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Observational aspects of weak lensing

Overview

• Shape measurement
• Photometric redshifts
• Intrinsic alignment
• Non-linear structure formation
• Non-Gaussian errors

(Leiden list)
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Measuring ellipticity

Reminder:
Weak gravitational lensing causes small image distortions.
(Linearized) lens mapping: circle → ellipse.

Need to measure “ellipticity” for irregular shaped objects such as faint,
high-redshift galaxies...

[Y. Mellier]
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Defining ellipticity

• Second-order tensor of brightness distribution

Qij =
∫

d2θ q[I(θ)] (θi − θ̄i)(θj − θ̄j)∫
d2 θ q[I(θ)]

, i, j = 1, 2

I(θ) : brightness distribution of galaxy
q : weight function

θ̄ =
∫

d2θ qI [I(θ)]θ∫
d2θ qI [I(θ)]

: barycenter

• Ellipticity

ε =
Q11 −Q22 + 2iQ12

Q11 + Q22 + 2(Q11Q22 −Q2
12)1/2

• Circular object Q11 = Q22, Q12 = Q21 = 0
• Elliptical isophotes, axis ratio r: |ε| = (1− r)/(1 + r)
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From source to image
• Analogously define Qs

ij for source brightness
• With lens equation:

Qs = AQA
[Reminder:

A =
(

1− κ− γ1 −γ2

−γ2 1− κ + γ1

)
= (1− κ)

(
1− g1 −g2

−g2 1 + g1

)

Jacobi-matrix of mapping between lens and source position. Reduced
shear gi = γi/(1− κ)]

• Relation between source εs and image ellipticity ε

εs =






ε− g

1− g∗ε
for |g| ≤ 1

1− gε∗

ε∗ − g∗
for |g| > 1

,

• weak-lensing regime: κ, |γ|$ 1→ ε ≈ εs + γ

Weak Lensing and Cosmology 84 / 126



Observationalas-
pects
of
weak
lensingObservational aspects of weak lensing Shape measurement

Measuring second-order shear

Estimators

• 2PCF: correlate all galaxy pairs

ξ̂±(ϑ) =
1

Npair

Npair∑

ij
pairs ∈ ϑ−bin

(εitεjt ± εi×εj×)

• Aperture-mass dispersion: place apertures over data field

M̂(θ) =
1

Nap

Nap∑

n=1

1
Nn(Nn − 1)

Nn∑

i#=j
gal ∈ ap.

QiQjεitε
∗
jt

(tophat-variance similar)
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Interrelations
Placing apertures very inefficient due to gaps, masking. Correlating
pairs for 2PCF makes optimal use of data.
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Invert relation between 2PCF and power spectrum −→ express
aperture measures in terms of 2PCF
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Interrelations
734 P. Schneider et al.: B-modes in cosmic shear from source redshift clustering

Fig. 1. The four functions defined in text.

for x ≤ 2, and T+(x) vanishes for x > 2. Hence, the inte-
grals in (32) extend only over 0 ≤ ϑ ≤ 2θ, so that

〈
M2

ap

〉

and
〈
M2

⊥
〉

can be obtained directly in terms of the ob-
servable correlation function ξ± over a finite interval. The
two functions T± are plotted in Fig. 1.

2.5. Shear dispersion

Another cosmic shear statistics often employed is the shear
dispersion in a circle of angular radius θ. It is related to
the power spectra by

〈
|γ̄|2

〉
(θ) =

1
2π

∫
d& & (PE + PB)(&)WTH(&θ), (36)

where

WTH(η) =
4J2

1 (η)
η2

(37)

is the top-hat filter function. In contrast to the aper-
ture measures of the previous subsection, the shear dis-
persion (36) contains both modes; furthermore, the filter
function WTH(η) is much broader than W (η) in (29), as
demonstrated in SvWJK. It thus provides a much less lo-
calized measure of the power spectra than the aperture
measures. On the other hand, this larger filter width im-
plies that the signal of the shear dispersion is larger than
that of the aperture measures, which explains why the first
cosmic shear detections (van Waerbeke et al. 2000; Bacon
et al. 2001; Kaiser et al. 2000) were obtained in terms of
the shear dispersion.

