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Outline

I Binaries issue, PSF systematics & mitigation

I Building a colour-magnitude diagram with one filter

I PSF interpolation revisited



Multiple stars
Effects on Euclid PSF and mitigation



PSF requirements and measurement

I Measured shear power spectrum

Ĉ ≈ (1 +M)C +A, M,A ∼ 〈|δePSF|2〉, 〈δR2
PSF〉

I Science requirement for the PSF shape:

size rms (relative) σ(R2)

〈R2〉
≤ 10−3

ellipticity rms σ(ei) ≤ 10−4

ellipticity ei < 0.15

From Paulin-Henriksson+2008

I Performance needed for measurement

size ∼ 5%

ellipticity ∼ 1%
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The curse of binaires

I Unresolved objects affect the convolution kernel

I Multiple stars are ubiquitous (& 35%)
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Alterations of the PSF due to a single companion
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The binaries in the sky of Euclid
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Identifying multiple stars?

Star w/in specs => use!

multiple star => reject!



Identifying multiple stars?

PSF 
measurements

Cross exposure
analysis

Correlated
noise? Not measurable: single star

w/in specs => use!

Yes: might be a multiple
star => reject!

Multiple exposures

Spectral
class

P(binary) low => use!

P(binary) high => reject!



Exploiting correlated noise

Measured Expected- = Deviations

Correlated noise!

Measured Expected- = Deviations

UNcorrelated noise!

Auto-correlation

Random Forest Classifier

http://blog.yhat.com
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Reconstructing the PSF field
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I Infer binary presence from systematic bias
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AUC metrics
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Summary: finding binaries

I Most of Euclid’s binaries have small angular separations

I Effects on PSF measurement is O(10−4)

I Identify harmful binaries (check Kuntzer+16a) using only VIS 4 exposures

I Looking for systematic biases in measured PSF parameters

X “Naive:” auto-correlation analysis, works, but high FPR (data-driven)

X “Machine learning:” promising, with low FPR (depends on model)

I Work in progress:

• More simulations for healthier metrics evaluations
• Bayesian approach
• Inclusion of realistic issues ? (Stars not present in all exposures, dithering, . . . )
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NGC 6397
Colour-Magnitude diagram

using HST F814W single-band images and machine learning



Stars in a wide band

I Stellar mass correlate with effective surface temperature
=⇒ spectra ∼ Teff

I Different slope =⇒ different PSF (chromaticity!)

Angular resolution: θ ∼ λ

D
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Classifying stars
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Colour-Magnitude Diagram
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Colour-Magnitude Diagram
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Colour-Magnitude Diagram
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Dealing with non-MS stars
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Summary NGC 6397

I Creating a CMD for NGC 697 using HST F814W data

X Removing WD by hand creates great fit to the actual CMD

X Inputs: {imagette of star} and {imagette of star + magnitude}

I Work in progress:

• Removal of WD using shape of PSF −→ concept proven in Kuntzer+16b

• Generate two regressions (?)

• Using more data (only ∼ 500/2300 stars currently used)

• Training on simulated data

I Software on https://github.com/kuntzer/sclas
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PSF Interpolation
using Auto-Encoders and manifold learning



PSF requirements and measurement

I Measured shear power spectrum

Ĉ ≈ (1 +M)C +A, M,A ∼ 〈|δePSF|2〉, 〈δR2
PSF〉

I Science requirement for the PSF shape:

size rms (relative) σ(R2)

〈R2〉
≤ 10−3

ellipticity rms σ(ei) ≤ 10−4

ellipticity ei < 0.15

From Paulin-Henriksson+2008

I Performance needed for measurement

size ∼ 5%

ellipticity ∼ 1%



Auto-Encoders

1. 1. Encode the PSF into a few coefficients

2. 2. Interpolate the coefficients
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Auto-Encoder performance



Interpolating PSFs
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Summary

PDF available at http://obswww.unige.ch/∼kuntzer/talks/cea psf kuntzer.pdf

I Unresolved binaries can be found
• Unresolved multiples alter the PSF
• Most of Euclid’s binaries have small angular separations
• Effects on PSF determination is O(10−4)
• “Binary finder” based on systematic biases
• Auto-correlation, random forests and Bayesian approach (?)

I NGC 6397 Colour-Magnitude diagramme
• Great fit to the Main Sequence
• Inputs: {imagette of star} and {imagette of star + magnitude}
• Can we remove non-MS stars and training on simulations?

I Auto-encoders for PSF interpolation
• Relatively new and promising ML technique
• Denoising almost for free
• Seems to work well on handwritten numbers, harder on stellar images
• Software on https://github.com/kuntzer/pylae
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MS stars and filters


