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Abstract.

Context: in large-scale spatial surveys, the Point Spread Function (PSF) varies

across the instrument field of view (FOV). Local measurements of the PSFs are given

by the isolated stars images. Yet, these estimates may not be directly usable for

post-processings because of the observational noise and potentially the aliasing.

Aims: given a set of aliased and noisy stars images from a telescope, we want to

estimate well-resolved and noise-free PSFs at the observed stars positions, in particular,

exploiting the spatial correlation of the PSFs across the FOV.

Contributions: we introduce RCA (Resolved Components Analysis) which is

a noise-robust dimension reduction and super-resolution method based on matrix-

factorization. We propose an original way of using the PSFs spatial correlation in

the restoration process through sparsity. The introduced formalism can be applied to

correlated data sets with respect to any euclidean parametric space.

Results: we tested our method on simulated monochromatic PSFs of Euclid

telescope (launch planned for 2020). The proposed method outperforms existing

PSFs restoration and dimension reduction methods. We show that a coupled sparsity

constraint on individual PSFs and their spatial distribution yields a significant

improvement on both the restored PSFs shapes and the PSFs subspace identification,

in presence of aliasing.

Perspectives: RCA can be naturally extended to account for the wavelength

dependency of the PSFs.

Keywords: Dimension reduction, Spatial analysis, Super-resolution, Matrix factoriza-

tion, Sparsity
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1. Introduction

In many applications such as high precision astronomical imaging or biomedical imaging,

the optical system introduces a blurring of the images that needs to be taken into account

for scientific analyses, and the blurring function, also called Point Spread Function

(PSF), is not always stationary on the observed field of view (FOV). A typical example

is the case of the Euclid space mission [1], to be launched in 2020, where we need to

measure with a very high accuracy the shapes of more than one billion of galaxies. An

extremely important step to derive such measurements is to get an estimate of the PSF

at any spatial position of the observed images. This makes the PSF modeling a critical

task. In first approximation, the PSF can be modeled as a convolution kernel which is

typically space and time-varying. Several works in image processing [2] and specifically

in astronomy [3, 4], address the general problem of restoring images in presence of a

space variant blur, assuming that the convolution kernel is locally known.

In astronomical imaging, unresolved objects such as stars, can provide PSF

measurements at different locations in the FOV. Nevertheless, these images can be

aliased given the CCD sensors sizes which makes a super-resolution (SR) step necessary.

This is the case for instance for the Euclid mission.

The SR is a widely studied topic in general image processing literature [5]. In

astronomy, softwares IMCOM [6] and PSFEx [7], which propose an SR option, are

widely used. The IMCOM provides an oversampled output image from multiple under-

sampled input images, assuming that the PSF is perfectly known. It does not deal

with the PSF restoration itself. The PSFEx treats SR as an inverse problem, with a

quadratic regularizer. In [8], a sparsity based super-resolution method was proposed,

assuming that several low resolution (LR) measurements of the same PSF are available.

In practice, we generally don’t have such multiple measurements.

In this paper, we consider the case where the PSF is both space variant and under-

sampled, and we want to get an accurate modeling at high resolution of the PSF

field, assuming we have under-sampled measurements of different PSFs in the observed

field. We assume that the PSFs vary slowly across the field. Intuitively, this implies

a compressibility of the PSFs field, which leads us to the question of what would be a

concise and easily understandable representation of a spatially indexed set of PSFs.

2. Notations

We adopt the following notation conventions:

• bold low case letters are used for vectors;

• bold capital case letters are used for matrices;

• we treat vectors as column vectors unless explicitly mentioned otherwise.

For a matrix M, we note mij the jth coefficient of the ith line, m
(c)
j or M[:, j] its jth

column and m
(l)
i or M[i, :] its ith line, that we treat as a line vector. More generally
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for j1 ≤ j2, we note M[:, j1 : j2] the matrix obtained by extracting the columns of M

indexed from j1 to j2; for i1 ≤ i2, M[i1 : i2, :] is defined analogously with respect to

M’s lines. For a vector u, u[k] refers to its kth component. For a given integer m, we

note Im the identity matrix of size m×m. Let E be a euclidean space (E can be R2 or

R3 if we consider spatial or spatio-temporal data respectively). We note U = (uk)1≤k≤p

a set of vectors in E . In this paper, we only consider the case E = R2; U will be a set of

positions in a plan.

3. The PSFs field

3.1. The observation model

We assume that we have an image I, which contains p unresolved objects such as stars,

which can be used to estimate the PSFs field. Noting yk one of these p objects at spatial

position uk, yk is therefore a small patch of I with ny pixels, around the spatial position

uk. We will write yk as a 1D vector. The relation between the ”true” PSF xk and the

noisy yk observation is

yk = Mkxk + nk (1)

where Mk is a linear operator and nk is a noise that we assume to be Gaussian and

white. We will consider two kinds of operators in this paper: the first one is the simple

case where Mk = Inx and we have the number of pixels nx in xk is equal to ny, and the

second one is a shift+downsampling degradation operator and nx = m2
dny, where md is

the downsampling factor in lines and columns, with md ≥ 1.

Noting Y = [y1 . . .yp] the matrix of ny lines and p columns of all observed patches,

X = [x1 . . .xp] the matrix nx × p of all unknown PSFs, we can rewrite Eq. 1 as

Y = F(X) + N (2)

where F(X) = [M1x1, . . . ,Mpxp].

This rewriting is useful because, as we discuss in the following, the different PSFs

xk are not independent, which means that the problems of Eq. 1 should not be solved

independently for each k. In other terms, the vectors (xk)1≤k≤p belong to a specific

unknown manifold that needs to be learned by using the data globally.

3.2. The data model

Let Ω be a r dimensional subspace of Rnx embedding the PSFs field. We assume that

there exists a continuous function f : E 7→ Ω, so that f(uk) = xk, ∀k ∈ J1, pK. The

regularity of f translates the correlation of the data in space (and time).

Let (si)1≤i≤r be a basis of Ω. By definition, we can write each xk as a linear

combination of the si, xk =
∑r

i=1 aiksi, k = 1 . . . p, or equivalently

X = SA (3)
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where S = [s1, . . . , sr] and A is a r × p matrix containing the coefficients A[:, k] of the

vectors xk (k = 1 . . . p) in the dictionary S. Each column of the matrix S, that we also

refer to as an atom, can be seen as an eigen PSF, i.e. a given PSF’s feature distributed

across the field.

3.3. The inverse problem

We need therefore to minimize ‖Y−F(X)‖2
F , which is an ill posed problem due to both

the noise and the operator F , ‖.‖F denoting the Frobenius norm of a matrix. There are

several constraints that may be interesting to use in order to properly regularize this

inverse problem:

• positivity constraint: the PSF xk should be positive;

• low rank constraint: as described above, we can assume that xk =
∑r

i=1 aiksi, which

means that we can instead minimize

min
A,S
‖Y −F(SA)‖2

F ; (4)

we assume that r � min(n, p); this dimension reduction has the advantage that

there are much less unknown to find, leading to more robustness, but the problem

is now that the cost function is not convex anymore;

• smoothness constraint: we can assume that the vectors xk are structured; the low

rank constraint does not necessarily impose xk to be smooth or piece-wise smooth;

adding an additional constraint on S atoms, such as a sparsity constraint, allows to

capture spatial correlations within the PSFs themselves; an additional dictionary

Φs can therefore be introduced which is assumed to give a sparse representation of

the vectors sk;

• proximity constraint: we can assume that a given xk at a position uk is very close

to another PSF xk′ at position uk′ if the distance between uk and uk′ is small; this

means that the field f must be regular; this regularity can be forced by adding

constraints on the lines of the matrix A; indeed, the p values relative to a line

A[i, :] correspond to the contribution of the ith eigen PSF to locations relative to

the spatial positions U .

