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Overview

Day 1: Principles of gravitational lensing
Brief history of gravitational lensing
Light deflection in an inhomogeneous Universe
Convergence, shear, and ellipticity
Projected power spectrum
Real-space shear correlations

Day 2: Measurement of weak lensing
Galaxy shape measurement
PSF correction
Photometric redshifts
Estimating shear statistics

Day 3: Surveys and cosmology
Cosmological modelling
Results from past and ongoing surveys (CFHTlenS, KiDS, DES)
Euclid

Day 3+: Extra stu↵



Books, Reviews and Lecture Notes

• Bartelmann & Schneider 2001, review Weak gravitational lensing,
Phys. Rep., 340, 297 arXiv:9912508

• Kochanek, Schneider & Wambsganss 2004, book (Saas Fee) Gravitational
lensing: Strong, weak & micro, The third part (weak lensing) is available
here: http://www.astro.uni-bonn.de/~peter/SaasFee.html)

• Kilbinger 2015, review Cosmology from cosmic shear observations
Reports on Progress in Physics, 78, 086901, arXiv:1411.0155

• Henk Hoekstra 2013, lecture notes (Varenna) arXiv:1312.5981

• Sarah Bridle 2014, lecture videos (Saas Fee)
http://saasfee2014.epfl.ch/page-110036-en.html

• Alan Heavens, 2015, lecture notes (Rio de Janeiro)
www.on.br/cce/2015/br/arq/Heavens_Lecture_4.pdf



Science with gravitational lensing

Outstanding results
Dark matter is not in form of massive compact objects (MACHOs).
Detection of Earth-mass exoplanets.
Structure of QSO inner emission regions.
Dark matter profiles in outskirts of galaxies.
Galaxy clusters are dominated by dark matter.
Constraints on dark energy and modified gravity.

Most important properties of gravitational lensing
Lensing probes total matter, baryonic + dark.
Independent of dynamical state of matter.
Independent of nature of matter.



Brief history of gravitational lensing

• Before Einstein: Masses
deflect photons, treated as
point masses.

• 1915 Einstein’s GR
predicted deflection of
stars by sun, deflection
larger by 2 compared to
classical value. Confirmed
1919 by Eddington and
others during solar eclipse.

1919_eclipse_negative.jpg

Photograph taken by Eddington of solar corona, and

stars marked with bars.



Lensing on cosmological scales

• 1937 Zwicky posits galaxy clusters
as lenses.

• 1979 Walsh et al. detect first
double image of a lenses quasar.

zwicky.png
Abell-2151_LRGBhallas_2400.jpg

Fritz Zwicky; Abell 2151 (Hercules galaxy

cluster) c�Tony Hallas/APoD.

walsh_0957+561_spectra.jpg

(Walsh et al. 1979)



• 1987 Soucail et al.
strongly distorted
“arcs” of
background
galaxies behind
galaxy cluster,
using CCDs.

soucail_arc.pdf

soucail_arc_text.pdf



• Tyson et al. (1990), tangential alignment around clusters.

tyson_cluster_color.pdf tyson_cluster_bw.pdf

Abell 1689

Cluster outskirts: Weak gravitational lensing.



• 2000 cosmic shear: weak lensing in blind fields, by 4 groups (Edinburgh,
Hawai’i, Paris, Bell Labs/US).
Some 10, 000 galaxies on few square degree on the sky area.

vW00+K13_xi_pm.pdf

Shear (ellipticity)

correlation of galaxies as

fct. of angular separation

(Van Waerbeke

et al. 2000, Kilbinger

et al. 2013).

• By 2016: Many dedicated surveys: DLS, CFHTLenS, DES, KiDS, HSC.
Competitive constraints on cosmology.
Factor 100 increase: Millions of galaxies over 100s of degree area. Many
other improvements: Multi-band observations, photometric redshifts,
image and N -body simulations, . . ..



• By 2025: LSST, WFIRST-AFTA,
Euclid data will be available.
Another factor of 100 increase:
Hundred millions of galaxies, tens
of thousands of degree area (most
of the extragalactic sky).

Euclid_survey.pdf

LSST-45-degree-full.jpg

Wfirst_MCR.jpg

Euclid_telescope.pdf



Types of lensing

lensing_types_table_1.pdf



Types of lensing

lensing_types_table_2.pdf



Cosmic shear, or weak cosmological lensing

Light of distant galaxies is deflected while travelling through inhomogeneous
Universe. Information about mass distributions is imprinted on observed
galaxy images.