As before, the shear dispersion can be obtained by cal-
culating the mean shear in circles which are laid down on
a grid of points, with the drawback of being affected by

gaps in the data field. Alternatively, the shear dispersion
can be obtained directly from the correlation function,
〈
|γ̄|2

〉
(θ) =

∫
dϑϑ

θ2
ξ+(ϑ)S+

(
ϑ

θ

)
, (38)

where (van Waerbeke 2000)

S+(x) =
1
π

[
4 arccos

(x

2

)
− x

√
4 − x2

]
(39)

for x ≤ 2, and zero otherwise. Hence, the integral in
(38) extends only over the finite interval 0 ≤ ϑ ≤ 2θ,
which makes this a convenient way to calculate the shear
dispersion.

One can also define the shear dispersions of the E- and
B-mode, according to
〈
|γ̄|2

〉

E,B
(θ) =

1
2π

∫
d& & PE,B(&)WTH(&θ), (40)

but they cannot be individually obtained from measuring
the shear directly. Nevertheless, both of these dispersions
can be obtained in terms of the correlation functions,
〈
|γ̄|2

〉

E,B
(θ) =

∫
dϑϑ

2θ2

[
ξ+(ϑ)S+

(
ϑ

θ

)
± ξ−(ϑ)S−

(
ϑ

θ

)]
,

(41)

which can be derived in close analogy to the derivation
of (32), and the function S− is related to S+ in the same
way as the corresponding T -functions,

S−(x) =
∫ ∞

0
dy y S+(y)G(y, x)

=
x
√

4 − x2(6 − x2) − 8(3 − x2) arcsin(x/2)
πx4

(42)

for x ≤ 2, and S−(x) = 4(x2 − 3)/x4 for x > 2. Hence,
the integrals in (41) do not cut off at finite separation,
which was to be expected, since a constant shear cannot
be uniquely assigned to an E- or B-mode, but contributes
to

〈
|γ̄|2

〉
·

3. B-mode from source clustering

In the previous section we have presented the decomposi-
tion of a general shear field into E/B-modes. It is usu-
ally assumed that lensing alone yields a pure E-mode
shear field, so that the detection of a B-mode in the van
Waerbeke et al. (2001) data (see also Pen et al. 2002) was
surprising and interpreted as being due to systematic er-
rors or a signature of intrinsic alignment of sources. Here
we show that lensing indeed does generate a B-mode com-
ponent of the shear if the source galaxies from which the
shear is measured are clustered.

3.1. Correlation functions and power spectra

Define the “equivalent” surface mass density for a fixed
source redshift, or comoving distance w,

κ(θ, w) =
∫ w

0
dw′ F (w′, w) δ[f(w′)θ, w′] (43)

T±, S± depend on Û , analytical
expressions exist

〈M2
ap〉(θ) =

∫ 2θ

0

dϑ ϑ

θ2
T+

(
ϑ

θ

)
ξ+(ϑ)

=
∫ 2θ

0

dϑ ϑ

θ2
T−

(
ϑ

θ

)
ξ−(ϑ)

〈|γ|2〉(θ) =
∫ 2θ

0

dϑ ϑ

θ2
S+

(
ϑ

θ

)
ξ+(ϑ)

=
∫ ∞

0

dϑ ϑ

θ2
S−

(
ϑ

θ

)
ξ−(ϑ)
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Interrelations in the presence of a B-mode

〈M2
ap,×〉(θ) =

1
2

[∫ 2θ

0

dϑ ϑ

θ2
T+

(
ϑ

θ

)
ξ+(ϑ) ±

∫ 2θ

0

dϑ ϑ

θ2
T−

(
ϑ

θ

)
ξ−(ϑ)

]

〈|γ|2〉E,B(θ) =
1
2

[∫ 2θ

0

dϑ ϑ

θ2
S+

(
ϑ

θ

)
ξ+(ϑ) ±

∫ ∞

0

dϑ ϑ

θ2
S−

(
ϑ

θ

)
ξ−(ϑ)

]

ξE,B(θ) =
1
2

[
ξ+(θ) ± ξ−(θ) ±

∫ ∞

θ

dϑ

ϑ
ξ−(ϑ)