We show in section 5 how these four constraints can be jointly used to derive the solution.

Let first review existing methods susceptible to solve this problem.

4. Related work

In all this section, Y refers to the observed data set (yk)1≤k≤p. In the first part, the

aforementioned degradation operator F is simply the identity. Therefore we review some

dimension reduction methods. In the second part F is a shifting and downsampling

operator; we present a PSF modeling software dealing with this more constraining

setting.
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4.1. Dimension reduction

The principal components analysis is certainly one of the most popular mathematical

procedure in multivariate data analysis and especially, dimension reduction. In our case,

we want to represent Y ’s elements using r vectors, with r ≤ max(p, ny). A PCA gives

an orthonormal family of r vectors in Rny so that the total variance of Y along these

vectors directions is maximized. By definition, the PCA looks for redundant features

over the whole data set. Therefore, in general, the principal components neither capture

localized features (in sense of E) nor have a simple physical interpretation.

In [9], a ”regularized” PCA is proposed to address this shortcoming for spatial data

analysis in atmospheric and earth science. Indeed, as a PCA, the method solves the

following problem,

min
A
‖Y −YATA‖2

F , s. t. AAT = Ir, (5)

for some chosen small r. Moreover, it jointly imposes a sparsity constraint and a

smoothing penalties with respect to the space E , on the matrix A lines. This way, with

the right balance between those two penalties, one favors the extraction of localized

spatial features, making the interpretation of the optimal A easy. Yet, there is no

obvious way of setting the sparsity and smoothness parameters, which are crucial;

moreover, unless the data actually contain spatially localized and non-overlapping

features, the coupled orthogonality and sparsity constraint is likely to yield a biased

approximation of the data.

In the context of remote sensing and multi-channel imaging, two ways of integrating

spatial information into PCA are proposed in [10]; the set Y is made of multi-channel

pixels. In the first way, the author introduces a weighting matrix indicating the relative

importance of each pixel. For instance, the weight of a given pixel can be related to

its distance to some location of interest in E . Then, the computation of the covariance

matrix of image bands is slightly modified to integrate this weighting. This idea is close

to the methodology proposed in [11]. As a consequence, one expects to recover spectral

features spatially related to some location of interest within the most important ”eigen-

pixels”. Yet, we do not have any specific location of interest in E and we rather want

to recover relevant features across the whole data set.

The second approach aims at taking into account the spatial associations and

structural properties of the image. To do so, modified versions of the image bands

covariance matrices are calculated, with increasing shifts between the bands, up to a

predetermined maximum shifting amplitude. These covariance matrices, including the

”regular” one, are averaged and the principal components are finally derived. Intuitively,

one expects the spectral features present in structured images regions to be strengthened

and therefore captured into the principal components. However, we consider a general

setting where the data are randomly distributed with respect to E , which makes the

shifted covariances matrices ill-defined.

A review of PCA applications and modifications for spatial data analysis can be

found in [12].
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In case the data lie on or are close to a manifold M of dimension r embedded

in Rn, one can consider using one of the numerous non-linear dimension reduction

algorithms published in the manifold learning literature, such as GMRA [13], [14]. The

idea is to partition the data in smaller subsets of sample close to each other in the

sense of the manifold geometry. From this partionning, the manifold tangent spaces are

estimated at subsets locations; estimates are then simply given by the best regressions

of these subsets with r−dimensional affine subspaces. The method includes some

multiresolution considerations that are not relevant to our problem. This procedure

provides a dictionary in which each of the original samples need at most r elements to

be represented. Moreover, the local processing of the data, which is necessary in this

setting because of the manifold curvature, makes this approach somehow compatible

with the considered problem. Indeed, by hypothesis, the closer two samples will be in

sense of E , the closer they will be in Rn, and the more likely they will fall into the same

local cluster.

Another interesting alternative to the PCA can be found in [15]. This construction

called ”Treelets” extracts features by uncovering correlated subsets of variables across

the data samples. It is particularly useful when the sample size is by far smaller than

the data dimensionality (p � ny), which does not hold in the application we consider

in the following.

4.2. Super-resolution

In this subsection, F takes the following form:

F(X) = [M1x
(c)
1 , . . . ,Mpx

(c)
p ], (6)

where Mi is a warping and downsampling matrix. Since we consider a set of compact

objects images, the only geometric transformation one has to deal with for registration

is the images shifts with respect to the finest pixel grid, which can be estimated using

the images centroids [8].

To the best of our knowledge, the only method dealing with this specific setting is

the one used in the PSF modeling software PSFEx [7]. This method solves a problem

of the form:

min
∆S

1

2
‖Y −F((∆S + S0)A)‖2

F + λ‖∆S‖2
F . (7)

S0 is a rough first guess of the model components. Each line of the weight matrix A

is assumed to follow a monomial law of some given field’s parameters. The number of

components is determined by the maximal degree of the monomials. For instance, let

say that we want to model the PSFs variations as a function of their position in the

field with monomials with degrees up to 3, then:

• one needs 6 components corresponding to the monomials 1, X,X2, Y,XY and Y 2;

• assuming that the ith PSF in Y’s columns order is located at ui = (uix, uiy) then

the ith column of A is given by a
(c)
i = [1, uix, u

2
ix, uiy, uixuiy, u

2
iy]

T up to a scaling

factor.
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This method is used for comparisons in the Numerical experiments part.

5. Resolved Components Analysis

5.1. Matrix factorization

We have seen that we can describe the PSFs field f as

[f(u1), . . . , f(up)] = X = SA. (8)

The matrix S is independent of the spatial location, and the ith line of A gives the

contribution of the vector si to each of the samples. As discussed in section 3.3, the

field’s regularity can be taken into account by introducing a structuring of the matrix

A. We can write:

A[i, :]T =
N∑
l=1

αilυl, i = 1 . . . r, (9)

where (υl)1≤l≤N is a set of vectors spanning Rp. Equivalently, we can write A = αVT ,

where V = [υ1, . . . ,υN ] and α is a r ×N matrix (see Fig. 1).

Figure 1. Data matrix factorization: the jth sample, which is stored in the jth

column of X is linear combination of S columns using A’s jth column coefficients as

the weights; similarly, the jth line of A is a linear combination VT ’s lines, using α’s

jth line coefficients as the weights.
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Physical interpretation

An interesting way to well interpret A is to consider the ideal case where the

measurements are distributed following a regular grid of locations U . In this case, we

can expand the vector A[i, :]T using the Discrete Cosine Transform (DCT), and vectors

υi in Eq. 9 are regular cosine atoms, and the column index of the matrix is related the

frequency. Hence, lines relative to high frequencies will be related to quicky varying

PSF components in the field, while lines related to low frequencies will be related to

PSFs stable components. In practice, the sampling is not regular and the DCT cannot

be used, and V has to be learned in a way to keep the harmonic interpretation valid.

We want some lines A[i, :] to describe stable PSFs components on the FOV, and other

to be more related to local behavior.