• Continuous deflection: sensitive to
projected 2D mass distribution.

• Di↵erential deflection:
magnification, distortions of
images.

• Small distortions, few percent
change of images: need statistical
measurement.

• Coherent distortions: measure
correlations, scales few Mpc . . .
few 100 Mpc.

propagation_distortion.pdf



Deflection angle

deflection-grad_sa.pdf

Perturbed Minkowski metric, weak-field (�⌧ c2)

ds2 =
�
1 + 2�/c2

�
c2dt2 � �

1� 2�/c2
�
d`2

One way to derive deflection angle: Fermat’s principle:

Light travel time t =
1

c

Z

path

�
1� 2�/c2

�
d`

is stationary, �t = 0. (Analogous to geometrical optics,
potential as medium with refract. index n = 1� 2�/c2.)
Integrate Euler-Lagrange equations along the light path to
get

deflection angle ↵̂ = � 2

c2
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S
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Special case: point mass

Deflection angle for a point mass M is

↵̂ =
4GM

c2⇠

⇠

⇠
=

2RS

⇠

⇠

⇠

(RS is the Schwarzschild radius.)

This is twice the value one would get
in a classical, Newtonian calculation.

deflection_point_mass_scheme.pdf

einstein_ring.pdfdouble_quasar.pdf



Exercise: Derive the deflection angle for a point mass. I

In the weak-field approximation, we can write the potential as

� = �GM

R
= �c2

2

RS

R
,

where G is Newton’s constant, M the mass of the object, R the distance, and
RS the Schwarzschild radius. The distance R can be written as
R2 = x2 + y2 + z2.
(Here z is not redshift, but radial (comoving) distance.)
We use the so-called Born approximation (from quantum mechanic scattering
theory) to integrate along the unperturbed light ray, which is a straight line
parallel to the z-axis with a constant x2 + y2 = ⇠2. The impact parameter ⇠ is
the distance of the light ray to the point mass.
The deflection angle is then

↵̂ = � 2

c2

Z 1

�1
r?� dz.



Exercise: Derive the deflection angle for a point mass. II

The perpendicular gradient of the potential is

r?� =
c2RS

2|R|3
✓

x
y

◆
=

c2RS

2

⇠

(⇠2 + z2)3/2

✓
cos'
sin'

◆
.

The primitive for (⇠2 + z2)�3/2 is z⇠�2(⇠2 + z2)�1/2]. We use the symmetry of
the integrand to integrate between 0 and 1, and get for the absolute value of
the deflection angle

↵̂ = 2RS


z

⇠(⇠2 + z2)1/2

�1

0

=
2RS

⇠
=

4GM

c2⇠
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Generalisation I: mass distribution
Distribution of point masses Mi(⇠i, z): total deflection angle is linear
vectortial sum over individual deflections

↵̂(⇠) =
X

i

↵̂(⇠ � ⇠i) =
4G

c2

X

i

M(⇠i, z)
⇠ � ⇠i

|⇠ � ⇠i|

With transition to continuous density

Mi(⇠i, z) !
Z

d2⇠0
Z

dz0 ⇢(⇠0, z0)

and introduction of the 2D

surface mass density ⌃(⇠0) =

Z
dz0 ⇢(⇠0, z0)

we get

↵̂(⇠)

Z
d2⇠0 ⌃(⇠0)

⇠ � ⇠i

|⇠ � ⇠i|
Thin-lens approximation



Generalisation II: Extended source I

Extended source: di↵erent light rays impact lens at di↵erent positions ⇠, their
deflection angle ↵(⇠) will be di↵erent: di↵erential deflection ! distortion,
magnification of source image!

abell2218.png



Propagation of light bundles I

Calculate deflection angle di↵erence between di↵erent light bundles:

deflection-lss.pdf

In homogeneous flat Universe, transverse distance x0 between two light rays
as fct. of comoving distance �

x0(�) = �✓.

This is modified by inhomogeneous matter = deflectors as follows.



Propagation of light bundles II

From deflector at comoving distance �0, infinitesimal deflection angle

d↵̂ = � 2

c2
r?�(x,�

0)d�0

This results in a change of transverse distance dx from vantage point of
deflector (at �0)

dx = (�� �0)d↵̂

Total deflection: integrate over all deflectors along �0. This would yield the
di↵erence between a perturbed and an unperturbed light ray. To account for
perturbation of second light ray, subtract gradient of potential �(0) along
second light ray.

x(�) = �✓ � 2

c2

Z �

0
d�0(�� �0)

h
r?�(x(�

0),�0)�r?�
(0)(�0)

i
.