(
4− 12

θ2

ϑ2

)]

Top-hat-variance and corr. function not local!
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E- and B-mode mixing
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[MK, Schneider & Eifler 2006]

E-/B-mode separation on finite angular range: Ring statistics
[Schneider & MK 2006]
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PSF effects

The problem:

• Need to measure galaxy shapes to percent-level accuracy.
• Galaxies are faint (I > 21), small ( >∼ arcsec = few pixel) and are

1. smeared by seeing
2. distorted by instrumental imperfections: defocusing, abberation,

coma etc., tracking errors, chip not planar, image coaddition

Effect:
1. Makes galaxies rounder
2. Mimics a shear signal ) γ !

Solution:
1. Seeing <∼ 1′′

2. Correct for PSF anisotropies
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Example of star images
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KSB

[Kaiser, Squires & Broadhurst 1995]: Perturbative ansatz for PSF effects

εobs = εs + P smε∗ + P shγ

[c.f. εobs = εs + γ from before]

P sm smear polarisability, (linear) response of to ellipticity to
PSF anisotropy

e∗ PSF anisotropy
P sh shear polarisability, isotropic seeing correction
γ shear

P sm, P sh are functions of galaxy brightness distribution.
e∗: fit function (polynomial/rational) to star PSFs, extrapolate to
galaxy positions
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PSF effects depend on galaxy . . .

• size
• magnitude
• morphology
• SED (color gradient within broad-band filter)
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Object selection

Figure 3.6: Galaxies and stars identification for CCD 13 (counting from the upper left corner to the
lower right corner of the field). Left panel : The size vs magnitude diagram. The boxes show the 4 types
of objects mentioned in the text (stars, bright objects, artifacts and galaxies). Right panel: Part of the
field, covering CCDs 13 and 14. Small (red) marks are the galaxies, big (green) circles show the stars
positions. The CCD on the left has 28 stars which correspond to the ones sitting on the vertical line on
the left panel. The parts of the image with no objects marked are masked regions.

In the W1+2+3 field (non-masked areas only) there are 960 stars, which corresponds to 20
to 30 stars per CCD, and 32520 galaxies.

3.2.4 Redshift of the source galaxies

The right panel of Fig. 3.6 shows the positions of the stars and galaxies detected. At this point
we have a catalog containing the coordinates, size and magnitude of the stars and galaxies. There
are still two other important properties of the objects that need to be determined. The first one
is the redshift of the galaxies. These may be determined by one of two alternative methods. They
may be obtained directly if it exists a spectrocopic survey of the same galaxies, or they may be
estimated from the measured fluxes in the different wavelength bands, when data in several filters
are available. In the latter case the measured spectral energy distribution of galaxies is compared
to templates determined from spectral evolution models of galaxies [Bruzual & Charlot, 1993].
There are some publicly available codes to perform these comparisons, one example is Hyper-z
[www, v]. The individual redshifts of galaxies thus estimated are known as photometric redshifts.

In the absence of both spectroscopic surveys and multi-band observations, it is not possible to
estimate the individual redshifts of the galaxies, but it is still possible to obtain the distribution
of redshifts. The idea is to use the redshifts found for other surveys of the same depth and fit
an analytical distribution function to their histogram of galaxies’ redshifts.

At the time of this work, the photometric redshifts estimated from the multi-band observa-
tions of the CFHTLS fields themselves were not available. We followed then this method, using
the photometric redshifts found for the Hubble Deep fields [Fernández-Soto et al., 1999]. The
data consists on 1067 redshifts, estimated using 4 optical filters and 3 infra-red bands and it has
a limiting magnitude of 28, which means it is complete in our magnitude range. The HDF-north

90

CFHTLS Wide [I. Tereno]

From size-magnitude diagram select galaxies and stars.
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PSF pattern

[Hoekstra et al. 2006]

PSF correction works if

• PSF pattern is smooth
(can be fitted by simple
function)

• star density is high enough
(∼ 10-20 stars per chip)
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PSF correction

55 CFHTLS Wide pointings

[Fu et al. 2007 (in prep.)]
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KSB alternatives