5.2. The proximity constraint on A

As previously mentioned, we want to account for the PSFs field’s regularity by

constraining A’s lines. Specifically, we want some lines to determine the distribution

of stable features across the PSFs field while we want other lines to be related to more

localized features. In order to build this constraint, let first consider the simple case of

a one dimensional field of regularly spaced PSFs.

5.2.1. Regularly distributed observations We first assume that E = R. We suppose

that p = 2k + 1, for some integer k and we consider the 1D vector ψe,a = (ψi)1≤i≤p

defined as follows:

ψi = ψp−i+1 = −1/|ui − uk+1|e if i 6= k + 1, (10)

ψi =

p∑
j=1
j 6=k+1

a/|uj − uk+1|e, otherwise (11)

for some positive reals e and a. We suppose that ψe,a is normalized in l2 norm. We refer

to this family of signals, parametrized by e and a as ”notch filters”, in reason of their

frequency responses shapes. Some examples can be found in Fig. 2. One can observe

that ψ1,1 is essentially a high pass filter. As e increases, the notch structure clearly

appears, with an increasing notch frequency. It is clear that, for a vector v, minimizing

the functional Ψe,a(v) = ‖v ?ψe,a‖2
2 promotes vectors with spectra concentrated around

the notch frequency corresponding to the chosen values of e and a. We can directly use

this family of filters to constraint A as follows: we define the functional

Ψ : Mrp(R) 7→ R+ ,A→
r∑
i=1

Ψei,a(A[i, :]), (12)

where (ei)i is a set of reals verifying 0 ≤ e1 < e2 < · · · < er and a ∈ [0, 2[.

Because the notch frequency increases with ei, minimizing Ψ promotes varying level

of smoothness of A’s lines, which is what we wanted to achieve. The filter ψe,a and the
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(a) Direct domain samples

(b) Discrete Fourier Transform (DFT) entry-wise moduli

Figure 2. Notch filters examples for different values of the parameter e in Eq. 10 and

11. The parameter a is set to 1.

functional definitions can be extended to higher dimensions of the space E by involving a

multidimensional convolution [16]. Therefore, if the PSFs are distributed over a regular

grid with respect to E , one can implement the proximity constraint by solving

min
A,S

1

2
‖Y −F(SA)‖2

F + λΨ(A), (13)

for some positive λ. Yet, in practical applications, the observations are in general

irregularly distributed. In the next section, we propose a slightly different penalty

which is usable for arbitrary observations distributions.
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5.2.2. General setting Let define the functional

Ψ̂e,a : Rp 7→ R+ ,v→
p∑

k=1

(

p∑
i=1
i6=k

avk − vi
‖uk − ui‖e2

)2, (14)

where e and a are positive reals. Minimizing Ψ̂e,a(v) tends to enforce the similarity of

close features, with respect to E ; in other terms, the more ‖uk − ui‖2 is large, the less

important is (avk − vi) in Ψ̂e,a(v) and e somehow determines the radius of similarity.

For e > 1, Ψ̂e,a ≈ Ψe,a because of the uniform spacing of the values ui and the decay of
1

‖uk−ui‖e2
, for sufficiently high p; we give more details on this approximation in Appendix

A in the 1D case. However unlike Ψe,a, the functional Ψ̂e,a is still relevant without the

uniform sampling hypothesis and we expect qualitatively the same behavior as Ψe,a with

respect to the frequency domain if the data sampling is sufficiently dense. Therefore we

use Ψ̂e,a instead of Ψe,a in the functional Ψ of Eq.13. Besides, we use the term frequency

even for randomly distributed samples.

5.2.3. Flexible penalization: the redundant frequencies dictionary V The efficiency of

the regularization of the problem 13 relies on a good choice of the parameters e1, . . . , er
and a. Indeed, if the associated notch frequencies does not match with the data set

frequency content, the regularization will more or less bias the PSF estimation depending

on the Lagrange multiplier λ. Besides, setting this parameter might be tricky. We

propose an alternate strategy for constraining A, which leads to the factorization model

introduced in Section 5.1 and still builds over the idea of notch filters.

For v ∈ Rp we can write

Ψ̂e,a(v) = ‖Pe,av‖2
2, (15)

where Pe,a is a p× p matrix defined by

Pe,a[i, j] = − 1

‖ui − uj‖e2
if i 6= j, (16)

Pe,a[i, i] =

p∑
j=1
j 6=i

a

‖ui − uj‖e2
, (17)

(i, j) ∈ J1, pK2. Therefore,

Ψ̂e,a(v) = vTQe,av, (18)

where Qe,a = PT
e,aPe,a and is symmetric and positive. We consider the singular values

decomposition (SVD) of Qe,a: Qe,a = Ve,aDe,aV
T
e,a. The diagonal values of De,a are

sorted in decreasing order. We note de,a the vector made of these diagonal values, so that

de,a[1] ≥ · · · ≥ de,a[p] ≥ 0. Considering the reduced form Ψ̂e,a(v) =
∑p

i=1 de,a[i]〈v,Ve,a[:

, i]〉2, it is clear that minimizing Ψ̂e,a(v) promotes vectors correlated with Qe,a last

eigenvectors. In the case of regular sampling with respect to E , these eigenvectors are

the harmonics close to the notch frequency of ψe,a. We can rewrite the functional Ψ
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accordingly:

Ψ(A) =
r∑
i=1

p∑
j=1

dei,a[j]〈v,Vei,a[:, j]〉2. (19)

It is clear from this expression that minimizing Ψ(A) enforces the selection of the

eigenvectors associated with the lowest eigenvalues in the set (dei,a[j])i,j for describing

A’s lines. This can be seen as a sparsity constraint over A’s lines with respect

to the atoms (Vei,a[:, j])i,j; yet, the small subset of atoms which will carry most of

the information is somehow predefined through the eigenvalues (dei,a[j])i,j. This is

unsuitable if the notch filters parameters are poorly selected; on the contrary, one would

like to select in a flexible way the atoms which fit the best the data.

Let suppose that we have determined a set of parameters (ei, ai)1≤i≤r so that the

filters ψei,ai notch frequencies would cover the range of significant frequencies (with

respect to E) present in the data. As previously, we note (Vei,ai)1≤i≤r the eigenvector’s

matrices associated with the operators Ψ̂ei,ai . We note V = [Ve1,a1 , . . . ,Ver,ar ].

Considering the preceding remark, we introduce the following problem:

min
α,S

1

2
‖Y −F(SαVT )‖2

F s.t. ‖α[l, :]‖0 ≤ ηl, l = 1 . . . r (20)

Now A = αVT . Each line of A is a sparse linear combination of VT ’s lines, and

the ”active” atoms are optimally selected according to the data. The choice of the

parameters (ei, ai)1≤i≤r and (ηl)1≤i≤r is discussed in a forthcoming section.

5.2.4. A connection with graphs theory In case a = 1, the matrix Pe,a is the laplacian

of an undirected fully connected and weighted graph with p nodes 1 . . . p, such that

the weight of the vertex connecting a node i to a node j is 1
‖ui−uj‖e2

[17]. As proposed

in spectral graph theory [18], this gives a natural interpretation of Pe,a (and Qe,a)

eigenvectors as harmonic atoms in the graph’s geometry. Each line of the matrix A

can be seen as a function defined on a family of graphs determined by the observations

locations, so that we enforce the regularity of A’s lines according to the graphs geometry.