Transform distances into angles seen from the observer: divide by �. x/� is
the angle � under which the unlensed source is seen. The integral/� is the



Propagation of light bundles III

geometric di↵erence between unlensed (�) and apparent, lensed (✓) is the
deflection angle

↵ =
2

c2

Z �

0
d�0�� �0

�

h
r?�(x(�

0),�0)�r?�
(0)(�0)

i
.

This results in the lens equation

� = ✓ �↵.

This is a mapping from lens coordinates ✓ to source coordinates �. (Q: why
not the other way round?)



Linearized lensing quantities I
To 0th order: approximate light path x, on which potential gradient is
evaluated in integral with unperturbed line �✓ (Born approximation):

�(✓) = ✓ � 2

c2

Z �

0
d�0�� �0

�

h
r?�(�

0
✓,�0),�0)�r?�

(0)(�0)
i
.

This neglects coupling between structures at di↵erent distances (lens-lens
coupling): Distortion at some distance adds to undistorted image, neglecting
distortion e↵ect on already distorted image by all matter up to that distance.

Numerical simulations show that Born is accurate to sub-percent on most
scales. This is pretty cool. Di↵erences between perturbed and unberturbed
light ray can be a few Mpc!
Next, drop the second term (does not depend on distance x = �✓, so gradient
vanishes).



Linearized lensing quantities II
Now, we can move the gradient out of integral. That means, deflection angle
is a gradient of a potential, the 2D lensing potential  . Writing derivatives
with respect to angle ✓, we get

�(✓,�) = ✓ �r✓ (✓,�)

with

 (✓,�) =
2

c2

Z �

0
d�0�� �0

��0 �(�0
✓,�0).

[Note: Above equations are valid for flat Universe. For general (curved)
models, some comoving distances are replaced by comoving angular distances.]



Linearized lensing quantities III

Linearizing lens equation
We talked about di↵erential deflection before. To first order, this involves the
derivative of the deflection angle.

Or the lens mapping:

@�i
@✓j

⌘ Aij = �ij � @i@j .

Jacobi (symmetric) matrix

A =

✓
1� � �1 ��2

��2 1� + �1

◆
.

• convergence : isotropic magnification

• shear �: anisotropic stretching

kappagamma.pdf

Convergence and shear are second derivatives of the 2D lensing potential.



Convergence and shear I
The e↵ect of  and � follows from Liouville’s theorem: Surface brightness is
conserved (no photon gets lost).
Therefore the surface brightness I at the lensed position ✓ is equal to the
unlensed, source surface brightness Is at the source position �.

I(✓) = Is(�(✓)) ⇡ Is(�(✓0) +A(✓ � ✓0))

Example: circular isophotes
E↵ect can easily be seen for circular source isophotes,
e.g. ✓1 = R cos t, ✓2 = R sin t (thus ✓21 + ✓22 = R2).
Convergence
Applying the Jacobi matrix with zero shear (and setting �(✓0) = 0), we find
�2
1 + �2

2 = R2(1� )2. The radius R of these isophotes gets transformed at
source position to R(1� ).



Convergence and shear II
Shear
To see an example for the shear stretching, set �2 = 0. We find
(�1,�2) = R([1� � �1] cos t, [1� + �1] sin t) and thus
(�1/[1� � �1])2 + (�2/[1� + �1])2 = R2, which is an ellipse with half axes
R/[1� � �1] and R/[1� + �1].

So we see that shear transforms a circular image
into an elliptical one.

Define complex shear

� = �1 + i�2 = |�|e2i';
The relation between convergence, shear, and the
axis ratio of elliptical isophotes is then

|�| = |1� |1� b/a

1 + b/a

ellipsedef.pdf



Convergence and shear III

Further consequence of lensing: magnification.
Liuville (surface brightness is conserved) + area changes (d�2 6= d✓2 in
general) ! flux changes.

magnification µ = detA�1 = [(1� )2 � �2]�1.

Summary: Convergence and shear linearly encompass information about
projected mass distribution (lensing potential  ). They quantify how lensed
images are magnified, enlarged, and stretched. These are the main observables
in (weak) lensing.



