥∥2
2

+ β ‖αO‖2,1 .

Every entry k ∈ {1..t} is obtained with the closed form:

α̃k
O =

(
(X−AS) ΦT

O

)k ×max

0, 1− β∥∥∥((X−AS) ΦT
O

)k∥∥∥
2

 . (8)

3.3 Choice of the parameters

The parameters λ and β are automatically set.
Strategy for λ: It has been shown in [5] that using a decreasing strategy for
λ in the GMCA algorithm increases its robustness against local minima. Prac-
tically, an increasing number of entries are selected. The final threshold λi for
each source Si is kσi, where k ∈ (1, 3) and σi is the standard deviation of the
noise contaminating the ith source. If σi is not known, it can be estimated with
the MAD (median absolute deviation) operator. A large k prevents the incorpo-
ration of Gaussian noise in the source estimate.
When estimating jointly O and S, the values of λi are directly set to the final
thresholds kσi.

Strategy for β: The value of β is fixed to the value σ ×
√

2 × Γ(m+1
2 )

Γ(m
2 )

which

corresponds to an estimation of E
{∥∥(NΦT

O)k
∥∥
2

}
, (mad((X−AS−O)ΦT

O) corre-

sponds to a good estimate of the standard deviation of NΦT
O if it is not known),

and thus limits the impact of the Gaussian noise.

4 Numerical experiments

In this section, we compare rGMCA with the standard robust BSS methods pre-
sented in the introduction: minimization of the β-divergence in ΦO [13] (tuned
implementation from [9]), the combination PCP+GMCA (the outliers are first
discarded from the observations with a tuned implementation of PCP in ΦO [6]
and then A and S are estimated with GMCA in ΦS [5]) and also with GMCA to
illustrate the benefits of using robust strategies. We investigate the performances
of the algorithms with respect to the following criteria:

– The unmixing precision is measured with the global criterion ∆A =
‖Ã†A−I‖

1

n2

[5] and the maximal angle made between the estimated and true columns of
A defined as maxi,i∈{1,..,n} arccos < Ai, Ãi > in degree.

– The accuracy of the separation between S and O is assessed with the minimal
SDR (signal distortion ratio [17]) obtained for each estimation of S.

Since the minimization of the β-divergence does not estimate S, we will compute

the SDR from the estimated sources Sλ
(
Ã†XΦS

)
ΦS, where Ã is the mixing

matrix estimated with the algorithm.
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4.1 Monte Carlo simulations

In this first part, we investigate the robustness of the algorithms with Monte-
Carlo simulation (80 runs) on 1D signals with varying parameters (the amplitude
and the percentage of the corrupted data) and the following setting:
– A total of 8 sources, sparse in DCT, are mixed into 20 observations which are

corrupted with the Gaussian noise N (standard deviation of 0.1, SNR around
40dB), and the outliers which are sparse in the direct domain.

– The columns of O follow a Bernoulli-Gaussian law with an activation param-
eter ρ (default value 10%) and a standard deviation σO (default value 100).

– The sparse coefficients of S are also drawn from a Bernoulli-Gaussian law
(activation parameter of 5%, standard deviation of 100).
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Fig. 1. Influence of the percentage of corrupted entries.
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Fig. 2. Influence of the amplitude of the outliers.

Percentage of corrupted data As shown in fig.1, the minimization of the
β-divergence and GMCA are highly sensitive to the increasing percentage of
outliers. Not only S is poorly estimated fig.1a, but also the sources are not cor-
rectly unmixed fig.1c: the unmixing process is challenging without the explicit
estimation of O. The combination PCP+GMCA provides the most robust un-
mixing process fig.1c, but cannot separate precisely the outliers from the source
contribution without further hypothesis [18], fig.1a. The algorithm rGMCA re-
turns the most accurate estimations of S and A while ρ is lower than 30%, what
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should be achieved in practice if the dictionary ΦO is wisely chosen.
Amplitude of the outliers The minimization of the β-divergence and GMCA
have similar performances: they fail whenever the amplitude of O and the one
of S are of the same order of magnitude. The outliers which are detrimental
for the unmixing are discarded from X with PCP (fig.2c: the maximal angle
is small), but on the overall, PCP struggles to separate accurately O from AS
(fig.2a: the SDR is lower than the one obtained with rGMCA). Besides, when-
ever the amplitude of O is larger than the one of the sources, the performances
of PCP+GMCA are constant. Last, rGMCA is not influence by the amplitude
of the outliers with this setting since the precision reached for the estimation of
A and S stays constant.