Our approach is thereby close to the spectral graphs wavelets framework [19]. However,

the graphs wavelets are built on a single graph and a scaling parameter allows one to

derive wavelets atoms corresponding to spectral bands of different sizes. In our case, the

scales diversity is accounted for by building a dictionary of harmonics corresponding to

different graphs. Indeed, as e increases, the weight associated to the most distant nodes

(in the sense of ‖ui − uj‖2) becomes negligible, which implies that the corresponding

graph laplacian is determined by nearby nodes, yielding ”higher” frequencies harmonics.

5.3. The smoothness constraint on S

As previously mentioned, each PSF is a structured image. We can account for this

through a sparsity constraint. This has proven effective in multiple frame PSFs super-

resolution [8].
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Since we do not estimate individual PSFs directly, we instead constraint the eigen

PSFs which are S’s columns. Specifically, we promote S’s columns sparsity with respect

to a chosen dictionary Φs. By definition, a typical imaging system’s PSF concentrates

most of its power in few pixels. Therefore a straightforward choice for Φs is In. In other

words, we will enforce the sparsity of S’s columns in the pixels domain.

On the other hand, we take Φs as the second generation Starlet forward transform

[20], without the coarse scale. The power of sparse prior in wavelet domain for inverse

problems being well established, we shall online emphasize the fact that this particular

choice of wavelet is particularly suitable for images with nearly isotropic features.

5.4. Algorithm

We define the sets Ω1 = {α ∈ Mr,N(R)/‖α[l, :]‖0 ≤ ηl, l = 1 . . . r} and Ω2 = {(S,α) ∈
Mnr(R)×Mr,N(R)/SαVT ≥Mnp(R) 0}. The aforementioned constraints leads us to the

following optimization problem:

min
α,S

1

2
‖Y −F(SαVT )‖2

F +
r∑
i=1

‖wi �Φssi‖1 + ιΩ1(α) + ιΩ2(S,α). (21)

where � denotes the Hadamard product and ιC denotes the indicator function of a set

C (see Appendix B). The l1 term promotes the sparsity of S columns with respect to

Φs. The vectors (wi)i weight the sparsity against the other constraints and allow some

adaptivity of the penalty, with respect to the uncertainties propagated to each entry of

S [8].

The parametric aspects of this method are made clear in the subsequent sections.

The Problem 21 is globally non-convex because of the coupling between S andα and

the l0 constraint. In particular, the feasible set {(S,α) ∈ Mnr(R)×Mr,N(R)/SαVT ≥
0}, with N = rp is non-convex.

Therefore, one can at most expect to find a local minimum. To do so, we consider

the following alternating minimization scheme:

(i) Initialization: α0 ∈ Ω1, with N = rp, S0 = argmin
S

1
2
‖Y − F(Sα0V

T )‖2
F +∑r

i=1 ‖wi �ΦsS[:, i]‖1 s.t. Sα0V
T ≥ 0

(ii) For k = 0 . . . kmax:

(a) αk+1 = argmin
α

1
2
‖Y −F(SkαVT )‖2

F s.t. ‖α[l, :]‖0 ≤ ηl, l = 1 . . . r,

(b) Sk+1 = argmin
S

1
2
‖Y−F(Sαk+1V

T )‖2
F+

∑r
i=1 ‖wi�ΦsS[:, i]‖1 s.t. Sαk+1V

T ≥ 0

.

The problem (a) remains non-convex; yet there exists heuristic methods allowing one

to approach a local minimum [21–23]. The problem (b) is convex and can be solved

efficiently.

One can note that there is no positivity constraint in the sub-problem (a). This

choice is motivated by two facts:
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• the feasible set of (b) is non-empty for any choice of αk+1;

• allowing α to be outside of the global problem feasible set (for S fixed) brings some

robustness regarding local degenerated solutions.

There is an important body of work in the literature on alternate minimization

schemes convergence, and in particular in the non-convex and non-smooth setting

(see [24] and the references therein). In the proposed scheme, the analysis is complicated

by the asymmetry of the problems (a) and (b).

We define the function

H(α,S) =
1

2
‖Y −F(SαVT )‖2

F +
r∑
i=1

‖wi �Φssi‖1 (22)

and the matrix Ŝk = argmin
S

1
2
‖S − Sk‖2

2 s.t. Sαk+1V
T ≥ 0. One immediate sufficient

condition for the sequence (H(αk,Sk))k to be decreasing (and thereby convergent) is

H(αk+1, Ŝk) ≤ H(αk,Sk) (23)

which occurs if (Sk,αk+1) stays sufficiently close to Ω2. Although we do not prove this

always holds true, we observe on examples that the matrix Skαk+1V
T in general only

has a few and small negative entries for k ≥ 1. This follows from the adequacy of the

dictionary V for sparsely describing A’s lines.

The complete method is given in Algorithm 1. The resolution of the minimization

sub-problems is detailed in appendices.

Algorithm 1 Resolved components analysis (RCA)

1: Parameters estimation and initialization:

Harmonic constraint parameters (ei, ai)1≤i≤r → V,A0

Noise level, A0 →W0,0

2: Alternate minimization

3: for k = 0 to kmax do

4: for j = 0 to jmax do

5: Sk = argmin
S

1
2
‖Y −F(SAk)‖2

F +
∑r

i=1 ‖Wk,j[:, i]�ΦsS[:, i]‖1 s.t. SAk ≥ 0

6: update: Wk,0,Sk → update(Wk,j+1)

7: end for

8: αk+1 = argmin
α

1
2
‖Y −F(SkαVT )‖2

F s.t. ‖α[l, :]‖0 ≤ ηl

9: update: Noise level, αk+1 →Wk+1,0

10: Ak+1 = αk+1V
T

11: Ak+1[i, :] = Ak+1[i, :]/‖Ak+1[i, :]‖2, for i = 1 . . . r

12: end for

13: Return: Skmax , Akmax .
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5.5. Parameters setting

5.5.1. Components sparsity parameters We consider the terms of the form ‖wk,j �
Φss‖1, where k is the alternate minimization index and j is the re-weighted l1
minimization index. We first suppose that Φs = In. We decompose wk,j as:

wk,j = κβk,j � λk (24)

Let consider the minimization problems in S in Algorithm 1. Assuming that we simply

minimize the quadratic term using the following steepest descent update rule,

Sm+1 = Sm + µF∗(Y −F(SmAk))A
T
k , (25)

for a well chosen step size µ, F∗ being the adjoint operator one can estimate the entry-

wise standard deviations of the noise which propagates from the observations to the

current solution Sm+1. For a given matrix X in Mnp(R), we assume that F takes the

following general form F(X) = [M1X[:, 1], . . . ,MpX[:, p]]. We define F2 as:

F2(X) = [(M1 �M1)X[:, 1], . . . , (Mp �Mp)X[:, p]] (26)

We note B the observational noise (or model uncertainty) that we assume to gaussian,

white and centered. The propagated noise entry-wise standard deviations are given by

Σk = µ
√
F2∗(Var(B))(AT

k �AT
k ), (27)

where Var() returns entry-wise variances and F2∗ is the adjoint operator of F2. Now

one can proceed to a hypothesis testing on the signal presence in each entry of Sm+1

based on Σk [25], and denoise Sm+1 accordingly. For instance, we define the noise-free

version of Sm+1 as follows:

Ŝm+1[i1, i2] =

{
0, if |Sm+1[i1, i2]| ≤ κΣk[i1, i2]

Sm+1[i1,i2]
|Sm+1[i1,i2]|(|Sm+1[i1, i2]| − κΣk[i1, i2]). otherwise;

(28)

where κ controls the false detection probability; the noise being gaussian, we typically

choose 3 or 4 for κ.