E↵ects of lensing, @i /@xi

di_dpsi_effects_sun.pdf



Basic equation of weak lensing

Weak lensing regime
⌧ 1, |�| ⌧ 1.
The observed ellipticity of a galaxy is the sum of the intrinsic ellipticity and
the shear:

" ⇡ "s + �

Random intrinsic orientation of galaxies

h"si = 0 �! h"i = �

The observed ellipticity is an unbiased estimator of the shear. Very noisy
though! �" = h|"s|2i1/2 ⇡ 0.4 � � ⇠ 0.03. Increase S/N and beat down noise
by averaging over large number of galaxies.

Question: Why is the equivalent estimation of the convergence and/or
magnification more di�cult?



Ellipticity and local shear

mellfig02.pdf

[from Y. Mellier]
Galaxy ellipticities are an estimator of the local shear.



Some weak-lensing galaxy surveys

Survey Date Area [deg2] ngal [arcmin�2]

CFHTLenS 2003-2007 170 14
DLS 2001-2006 25 20
COSMOS 2005 1.6 80
SDSS 2000-2012 11,000 2
KiDS 2011- 1,500 7-8
HSC 2015- 1,500 ⇠ 20
DES 2012-2018 5,000 5-6
LSST 2021- 15,000 ⇠ 20
Euclid 2021-2026 15,000 ⇠ 25
WFIRST-AFTA 2024- 2,500 ?



Convergence and cosmic density contrast

Back to the lensing potential

• Since  = 1
2� :

(✓,�) =
1

c2

Z �

0
d�0 (�� �0)�0

�
��(�0

✓,�0)

• Terms ��0�0� average out when integrating along line of sight, can be
added to yield 3D Laplacian (error O(�) ⇠ 10�5).

• Poisson equation

�� =
3H2

0⌦m

2a
�

✓
� =

⇢� ⇢̄

⇢

◆

! (✓,�) =
3

2
⌦m

✓
H0

c

◆2 Z �

0
d�0 (�� �0)�0

�a(�0)
� (�0

✓,�0) .



Amplitude of the cosmic shear signal
Order-of magnitude estimate

(✓,�) =
3

2
⌦m

✓
H0

c

◆2 Z �

0
d�0 (�� �0)�0

�a(�0)
� (�0

✓,�0) .

for simple case: single lens at at redshift zL = 0.4 with comoving size R/a(zL),
source at zS = 0.8.

 ⇡ 3

2
⌦m

✓
H0

c

◆2
DLSDL

DS

R

a2(zL)

�⇢

⇢

Add signal from N ⇡ DS/R crossings, calculate rms:

h2i1/2 ⇡3

2
⌦m

DLSDL

R2
H

r
R

DS
a�1.5(zL)

*✓
�⇢

⇢

◆2
+1/2

⇡3

2
0.3⇥ 0.1 ⇥ 0.1 ⇥ 2 ⇥ 1 ⇡ 0.01

We are indeed in the weak-lensing regime.



Convergence with source redshift distribution

So far, we looked at the convergence for one single source redshift (distance
�). Now, we calculate  for a realistic survey with a redshift distribution of
source galaxies. We integrate over the pdf p(�)d� = p(z)dz, to get

(✓) =

�limZ

0

d� p(�)(✓,�) =

�limZ

0

d�G(�)� � (�✓,�)

with lens e�ciency

G(�) =
3

2

✓
H0

c

◆2 ⌦m

a(�)

Z �lim

�
d�0 p(�0)

�0 � �

�0 .

The convergence is a projection of the matter-density contrast, weighted by
the source galaxy distribution and angular distances.



Parametrization of redshift distribution, e.g.

p(z) /
✓

z

z0

◆↵

exp

"
�
✓

z

z0

◆�
#

prob_default1.pdf G_default1.pdf

↵ = 2,� = 1.5, z0 = 1
(dashed line: all sources at redshift 1)

Max. lensing signal from halfway distance between us and lensing galaxies.



