Observational aspects of weak lensing

Overview

- Shape measurement
- Photometric redshifts
- Intrinsic alignment
- Non-linear structure formation
- Non-Gaussian errors

Weak Lensing and Cosmology

(Leiden list)

 $81 \ / \ 126$

Measuring ellipticity

Shape measurement

Reminder:

Observational aspects of weak lensing

Weak gravitational lensing causes small image distortions. (Linearized) lens mapping: circle \rightarrow ellipse.

Need to measure "ellipticity" for irregular shaped objects such as faint, high-redshift galaxies...

Defining ellipticity

• Second-order tensor of brightness distribution

$$Q_{ij} = \frac{\int d^2\theta \, q[I(\boldsymbol{\theta})] \, (\theta_i - \bar{\theta}_i)(\theta_j - \bar{\theta}_j)}{\int d^2 \, \theta \, q[I(\boldsymbol{\theta})]}, \quad i, j = 1, 2$$

 $I(\boldsymbol{\theta})$: brightness distribution of galaxy

q: weight function $\bar{\boldsymbol{\theta}} = \frac{\int \mathrm{d}^2 \theta \, q_I[I(\boldsymbol{\theta})] \, \boldsymbol{\theta}}{\int \mathrm{d}^2 \theta \, q_I[I(\boldsymbol{\theta})]} : \quad \text{barycenter}$

• Ellipticity

Observational aspects of weak lensing

$$\varepsilon = \frac{Q_{11} - Q_{22} + 2iQ_{12}}{Q_{11} + Q_{22} + 2(Q_{11}Q_{22} - Q_{12}^2)^{1/2}}$$

- Circular object Q₁₁ = Q₂₂, Q₁₂ = Q₂₁ = 0
 Elliptical isophotes, axis ratio r: |ε| = (1 r)/(1 + r)

Weak Lensing and Cosmology

From source to image

- Analogously define Q^s_{ij} for source brightness
 With lens equation:

$$Q^{\rm s} = \mathcal{A}Q\mathcal{A}$$

[Reminder:

$$\mathcal{A} = \begin{pmatrix} 1 - \kappa - \gamma_1 & -\gamma_2 \\ -\gamma_2 & 1 - \kappa + \gamma_1 \end{pmatrix} = (1 - \kappa) \begin{pmatrix} 1 - g_1 & -g_2 \\ -g_2 & 1 + g_1 \end{pmatrix}$$

Jacobi-matrix of mapping between lens and source position. Reduced shear $g_i = \gamma_i / (1 - \kappa)$]

• Relation between source ε^{s} and image ellipticity ε

$$\varepsilon^{\rm s} = \begin{cases} \frac{\varepsilon - g}{1 - g^* \varepsilon} & \text{for} \quad |g| \le 1\\ \frac{1 - g \varepsilon^*}{\varepsilon^* - g^*} & \text{for} \quad |g| > 1 \end{cases},$$

• weak-lensing regime: $\kappa, |\gamma| \ll 1 \rightarrow \varepsilon \approx \varepsilon^{s} + \gamma$

Weak Lensing and Cosmology

Shape measure

Measuring second-order shear

Estimators

• 2PCF: correlate all galaxy pairs

$$\hat{\xi}_{\pm}(\vartheta) = \frac{1}{N_{\text{pair}}} \sum_{\substack{ij\\ \text{pairs } \in |\vartheta| - \text{bin}}}^{N_{\text{pair}}} \left(\varepsilon_{it}\varepsilon_{jt} \pm \varepsilon_{i\times}\varepsilon_{j\times}\right)$$

• Aperture-mass dispersion: place apertures over data field

$$\hat{M}(\theta) = \frac{1}{N_{\rm ap}} \sum_{n=1}^{N_{\rm ap}} \frac{1}{N_n(N_n-1)} \sum_{\substack{i\neq j\\ \text{gal }\in \text{ ap. }}}^{N_n} Q_i Q_j \varepsilon_{it} \varepsilon_{jt}^*$$

(tophat-variance similar)

Weak Lensing and Cosmology

Interrelations

Shape measurement

 $86 \ / \ 126$

Placing apertures very inefficient due to gaps, masking. Correlating pairs for 2PCF makes optimal use of data.