The sequence (Ŝm) converges to a solution of the problem

argmin
S

1

2
‖Y −F(SαkU

T )‖2
F +

r∑
i=1

κ‖λk[:, i]� S[:, i]‖1, (29)

for λk = κ/µΣk. One can find some material on minimization schemes in Appendice

Appendix C. This choice yields a noise-free but biased solution because of the

thresholding; this is a well-known drawback of l1 norm based regularizations. The

purpose of the vector βk,j is to mitigate this bias [26]. βk,0 is a vector with ones at all

entries. At the step 6 in Algo 1, βk,j is calculated as follows:

βk,j =
1

1 + |Sk|
κλk

, (30)
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where all the operations are entry-wise and |Sk| is the vector made of element-wise

absolute values of Sk entries. Qualitatively, this removes the strongest features from

the l1 norm terms by giving them small weights, which makes the debiasing possible;

conversely, the entries dominated by noise get weights close to 1, so that the penalty

remains unchanged.

For Φs 6= In we follow the same rational. To set the sparsity in the transform

domain according to the noise induced uncertainty, we need to further propagate it

(the noise) through the operator Φs. Formally, we need to estimate the element-wise

standard deviations of µΦsF∗(B)AT
k . Let consider the intermediate random matrix

YF = F∗(B). Assuming that

F(F∗(.)) = λId(.), (31)

YF ’s lines are statistically independent. Therefore, within a given column of YFAT
k , the

entries are statistically independent from one another. We deduce that the element-wise

standard deviations of µΦsF∗(B)AT
k are given by

Σk = µ
√

(Φs �Φs)F2∗(Var(B))(AT
k �AT

k ). (32)

Then λk is obtained as previously and βk,j is calculated as

βk,j =
1

1 + |ΦsSk|
κλk

. (33)

The property 31 is approximately true in the case of super-resolution.

5.5.2. Number of components We do not propose a method to choose the number of

components r. Yet, we observe that because of the sparsity constraint, some lines of the

matrix αk+1 at the step 8 in Algorithm 1 are equal to the null vector, when the number

of components is overestimated. The corresponding lines in Ak+1 and subsequently the

corresponding columns in Sk are simply discarded. This provides an intrinsic mean to

select the number of components. Thus in practice, one can choose the initial r as the

data set dimensionality from the embedding space point of view, which can be estimated

based on a principal component analysis.

5.5.3. Proximity constraint parameters In this section, we consider the functionals

Ψ̂ei,ai and especially the choice of the parameters ei and ai. Let assume that we have

determine a suitable range for the parameters: (ei, ai) ∈ S = [emin, emax] × [amin, amax]

for i = 1 . . . r.

For a particular (e, a) we consider the matrix Qe,a and its eigenvectors matrix Ve,a

introduced in section 5.2.3. As previously stated, we want the weights matrix A lines

to be sparse with respect to Qe,a’s eigenvectors. In order to choose the parameters and

initialize the weights matrix, we use the following greedy procedure. We consider a

sequence of matrices (Ri)1≤i≤r, with R1 = Y. For i ∈ J1, rK we define

Je,a(Ri) = max
k∈J1,pK

‖RiVe,a[:, k]‖2, (34)
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and we note v∗e,a the optimal eigenvector. We choose the ith couple of parameters as:

(ei, ai) = argmax
(e,a)∈S

Je,a(Ri). (35)

A0[i, :] = v∗ei,ai and Ri+1 = Ri −RiVe,aV
T
e,a.

Regarding the set S, we choose the interval amin = 0 and amax = 2. This range

allows the notch structure, assuming that emin ≥ 0; for a < 0, he,a behaves as a low

pass filter. For a ≥ 0, we observe that he,a becomes a notch filter, with a notch

frequency close to the null frequency for a ≥ 2. As previously stated, e determines

the influence of two samples on one another corresponding coefficients in the matrix A

in the algorithmic process. According to Section 5.2.2, we set emin = 1. Let consider

the graph Ge introduced in section 5.2.4. The higher is e, the lower is Ge connexity.

Considering that we are looking for global features (yet localized in the field frequency

domain), the highest possible value of e should guarantee that the graph Ge is connected.

This gives us a practical upper bound for e. Once S is determined, we discretize this

set, with a logarithmic step, in such a way to have more samples close to (emin, amin)

which correspond to low notch frequencies. We solve approximately Problem 35 by

taking the best couple of parameters in the discretized version of S. This step is the

most computationally demanding, especially for large data samples.

5.5.4. Weights matrix sparsity parameters The parameters ηl are implicitly set by the

minimization scheme used at step 8 in 1. This is detailed in Appendix C.

6. Numerical experiments

In this section, we present the data used to test the proposed method, the simulation

realized and comparisons to other existing methods for both dimensionality reduction

and super-resolution aspects.

6.1. Data

The data set consists of simulated optical Euclid PSFs as in [8], for a wavelength of

600µm. The PSFs distribution across the field is shown on Fig. 3. These PSFs account

for mirrors polishing imperfections, manufacturing and alignment errors and thermal

stability of the telescope.

6.2. Simulation

We applied different dimension reduction algorithms to a set of 500 PSFs located in the

blue box on Fig. 3. We applied the algorithms to different observations of the fields,

with varying level of white gaussian noise. For a discrete signal s of length N corrupted

with a white gaussian noise b, we define the signal to noise ratio (SNR) as:

SNR =
‖s‖2

2

Nσ2
b

. (36)
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Figure 3. Simulated PSFs distribution across the FOV.

6.3. Quality assessment

In astronomical surveys, the estimated PSF’s shape is particularly important; precisely,

one has to be able to capture the PSF anisotropy. We recall that for an image

X = (xij)i,j, the central moments are defined as

µp,q(X) =
∑
i

∑
j

(i− ic)p(j − jc)qxij (37)

with (p, q) ∈ N2, (ic, jc) are the image centroid coordinates. The moments µ2,0 and

µ0,2 quantifies the light intensity spreading relatively to the lines {(ic, y), y ∈ R} and

{(x, jc), x ∈ R} respectively. Now we consider the moment µ1,1. We introduce the

centered and rotated pixels coordinates (xi,θ, yj,θ) defined by the system of equations

xi,θ cos(θ) + yj,θ sin(θ) = i− ic (38)

−xi,θ sin(θ) + yj,θ cos(θ) = j − jc, (39)

for some θ ∈ [0, 2π]. Then we have

µ1,1 =
∑
i

∑
j

[
sin(2θ)

2
(−x2

i,θ + y2
j,θ) + (2 cos2(θ)− 1)xi,θyj,θ]xij, (40)

and in particular, µ1,1 =
∑

i

∑
j[

1
2
(−x2

i,π
4

+y2
j,π

4
)]xij. It becomes clear that µ1,1 quantifies

the light intensity spreading with respect to the pixels grid diagonals.

The ellipticity parameters are defined as,

e1(X) =
µ2,0(X)− µ0,2(X)

µ2,0(X) + µ0,2(X)
(41)

e2(X) =
2µ1,1(X)

µ2,0(X) + µ0,2(X)
. (42)

We define the vector γ(X) = [e1(X), e2(X)]T . This vector characterizes how much

X departs from an isotropic shape and indicates its main direction of orientation.
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It plays a central theoretical and practical role in weak lensing based dark matter

characterization [27].