More on the relation between  and �
Convergence and shear are second derivatives of lensing potential ! they are
related.
One can derive  from � (except constant mass sheet 0).
E.g. get projected mass reconstruction of clusters from ellipticity observations.

kappa_gamma_nocorr.pdf



More on the relation between  and �
Convergence and shear are second derivatives of lensing potential ! they are
related.
Fluctuations (variance �2) in  and � are the same!
E.g. get variance/power spectrum of projected � from ellipticity correlations.

kappa_gamma_wcorr.pdf



The convergence power spectrum

• Variance of convergence h(#+ ✓)(#)i = hi(✓) depends on variance of
the density contrast h��i

• In Fourier space:

⌦
̂(`)̂⇤(`0)

↵
= (2⇡)2�D(`� `

0)P(`)D
�̂(k)�̂⇤(k0)

E
= (2⇡)3�D(k � k

0)P�(k)

• Limber’s equation

P(`) =

Z
d�G2(�)P�

✓
k =

`

�

◆

using small-angle approximation, P�(k) ⇡ P�(k?), contribution only from
Fourier modes ? to line of sight. Also assumes that power spectrum
varies slowly.



Dependence on cosmology

pkappa_dep_chi.pdf



Example
A simple toy model: single lens plane at redshift z0, P�(k) / �2

8k
n, CDM, no

⇤, linear growth:

h2(✓)i1/2 = h�2(✓)i1/2 ⇡ 0.01�8 ⌦
0.8
m

✓
✓

1deg

◆�(n+2)/2

z0.750

This simple example illustrates three important facts about measuring
cosmology from weak lensing:

1. The signal is very small (⇠ percent)

2. Parameters are degenerate

3. The signal depends on source galaxy redshift



Lensing ‘tomography’ (2 1/2 D lensing)

• Bin galaxies in redshift.

• Lensing e�ciency di↵erent for di↵erent
bins (even though the probed redshift
range is overlapping): measure
z-depending expansion and growth
history.

• Necessary for dark energy, modified
gravity.

shear_tomography.pdf
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pkappa.pdf



Convergence power spectrum for two di↵erent redshift bins
(0 = [0.5; 0.7], 1 = [0.9; 1.1]).

Unlike CMB C`’s, features in matter power spectrum are washed out by
projection and non-linear evolution.

PanddP_kappa-fig3_review.pdf



Correlations of two shears I
We have established lensing power spectrum P = P� (power spectrum of
projected �) as interesting quantity for cosmology.

kappa_gamma_extract.pdf

Provides theory model prediction correlation of  or � in Fourier space.
However we measure shear (ellipticity) in real space.
Two options to make connection:

1. Fourier-transform data. Square to get power spectrum.

2. Calculate correlations in real space. Inverse-Fourier transorm theory P.



Correlations of two shears II
Correlation of the shear at two points yields four quantities

alignment2.pdf

Parity conservation �! h�t�⇥i = h�⇥�ti = 0

The two components of the shear two-point correlation function (2PCF) are
defined as

⇠+(#) = h�t�ti (#) + h�⇥�⇥i (#)
⇠�(#) = h�t�ti (#)� h�⇥�⇥i (#)



Correlations of two shears III
The 2PCF is the 2D Fourier transform of the lensing power spectrum.

Fourier.png

Isotropy ! 1D integrals, Hankel transform.

⇠+(✓) =
1

2⇡

Z 1

0
d` `J0(`✓)P(`)

⇠�(✓) =
1

2⇡

Z 1

0
d` `J4(`✓)P(`),



E- and B-modes I

Shear patterns
We have seen tangential pattern in the shear field due to mass over-densities.
Under-dense regions cause a similar pattern, but with opposite sign for �.
That results in radial pattern.

Under idealistic conditions, these are the only possible patterns for a shear
field, the E-mode. A so-called B-mode is not generated.

Emode.pdf Bmode.pdf



E- and B-modes II

Origins of a B-mode
Measuring a non-zero B-mode in observations is usually seen as indicator of
residual systematics in the data processing (e.g. PSF correction, astrometry).

Other origins of a B-mode are small, of %-level:

• Higher-order terms beyond Born appproximation (propagation along
perturbed light ray, non-linear lens-lens coupling), and other (e.g. some
ellipticity estimators)

• Lens galaxy selection biases (size, magnitude biases), and galaxy
clustering

• Intrinsic alignment (although magnitude not well-known!)

• Varying seeing and other observational e↵ects



E- and B-modes III

Measuring E- and B-modes
Separating data into E- and B-mode is not trivial.

To directly obtain E and B from �, there is leakage between modes due to
the finite observed field (border and mask artefacts).

One can quantify the shear pattern, e.g. with respect to reference centre
points, but the tangential shear �t is not defined at the center.

Solution: filter the shear map. (= convolve with a filter function Q). This also
has the advantage that the spin-2 quantity shear is transformed into a scalar.

This is equivalent to filtering  with a function U that is related to Q.