Shapelets [Refregier 2003, Massey & Refregier 2003, Kuijken 2006]

• Decompose galaxies and stars into basis functions.
4 A. Refregier

Figure 2. First few 2-dimensional Cartesian basis functions
φn1,n2 . The dark and light regions correspond to positive and
negative values, respectively.

f(x) =

∞∑

n1,n2=0

fnBn(x;β), (22)

where the shapelet coefficients are given by

fn =

∫
d2xf(x)Bn(x; β) (23)

Figure 3 show how an image observed with HST can be de-
composed and reconstructed using shapelets. The resulting
distribution of the coefficients is shown on Figure 4. More
examples can be found on Figure 5. These examples and
associated applications will be discussed in detail in §6.

Of practical interest, is the choice of an appropriate
shapelet scale β and maximum order nmax for the faithful
and efficient decomposition of a given image. Using argu-
ments similar to those of §2.4, it is easy to show that a
decomposition in 2-dimensions which include shapelets of
scale β with order ranging from n1 + n2 = 0 to nmax can
only describe features with scales between the two limits

θmin ≈ β (nmax + 1)−
1
2 , θmax ≈ β (nmax + 1)

1
2 . (24)

Thus, if the function has features with scales ranging from
θmax (eg. the size of the object or that of the image) and
θmin (eg. the pixel size, or the size of a smoothing kernel), a
good choice of β and nmax will be

β ≈ (θminθmax)
1
2 , nmax ≈ θmax

θmin
− 1. (25)

In practice, this provides a good first guess, which can be
refined using a few iterations (see §3.2).

Figure 3. Decomposition of a galaxy image found in the HDF.
The original 60 × 60 pixel HST image (upper left-hand panel)
can be compared with the reconstructed images with different
maximum order n = n1 + n2. The shapelet scale is chosen to be
β = 4 pixels. The lower right-hand panel (n ≤ 20) is virtually
indistinguishable from the initial image.

3.2 Photometry and Astrometry

The most basic quantities to measure for an object image
are its total flux (photometry), centroid position (astrom-
etry) and size. Let us first decompose the intensity f(x)
of the object into shapelet coefficients fn = 〈n; β|f〉 as in
Equation (22).

Using the integral property of Equation (17), it is then
easy to show that the total flux F ≡

∫
d2xf(x) of the object

is

F = π
1
2 β

even∑

n1,n2

2
1
2
(2−n1−n2)

(
n1

n1/2

) 1
2
(

n2

n2/2

) 1
2

fn1n2 ,(26)

where the sum is over even values of n1 and n2.
Using Equations (17) and (13), one can also show that

the centroid of the object xf
i ≡

∫
d2xxif(x)/F is given by

xf
1 = π

1
2 β2F−1

odd∑

n1

even∑

n2

(n1 + 1)
1
2 2

1
2
(2−n1−n2)

×
(

n1 + 1
(n1 + 1)/2

) 1
2
(

n2

n2/2

) 1
2

fn1n2 , (27)

and similarly for xf
2 .

Similarly, the rms radius rf defined by r2
f ≡

c© 2001 RAS, MNRAS 000, 1–13
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Figure 4. Shapelet coefficients for the image decomposition of
the previous figure. Since the coefficient array is sparse, the images
can be reconstructed from the few first largest coefficients.

∫
d2xx2f(x)/F is given by

r2
f = π

1
2 β3F−1

even∑

n1,n2

2
1
2
(4−n1−n2) (1 + n1 + n2)

×
(

n1

n1/2

) 1
2
(

n2

n2/2

) 1
2

fn1n2 , (28)

These expressions can be used, by iteration, to find the op-
timal centre and scale of the basis functions.

3.3 Coordinate Transformations

Let us consider a general coordinate transformation of the
form x → x′ = (1 + Ψ)x + ε, where Ψ is a 2 × 2 matrix,
ε = (ε1, ε2) is a small displacement. Such a transformation
can arise for instance from a translation, rotation or from the
action of gravitational lensing. We assume that the trans-
formation matrix Ψ and the displacement ε are small and
constant across the object. We parametrise the matrix Ψ

following the gravitational lensing conventions as

Ψ =

(
κ + γ1 γ2 − ρ
γ2 + ρ κ − γ1

)
, (29)

where ρ describes rotations and the convergence κ describes
overall dilatations and contractions. The shear γ1 (γ2) de-
scribes stretches and compressions along (at 45◦ from) the
x-axis. The displacements ε1 and ε2 correspond to transla-
tions along the x and y-axis, respectively.