Observational aspects of weak lensing

Invert relation between 2PCF and power spectrum \longrightarrow express aperture measures in terms of 2PCF Weak Lensing and Cosmology

Interrelations in the presence of a B-mode

$$\langle M_{\mathrm{ap},\times}^2 \rangle(\theta) = \frac{1}{2} \left[\int_0^{2\theta} \frac{\mathrm{d}\vartheta \,\vartheta}{\theta^2} \, T_+\left(\frac{\vartheta}{\theta}\right) \xi_+(\vartheta) \, \pm \, \int_0^{2\theta} \frac{\mathrm{d}\vartheta \,\vartheta}{\theta^2} \, T_-\left(\frac{\vartheta}{\theta}\right) \xi_-(\vartheta) \right]$$

$$\langle |\gamma|^2 \rangle_{\mathrm{E,B}}(\theta) = \frac{1}{2} \left[\int_0^{2\theta} \frac{\mathrm{d}\vartheta \,\vartheta}{\theta^2} \, S_+\left(\frac{\vartheta}{\theta}\right) \xi_+(\vartheta) \, \pm \, \int_0^\infty \frac{\mathrm{d}\vartheta \,\vartheta}{\theta^2} \, S_-\left(\frac{\vartheta}{\theta}\right) \xi_-(\vartheta) \right]$$

$$\xi_{\mathrm{E,B}}(\theta) = \frac{1}{2} \left[\xi_+(\theta) \, \pm \, \xi_-(\theta) \pm \, \int_\theta^\infty \frac{\mathrm{d}\vartheta}{\vartheta} \xi_-(\vartheta) \left(4 - 12\frac{\theta^2}{\vartheta^2}\right) \right]$$

Top-hat-variance and corr. function not local!

Weak Lensing and Cosmology

Observational aspects of weak lensing

E- and B-mode mixing

Aperture-mass statistics: B-mode on small scales due to minimum angular scales (blending of galaxy images) [MK, Schneider & Eifler 2006] Correlation function and top-hat-variance: \approx constant B-mode on all scales due to maximum scale (field size)

िलियान

θ_{max} = 6 deg

θ [arcmin]

10

10

50

50

E-/B-mode separation on finite angular range: Ring statistics [Schneider & MK 2006]

PSF effects

Shape measurement

The problem:

Observational aspects of weak lensing

- Need to measure galaxy shapes to percent-level accuracy.
- Galaxies are faint (I > 21), small (\gtrsim arcsec = few pixel) and are
 - 1. smeared by seeing
 - 2. distorted by instrumental imperfections: defocusing, abberation, coma etc., tracking errors, chip not planar, image coaddition

Effect:

- 1. Makes galaxies rounder
- 2. Mimics a shear signal $\gg \gamma$!

Solution:

- 1. Seeing $\lesssim 1''$
- 2. Correct for PSF anisotropies

Weak Lensing and Cosmology

Observation	al aspects of weak lensing Shape measurement		
KSB			
[Kaiser, Squires & Broadhurst 1995]: Perturbative ansatz for PSF effects			
$\varepsilon^{\rm obs} = \varepsilon^{\rm s} + P^{\rm sm}\varepsilon^* + P^{\rm sh}\gamma$			
[c.f. $\varepsilon^{obs} = \varepsilon^s + \gamma$ from before]			
$P^{ m sm}$ e^* $P^{ m sh}$ γ	smear polarisability, (linear) response of to ellipticity to PSF anisotropy PSF anisotropy shear polarisability, isotropic seeing correction shear		
$P^{\rm sm}, P^{\rm sh}$ are functions of galaxy brightness distribution. e^* : fit function (polynomial/rational) to star PSFs, extrapolate to galaxy positions			

Weak Lensing and Cosmology

 $93 \ / \ 126$

Shape measurement

PSF effects depend on galaxy ...