4.2 2D simulations

In this section, we compare PCP+GMCA and rGMCA which were significantly
the most successful in section 4.1 on 2D applications. The fist row of fig.3 shows
the sources (four 128 × 128 images, approximately sparse in wavelets [14]) and
the outliers corresponding to a high-frequencies texture (approximately sparse
in DCT). We observe the influence of the amplitude of O and the number of
observations m. When varying m, the maximal amplitude of O is set to the
maximal amplitude of AS, and respectively, when varying the amplitude of O,
we set m = 20. The metrics are averaged for four experiments.

m
‖O‖∞
‖AS‖∞

Method Errors 4 6 10 18 34 0.01 0.1 1 10 100

PCP+GMCA SDR, dB -4.3 -3.5 -2.6 -2.4 -1.9 -2.1 -2.1 -1.6 -3.1 -4.7
Max. Angle 1.1 1.5 1.3 0.8 0.7 0.8 0.8 0.8 1.2 19.6

rGMCA SDR, dB 9.3 12.6 13.8 14.1 14.0 13.6 13.7 14.0 14.9 15.7
Max.Angle 3.6 2.4 1.3 0.8 0.7 0.9 0.9 0.9 0.9 0.9

Table 1. Results obtained for the simulations with the four images with different
numbers of observations m or amplitudes of the outliers.

Amplitude of the outliers Contrary to the previous 1D-case, PCP+GMCA
is shown to be sensitive to the amplitude of O since it becomes unable to estimate
A for the largest amplitude tab.1. Moreover, even if A is correctly retrieved, the
SDR of the sources estimated with PCP+GMCA is very low: the separation
between outliers and sources is not correct (see the second row of fig.3). The
method rGMCA is more reliable as it returns fair estimates of the mixing ma-
trix and the sources for almost all the experiments. More surprisingly, the SDR
obtained with rGMCA increases with the amplitude of O: it becomes easier to
distinguish the contribution of O from the one of N. It is also proportionally less
influenced by the bias introduced by the different thresholding processes. This
improved estimation of O leads to accurate estimates of S.
Number of observations It has been emphasized in [7] and in the introduc-
tion that the ratio m

n is crucial for BSS in the presence of outliers. The unmixing
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process and the estimation of S should be easier if m� n for both algorithms.
The results obtained by the two strategies are indeed improved for a larger m
tab.1. Besides, even if the estimated A is slightly more precise for PCP+GMCA,
the sources returned by rGMCA are much more accurate (see tab.1 and fig.3).

Fig. 3. First row: illustration of O1, then the four initial sources. Second row: illustra-

tion of X1 for m = 34 and
‖O‖∞
‖AS‖∞

= 1 and then the sources estimated with rGMCA.

Third row: illustration of X1 for m = 20 and
‖O‖∞
‖AS‖∞

= 10 and then sources estimated

with PCP+GMCA. The sources were estimated for m = 34 and
‖O‖∞
‖AS‖∞

= 1.

5 Conclusion

The BSS problem in the presence of outliers is challenging since it requires a
robust sources unmixing but also a precise separation of the outliers from the
sources contributions. This task is not properly handled by the standard robust
BSS methods without restrictive hypothesis. We propose a new method coined
rGMCA that estimates jointly the sources, the outliers and the mixing matrix.
It exploits the difference of morphology between the sources and the outliers to
separate precisely the two contributions, including in the challenging determined
case. Preliminary experiments show that rGMCA yields a precise estimation of
the mixing matrix and also of the sources in various settings. The discrepancy
between rGMCA and the standard robust methods is particularly important for
the sources estimations in the proposed experiments. This supports the use of
the morphological diversity to discriminate efficiently between the outliers and
the sources.
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