Another important geometric feature is the so-called PSF size. It has been shown

that the size error is a major contributor to the systematics in weak gravitational lensing

surveys [28]. We characterize the size of a PSF X as follows:

S(X) = (

∑
i

∑
j((i− ic)2 + (j − jc)2)xij∑

i

∑
j xij

)1/2. (43)

Assuming that a given PSF is a 2D discrete probability distribution, this quantity

measures how much this distribution is spread around its mean [ic, jc]
T . Let note

(Xi)1≤i≤p the set of ”original” PSFs and (X̂i)1≤i≤p the set of corresponding estimated

PSFs with one of the compared methods, at a given SNR. The reconstruction quality is

accessed through the following quantities:

• the average error on the ellipticity vector: Eγ =
∑p

i=1 ‖γ(Xi)− γ(X̂i)‖2/p;

• noting Γ = [γ(X1) − γ(X̂1), . . . ,γ(Xp) − γ(X̂p)], the dispersion of the errors on

the ellipticity vector is measured through the nuclear norm Bγ = ‖Γ‖∗;
• the average absolute error on the size: ES =

∑p
i=1 |S(Xi)− S(X̂i)|/p in pixels;

• the dispersion of the errors on the size: σS = std((S(Xi)− S(X̂i))i), in pixels.

6.4. Results

6.4.1. Dimension reduction In this section, we compare RCA to PCA, GMRA and

the software PSFEx. We ran a PCA with different number of principal components

between 0 and 15. 10 was the value which provided the best results. GMRA input

was the data set intrinsic dimension [29], two, since the PSFs only vary as a function

of their position in the field; we provided the absolute squared quadratic error allowed

with respect to the observed data based on the observation noise level. For PSFEx, we

used 15 components. Finally, RCA used up to 15 components, and effectively, 2 and 4

components respectively for the lowest SNR fields realization. As previously mentioned,

we assess the components sparsity’s constraint:

• on the one hand we consider Φs = In which enforces the components sparsity in

pixels domain; this is referred to as ”RCA” in the plots;

• on the other hand, we take Φs as the second generation Starlet forward transform

[20], without the coarse scale; this is referred to as ”RCA analysis” in the plots.

One can see on the left plot in Fig. 4 that the proposed method is at least 10 times

more accurate on the ellipticity vector than the other considered methods. Moreover

the right plot shows that the accuracy is way more stable. This is true for both choice

of the dictionary Φs.

Fig. 5 shows that the estimated size S(X̂i) is very sensitive to the choice of the

dictionary Φs. The results are by far more accurate with a sparsity constraint on the

components in wavelet domain than in direct domain.
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(a) Average error on the ellipticity vector (b) Dispersion of the ellipticity vector

Figure 4. x axis: SNR (see section 6.2); y axis: log10(Eγ) for the left plot, log10(Bγ)

for the right plot.

(a) Average absolute error on the size (b) Dispersion of the errors on the size

Figure 5. x axis: SNR; y axis: ES for the left plot, σS for the right plot.

For a given estimate of the PSF at a given location, the error on the size parameter

is more sensitive to errors on the core of the PSF (main lobe and first rings) and less

sensitive to errors on the outer part of the PSF than one would expect regarding the

error on the ellipticity vector. The error on the outer part of the PSF is essentially

related to the observational noise, whereas the error on core of the PSF - which has a

high SNR - is more related to the method induced bias. This explains why the PCA

performs quite well for this parameter. On the other hand, the bias induced by the

sparsity is not only related to the dictionary choice, but also to the underlying data

model with respect to the chosen dictionary.

As previously explained, the components sparsity term is set in such a way to

penalize any feature which does not emerge from the propagated noise, which is a source
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of bias. By using wavelets, we might recover features which are dominated by noise in

pixel domain as long as the wavelet filters profile at given scale and direction, matches

those features spatial structure. Thus, we expect less error on the reconstructed PSF’s

core by using wavelets.

We might also consider two distinct ways of using sparsity for the components:

• we can model each component as s = ΦT
sα, with α sparse, which is known in the

sparse recovery literature as synthesis prior;

• we can alternately constraint Φss to be sparse.

This priors are equivalent if the dictionary is unitary [30]. Therefore the pixel domain

sparsity constraint can be considered as falling into both framework. However, the

two priors are no longer equivalent and potentially yields quite different solutions for

overcomplete dictionaries.

We observe in practice that unless the simulated PSFs are strictly sparse with

respect to the chosen dictionary - this includes redundant wavelet dictionaries, the

synthesis prior yields a bias on the reconstructed PSF size, since the estimated PSFs

are sparse linear combinations of atoms which are in general sharper than a typical

PSF profile. The analysis prior is somehow weaker and appears to be more suitable for

approximately sparse data.

We do not observe a significant difference between these methods with respect to

the mean squared error, except for GMRA which gave noisier reconstructions.

We applied the aforementioned methods to the PSFs field previously used, with

additional 30 corners PSFs and 30 localized PSFs as shown on Fig. 3 at an SNR of 40.

This assess the behavior of the algorithms with respect to spatial clustering and sparse

data distribution. One can see in Fig. 6 examples of simulated observed PSFs from

different areas in the FOV.

(a) Observation 1:

center PSF

(b) Observation 2:

center PSF

(c) Observation 3:

corner PSF

(d) Observation 4:

corner PSF

(e) Observation 5:

”local” PSF

(f) Observation 6:

”local” PSF

Figure 6. Input PSFs at different locations in the FOV for a SNR = 40. The

corresponding reconstructed PSFs can be seen in Fig. 7

For each of these observed PSFs, the reconstructed PSFs for each method are shown

in Fig. 7.

One can observe that the proposed method gives noiseless and rather accurate

PSFs reconstruction for both the center, the corners and the localized area of the field
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Figure 7. PSFs reconstructions: from the left to the right: original, GMRA, PCA,

PSFEx, RCA; from the bottom to the top: 2 ”local” PSFs reconstructions, 2 corner

PSFs reconstructions, 2 center PSFs reconstructions. The observed corresponding

PSFs can be seen in Fig. 6
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(see Fig. 3). One can also see that we fail to capture accurately the rings pattern in

the corners and the localized area. The dictionary Φs considered are not specifically

adapted to curve-like structures. The ring patterns varies across the FOV but are locally

correlated. Therefore, they can only be recovered where the PSFs are sufficiently dense

and numerous, which is the case at the FOV’s center.

PCA and PSFEx yield a significant increase of the SNR in their estimated PSFs

at the center and in the localized area. Yet, they fail to do so in the corners because of

the lack of correlation for the PCA and local smoothness for PSFEx.

Finally, the poor results obtained with GMRA can be explained by the fact that

the underlying manifold sampling is not sufficiently dense for the tangent spaces to be

estimated reliably.

6.4.2. Super-resolution In this section, the data are additionally downsampled to

Euclid telescope resolution. PCA and GMRA does not handle the downsampling.

Therefore we only consider PSFEx and RCA in this section. For each method, we

estimate an upsampled version of each PSF, with a factor 2 in lines and columns; in

case of Euclid, this is enough to have a Nyquist frequency greater than half the signal

spatial bandwidth [31].