- size
- magnitude
- morphology
- SED (color gradient within broad-band filter)

Weak Lensing and Cosmology

 $94 \ / \ 126$

Observational aspects of weak lensing Shape measurement KSB alternatives Shapelets [Refregier 2003, Massey & Refregier 2003, Kuijken 2006] • Decompose galaxies and stars into basis functions. ×10^{-a} 2 4 6 8 10 12 0 Shapelet Coefficients 20 0,2 3.2 2 15 0,1 3,1 ة 10 0,0 3.0 0 10 n. 0 15 20 5 • PSF correction, convergence and shear acts on shapelet coefficients, deconvolution feasible • Beyond second-order (quadrupole moment)

Weak Lensing and Cosmology

KSB alternatives

Shape measurement

PCA decomposition [Bernstein & Jarvis 2002, Nakajima & Bernstein 2007]

Similar to shapelets method, but shears the basis functions until they match observed galaxy image

im2shape [Kuijken 1999, Bridle et al. 2002]

Observational aspects of weak lensing

Fits sum of elliptical Gaussian to each galaxy (MCMC). In principle offers clean way to translate shape measurement errors into errors on cosmological parameters. But: Very slow!

Weak Lensing and Cosmology

Weak lensing from space

Advantages and disadvantages

- No seeing, resolution is diffraction-limited (HST: < 100 mas)
- Deeper (higher z, larger number density), better IR-coverage than from earth
- HST: PSF undersampled, 'ugly', time-variations
- small field of view, few stars
- CCD 'aging', many cosmic rays, CTE problems

Results

- Cluster WL: excellent results (high shear signal, calibration less crucial)
- Cosmic shear: COSMOS, GEMS, GOODS, ACS parallel survey

Space-based cosmic shear surveys

Weak Lensing and Cosmology

149.6

Observational aspects of weak lensing

WL mass (contours), stellar mass, galaxy density, X-ray

[Massey et al. 2007]

150.6 150.4 150.2 150.0 149.8 Right Ascension [degrees]

 $101 \ / \ 126$

Observational a	spects of weak lensing	Shape measurement		
	STEP = Shear TEsting	Programme		
 World-wide collaboration of most of the weak lensing groups, started in 2004. Blind analysis of simulated images to test and calibrate different shape measurement methods, data reduction pipelines. 				
STEP 1 STEP 2 STEP 3 STEP 4 	Simple Galaxy and PSF types Galaxy images with shapelets Results from STEP 1 used Space-based observations Back to the roots?	Heymans et al. 2006 Massey et al. 2007 in prep.		
Weak J	Lensing and Cosmology	102 / 126		

Photo-z calibration

otometric redshifts

Size of spectroscopic sample

Error on bias and dispersion in $\mu^{\rm th}$ redshift bins

$$\Delta z_{\text{bias}}^{\mu} = \frac{\sigma_z^{\mu}(\text{ind. gal})}{\sqrt{N_{\text{spect}}^{\mu}}}$$
$$\Delta \sigma_z^{\mu} = \frac{\sigma_z^{\mu}(\text{ind. gal})}{\sqrt{N_{\text{spect}}^{\mu}/2}}$$

Assume $\sigma_z(\text{ind. gal}) = 0.1, 5$ photo-z bands. To reach $\Delta z_{\text{bias}}^{\mu} = 10^{-3}$, we need a total of $N_{\text{spec}} = 5 \cdot 10^4$ spectra!

Weak Lensing and Cosmology

Photometric redshifts

Requirements for high-precision cosmology

- some 10^4 spectra to very faint magnitudes
- IR bands from space

Other possibilities

- Intermediate calibration step between ≈ 5 bands and spectra: large number of broad bands from UV to far-IR (10³ spectra sufficient?)
- Angular correlation between photo-z bins to determine true z-distribution (e.g. correlation between low- and high-z bins ← contamination by catastrophic outliers)

Intrinsic alignment

Intrinsic alignment

Intrinsic-intrinsic correlation (II)

- Reminder: basic equation of weak lensing $\varepsilon = \varepsilon^{\rm s} + \gamma$
- Second-order correlations