As previously, RCA Analysis refers to the proposed method, with the dictionary

Φs chosen as the second generation Starlet forward transform [20], without the coarse

scale; RCA LSQ refers to the proposed method with the dictionary Φs chosen as the

identity matrix, and the weight matrix A simply calculated as

Â = argmin
A

1

2
‖Y −F(ŜA)‖2

F , (44)

Ŝ being the current estimate of the components matrix. Among all the

methods previously considered for comparison, PSFEx is the only one handling the

undersampling.

As for the dimension reduction experiment, the proposed method with Φs chosen

as a wavelet dictionary is at least one order of magnitude more accurate over the shape

parameters and the mean square error. Besides, Fig. 10 shows that the proximity

constraint over the matrix A allows one to select a significantly better optimum than

a simple least square update of A. Indeed, regularizing the weight matrix estimation

reinforces the rejection of F ’s null space.

As previously, we restored the complete field of Fig. 3 for a linear SNR of 40, using

”RCA Analysis”, with undersampled input PSFs as shown in Fig. 11.

The figure 12 shows consistent results with the dimension reduction experiment. In

particular, the corners PSFs restoration is obviously more accurate.

7. Reproducible research

In the spirit of participating in reproducible research, the data and the codes used

to generate the plots presented in this paper will be made available at http://www.
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(a) Average error on the ellipticity vector (b) Dispersion of the error on the ellipticity vector

Figure 8. x axis: SNR (see section 6.2); y axis: log10(Eγ) for the left plot, log10(Bγ)

for the right plot.

(a) Average absolute error on the size (b) Dispersion of the errors on the size

Figure 9. x axis: SNR; y axis: ES for the left plot, σS for the right plot.

cosmostat.org/software/rca/.

8. Conclusion

We introduced RCA which is a dimension reduction method for continuous and

positive data field which is noise robust and handles undersampled data. As a linear

dimension reduction method, RCA computes the input data as linear combinations of

few components which are estimated, as well as the linear combination coefficients,

through a matrix factorization.

The method was tested over a field of simulated Euclid telescope PSFs. We show

that constraining both the components matrix and the coefficients matrix using sparsity



Constraint matrix factorization for space variant PSFs field restoration 24

Figure 10. Average normalized least square error

(a) Observation 1:

center PSF

(b) Observation 2:

center PSF

(c) Observation 3:

corner PSF

(d) Observation 4:

corner PSF

(e) Observation 5:

”local” PSF

(f) Observation 6:

”local” PSF

Figure 11. Input PSF at different locations in the field for a SNR = 40.

yield at least one order of magnitude more accurate PSFs restoration than existing

methods, with respect to the PSFs shapes parameters. In particular, we show that

the analysis formulation of the sparsity constraint over the components is particularly

suitable for capturing accurately the PSFs sizes. We also show that constraining the

coefficients matrix yields a significantly better identification of the PSFs embedding

subspace when the data are undersampled.

An important extension of RCA for astronomical imaging would be to account for

the wavelength dependency of the PSFs. Indeed, an unresolved star image is a linear

combination of the PSFs at different wavelengths weighted by the star’s spectrum.

Hence, RCA can be naturally extended by replacing the matrix S with a tensor, for

which each element would be a polychromatic eigen PSF.
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Figure 12. PSFs reconstructions: from the left to the right: original, PSFEx,

RCA; from the bottom to the top: 2 ”local” PSFs reconstructions, 2 corner PSFs

reconstructions, 2 center PSFs reconstructions. The observed corresponding PSFs can

be seen in Fig. 11
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Appendix A. Notch filter approximation

In this appendix, we explain why the functional Ψe,a introduced in subsection 5.2 can

be approximated with the functional Ψ̂e,a. We use the subsection 5.2 notations. We

consider the 1D case. The samples (ui)1≤i≤p are uniformly spaced scalar. We assume

that u1 < · · · < up. We note ∆ = u2 − u1. Thus,

ψi = ψp−i+1 =
−1

|k + 1− i|e∆e
if i 6= k + 1, and (A.1)

ψk+1 = 2
k∑

n=1

a

ne∆e
. (A.2)

Using the centered definition of the convolution with a zero boundary condition, for a

vector v = (vi)1≤i≤p, the vector h = v ?ψe,a is given by

h[j] =

p∑
i=1

viψj+k+1−i, (A.3)

for j ∈ J1, pK and with the convention that ψj+k+1−i = 0 if j + k + 1 − i < 1 or

j + k + 1− i > p. Combining Eq.A.1, A.2 and A.3, we can write

h[j] = (2
k∑

n=1

a

ne∆e
)vj −

∑
i∈[max(1,j−k),
min(p,j+k)],i 6=j

1

|j − i|e∆e
vi. (A.4)
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We recall that Ψe,a(v) = ‖h‖2
2. On the other hand, Ψ̂e,a(v) = ‖tv‖2

2, with tv defined as

tv[j] = (2

min(j−1,p−j)∑
n=1

1

ne
+

max(j−1,p−j)∑
n=

min(j−1,p−j)+1

1

ne
)
a

∆e
vj −

p∑
i=1
i6=j

1

|j − i|e∆e
vi if j 6= k + 1

and tv[k + 1] = (2
k∑

n=1

a

ne∆e
)vj −

p∑
i=1
i 6=k+1

1

|k + 1− i|e∆e
vi.

(A.5)

Thus, tv[k + 1]− h[k + 1] = 0 and for j 6= k + 1

tv[j]− h[j] = (

max(j−1,p−j)∑
n=k+1

1

ne
−

k∑
n=

min(j−1,p−j)+1

1

ne
)
a

∆e
vj

−
max(1,j−k)∑

i=1
i6=j

1

|j − i|e∆e
vi −

p∑
i=min(p,j+k)

i6=j

1

|j − i|e∆e
vi.

(A.6)

Given the symmetry of ψe,a with respect to k + 1, we focus on the above difference for

j ≤ k. We further assume that j 6= 1. Then, Eq.A.6 simplifies to

tv[j]− h[j] = (

p−j∑
n=k+1

1

ne
−

k∑
n=j

1

ne
)
a

∆e
vj −

1

(j − 1)e∆e
v1 −

p−j∑
n=k

1

ne∆e
vn. (A.7)

Now, using the inequalities for n > 1,∫ n

n−1

1

(t+ 1)e
dt ≤ 1

ne
≤

∫ n

n−1

1

te
dt, (A.8)

and assuming that e > 1, we get the following upper bounding:

|tv[j]− h[j]| ≤ 1

e− 1
[max(|(p− j + 1)1−e + (j − 1)1−e − (k + 1)1−e − k1−e|,

|(p− j)1−e + j1−e − (k + 1)1−e − k1−e|)a+
e− 1

(j − 1)e
+ k1−e − (p− j)1−e]

‖v‖∞
∆e

.
(A.9)

We see that the higher is k (we recall that p = 2 ∗ k + 1) and the closer j is to k, the

smaller is the error. Therefore, we use tv as an approximation for h, up to boundaries

errors.

Appendix B. Convex analysis

In this appendix, we give the general convex analysis material relevant to our work. We

consider a finite-dimensional Hilbert space H equipped with the inner product 〈., .〉 and

associated with the norm ‖.‖.
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Appendix B.1. Proximity operator

Definition: Let F be a real-valued function defined on H. F is proper if its domain,

as defined by domF = {x ∈ H/F(x) < +∞}, is non-empty. F is lower semicontinuous

(LSC) if lim infx→x0 F(x) ≥ F(x0). We define Γ0(H) as the set of proper LSC

convex real-valued function defined on H. For a function F ∈ Γ0(H), the function

y → 1
2
‖α− y‖2 + F(y) achieves its minimum at a unique point denoted by proxF(α),

(∀α ∈ H) [32]; the operator proxF is the proximity operator of F .