 $\langle \varepsilon_i \varepsilon_j^* \rangle = \langle \varepsilon_i^{\rm s} \varepsilon_j^{\rm s*} \rangle + \langle \varepsilon_i^{\rm s} \gamma_j^* \rangle + \langle \gamma_j \varepsilon_j^{\rm s*} \rangle + \langle \gamma_i \gamma_j^* \rangle$

- $\langle \varepsilon_i^{s} \varepsilon_j^{s*} \rangle \neq 0$ for $z_i \approx z_j$, and if shapes of galaxies intrinsically correlated, e.g. through spin-coupling with dm halo, tidal torques
- II measured in COMBO-17 (Heymans et al. 2004), not measured in SDSS (Hirata et al. 2004). B-modes as diagnostics?
- Theoretical predictions do not agree with each other

Weak Lensing and Cosmology

Non-linear structure formation

Problems

Observational aspects of weak lensing

- Non-linear predictions of dark-matter P_{δ} not better than $\approx 5\%$ on small scales [Peacock&Dodds 1996, Smith, Peacock et al. 2003]
- With baryonic physics much worse!
- Dark energy dependence not really tested, extrapolations valid?
- Accuracy of non-linear bispectrum B_{δ} 15 30% [Scoccimarro & Couchman 2001]
- Halo model, semi-analytic, works also for higher-order statistics, but many fine-tuning parameters

Observational aspects of weak lensingNon-linear structure formationNecessary accuracy of P_{δ} not to be dominated by systematic errors in P_{δ} (@ $k \sim 1 \text{ h/Mpc}$).

Non-Gaussian errors

Non-Gaussian errors

• Second-order correlations

$$\langle \varepsilon_i \varepsilon_j^* \rangle = \langle \varepsilon_i^{\rm s} \varepsilon_j^{\rm s*} \rangle + \langle \gamma_i \gamma_j^* \rangle = \sigma_{\varepsilon}^2 \delta_{ij} + \xi_+(\vartheta_{ij})$$

• Error of second-order correlations is square of above. Schematically:

$$cov = c_1 \sigma_{\varepsilon}^4 + c_2 \sigma_{\varepsilon}^2 \langle \gamma \gamma \rangle + c_3 \langle \gamma \gamma \gamma \gamma \rangle$$
$$\equiv D + M + V$$

D: 'diagonal term', shot noise due to intrinsic

ellipticity and finite numbers of galaxies

- $M: {\rm mixed}\ {\rm term}$
- V : sample "cosmic" variance, due to finite observed volume

Weak Lensing and Cosmology

Observational aspects of weak lensing	Non-Gaussian errors			
Cosmic variance term V				
If shear field were Gaussian: $V = 3 \langle \gamma $ [Schneider, van Waerbeke, MK & Mellier is $\langle \gamma \gamma \gamma \gamma \rangle_{c}$?	$\langle \gamma \rangle^2$, cov known analytically c]. But this is not the case! What			
Possible ways to get $V_{\text{non-Gauss}}$:				
• Field-to-field variance from data patches observed	, if large number of independent			
• From ray-tracing simulations				
• Fitting formulae [Semboloni et al.	2007]			
• Cov. of P_{κ} , fourth-order statistic Hu 2001]	es from halo-model, [e.g. Cooray &			
Hu 2001]				

 $117 \ / \ 126$

Weak Lensing and Cosmology

Covariance for CFHTLS Wide, 55 deg^2

Additional slides

Results from the bullet cluster

- Combined strong+weak lensing, optical, X-ray analysis [Bradač et al., Clowe et al. 2006]
- Self-interaction of dark matter: $\sigma/m < 1.25$ cm g⁻¹ [Randall et al. 2007]
- [Angus, Shan, Zhao & Famaey 2007]: MOND + 2 eV hot neutrinos as collisionless dark matter, falsifiable by KATRIN β -decay experiment by 2009. Not a new idea [Sanders 2003, McGaugh 2004]

Weak Lensing and Cosmology