Examples:

• let C be a convex closed set of H. The indicator function of C is defined as:

ιC(x) =

{
0, if x ∈ C

+∞, otherwise;
(B.1)

it is clear from the definition that the proximity operator of ιC is the orthogonal

projector onto C;
• for H = R, λ ∈ R+ and f : x → λ|x|, proxf (y) = SoftThreshλ(y), where

SoftThreshλ denotes the soft-thresholding operator, with a threshold λ.

Properties:

• separability: if H = H1 × · · · × Hn, for F ∈ Γ0(H) and if F(x) =

F1(x[1]) + · · · + Fn(x[n]) where Fi ∈ Γ0(Hi), for i = 1 . . . n, then proxF(y) =

(proxF1
(y[1]), . . . , proxFn(y[n]));

• translation: for F ∈ Γ0(H) and a ∈ H, we define Fa(x) = F(x − a); then

proxFa
(y) = a + proxF(y − a)

Appendix B.2. Convex conjugate

Definition: let F be a real-valued function defined on H. The function F∗ : y →
max

x
〈x,y〉−F(x) is the convex conjugate of F ; it is also known as the Legendre-Fenchel

transformation of F .

Properties:

• Moreau identity: for F ∈ Γ0(H) and λ ∈ R∗+, proxλF(x) + λ prox 1
λ
F∗(

x
λ
) = x;

• Fenchel - Moreau theorem: if F ∈ Γ0(H), F = F∗∗.

Appendix C. Minimization schemes

This appendix details the practical resolution of the proposed method optimization

problems.
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Appendix C.1. Components estimation problem

We consider the step 5 in the Alg. 1. If Φs = In, the problem of estimating components

takes the following generic form:

min
S
F(S) + G1(L1(S)) +H(S), (C.1)

with F(S) =
∑r

i=1 ‖wi � s
(c)
i ‖1, G1 = ιRn×p+

, L1(S) = SA and H(S) = 1
2
‖Y −M(S)‖2

F

for some bounded linear operator M.

F ∈ Γ0(Rn×r), G1 ∈ Γ0(Rn×p) and L1 is a bounded linear operator. Moreover, H
is convex, differentiable and has a continuous and Lipschitz gradient. This problem can

be solved efficiently using the primal dual algorithms introduced in [33] for instance.

One only need to be able to compute λF and αG∗1 proximity operators, for some given

positive reals λ and α and H’s gradient:

• proxλF(S) = (ŝij) 1≤i≤n
1≤j≤p

, with ŝij = SoftThreshλwj[i](sj[i]);

• proxαG∗1 (Z) = Z− (Z)+

• ∇H(S) = −M∗(Y −M(S)), where M∗ is the adjoint operator of M.

For an arbitrary dictionary Φs, we instead consider the following generic formulation of

the problem:

min
S
G1(L1(S)) + G2(L2(S)) +H(S), (C.2)

where G2(Z) =
∑r

i=1 ‖wi � Z
(c)
i ‖1 and L2(S) = [Φss

(c)
1 , . . . ,Φss

(c)
r ]. One can use the

algorithms suggested before and minimization will require the computation of αG∗2
proximity operator, for some given positive real α which is simply given by

proxαG∗1 (Z) = Z− Ẑ ,with Ẑ[i, j] = SoftThreshλwj[i](Z[i, j]).

Appendix C.2. Coefficients estimation

We consider the step 8 in the Alg. 1. The problem takes the generic form:

min
α
J (α) s. t. ‖α[l, :]‖0 ≤ ηl, l = 1 . . . r, (C.3)

where J is convex, differentiable and has a continuous and Lipschitz gradient and

α ∈ Rr×q. This problem is combinatorial and its feasible set is non-convex. For typical

data sizes in image processing applications and tractable processing time, one can at

best reach a ”good” local optimum. There is an extensive literature on optimization

problems involving the l0 pseudo-norm. We propose an heuristic based on quite common

ideas now and which appears to be convenient from a practical point of view. Let α∗

be a global minimum of Problem C.3. For a vector M ∈ Rr×q, we define its support as

Supp(M) = {(i, j) ∈ J1, rK× J1, qK/|M[i, j]| ≥ 0}. (C.4)

We note Eα∗ the set of r × q real matrices sharing the support of α∗:

Eα∗ = {M ∈ Rr×q/Supp(M) = Supp(α∗)}. (C.5)
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Eα∗ is a vector space. In particular, Eα∗ is a convex set. Therefore, α∗ is a solution of

the following problem:

min
α
J (α) s. t. α ∈ Eα∗ . (C.6)

The proposed scheme is motivated by the idea of identifying approximately Eα∗ along

with the iterative process. One can think of numerous algorithms to solve Problem

C.6, all involving the orthogonal projection onto Eα∗ . We build upon the fast proximal

splitting algorithm introduced in [34]. For a vector u ∈ Rq we note σ a permutation of

J1, qK verifying |u[σ(1)]| ≥ · · · ≥ |u[σ(q)]|. For an integer k ≤ q, we define

Suppk(u) = {i ∈ J1, qK/|u[i]| ≥ |u[σ(k)]|}, (C.7)

Finally for a vector α ∈ Rr×q, we define the subspace

Ek,α = {M ∈ Rr×q/Suppk(M[i, :]) = Suppk(α[i, :]), i = 1 . . . r}. (C.8)

The proposed scheme is given in Algorithm 2. f is a positive valued concave increasing

function and projEbf(k)c,Uk
(.) denotes the orthogonal projection onto Ebf(k)c,Uk

.

Algorithm 2 Beck-Teboulle proximal gradient algorithm with variable proximity

operator

1: Initialization: α0 = 0Rr×q , β0 = α0, t0 = 1 res−1 = 0, res0 = 0, tol, k = 0

2: Minimization

3: while k < kmax and |(resk − resk−1)/resk| do

4: Uk = βk − ρ−1∇J (βk)

5: αk+1 = projEbf(k)c,Uk
(Uk)

6: tk+1 =
1+
√

4t2k+1

2

7: λk = 1 + tk−1
tk+1

8: βk+1 = αk + λk(αk+1 −αk)
9: resk+1 = J (βk)

10: k = k + 1

11: end while

12: Return: αkstop .

The solution support size is constraint at step 5 and the size is gradually increased

as shown in Fig. C1.

The convergence analysis this scheme is out of the scope of this paper. However,

Fig. C2 suggests that once an index is included in an iterate support, this index is

included in all the forthcoming iterates supports. This implies that at each support

size’s step in Fig. C1, the algorithm approximately solves a problem of the following

form:

min
α
J (α) s. t. α ∈ E, (C.9)
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Figure C1. Support size function; X axis: iteration index k in Algorithm 2; Y axis:

bf(k)c for f(x) =
√
x+ 1

Figure C2. Algorithm 2 main iterate evolution; X axis: |αk+1[0, :]| for the top image

and |αk+1[1, :]| for the bottom image; Y axis: iterate index k
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for a given subspace E, which is a convex problem.

This scheme can be viewed as an iterative hard thresholding [22], with a decreasing

threshold [35]. Yet, it is quite easy to get an upper bound of the support size - related

to the parameters ηl in Problem C.3 - from the data. Depending on the time one is

willing to spend on the coefficients computation, this yields convenient choices for the

function f .