Under this transformation, the intensity f(x) of an ob-
ject becomes

Figure 5. Reconstruction and compression of three HST galaxy
images using shapelets. The left-hand column shows the orginal
images extracted from the HDF and list Npix their size in pix-
els. The right-hand column shows their reconstructed image from
the Ncof largest coefficients (in absolute value) of their shapelet
decomposition. Because the coefficient matrix is typically sparse,
a large compression factor Npix/Ncof is achieved. The shapelet
scale was chosen to be β = 4 pixels in all 3 cases.

f ′(x′) = f(x(x′)) $ f(x′ − Ψx
′ − ε). (30)

Since we are now considering infinitesimal transformations,
we can Taylor expand this expression and only keep the
terms which are first order in Ψ. After using Equations (11)
and (13), we find

f ′ $ (1 + ρR̂ + κK̂ + γjŜj + εiT̂i)f, (31)

where R̂, K̂, Ŝi and T̂i are the operators generating rota-
tion, convergence, shears and translations, respectively, and
where we have used the Einstein summation convention. The
generators are given by

R̂ = −i (x̂1p̂2 − x̂2p̂1) = â1â
†
2 − â†

1â2

K̂ = −i (x̂1p̂1 + x̂2p̂2) = 1 +
1
2

(
â†2
1 + â†2

2 − â2
1 − â2

2

)

Ŝ1 = −i (x̂1p̂1 − x̂2p̂2) =
1
2

(
â†2
1 − â†2

2 − â2
1 + â2

2

)

Ŝ2 = −i (x̂1p̂2 + x̂2p̂1) = â†
1â

†
2 − â1â2

T̂j = −ip̂j =
1√
2
(â†

j − âj), j = 1, 2. (32)

The rotation generator R̂ is thus simply equal to the angular
momentum operator in 2-dimensions

L̂ = x̂1p̂2 − x̂2p̂1 = i
(
â1â

†
2 − â†

1â2

)
, (33)

c© 2001 RAS, MNRAS 000, 1–13

• PSF correction, convergence and shear acts on shapelet
coefficients, deconvolution feasible

• Beyond second-order (quadrupole moment)
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KSB alternatives

PCA decomposition [Bernstein & Jarvis 2002, Nakajima & Bernstein 2007]
Similar to shapelets method, but shears the basis functions until they
match observed galaxy image

im2shape [Kuijken 1999, Bridle et al. 2002]
Fits sum of elliptical Gaussian to each galaxy (MCMC). In principle
offers clean way to translate shape measurement errors into errors on
cosmological parameters. But: Very slow!
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Weak lensing from space

Advantages and disadvantages

• No seeing, resolution is diffraction-limited (HST: < 100 mas)
• Deeper (higher z, larger number density), better IR-coverage than

from earth
• HST: PSF undersampled, ’ugly’, time-variations
• small field of view, few stars
• CCD ’aging’, many cosmic rays, CTE problems

Results

• Cluster WL: excellent results (high shear signal, calibration less
crucial)

• Cosmic shear: COSMOS, GEMS, GOODS, ACS parallel survey
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Space-based cosmic shear surveys
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[Massey et al. 2007]
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lensingObservational aspects of weak lensing Shape measurement

STEP = Shear TEsting Programme

• World-wide collaboration of most of the weak lensing groups,
started in 2004.

• Blind analysis of simulated images to test and calibrate different
shape measurement methods, data reduction pipelines.

STEP 1 Simple Galaxy and PSF types Heymans et al. 2006
STEP 2 Galaxy images with shapelets

Results from STEP 1 used Massey et al. 2007
STEP 3 Space-based observations in prep.
STEP 4 Back to the roots?
. . .
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STEP results

• Multiplicative m and
additive errors σc,
γobs−γtrue = mγtrue + c

• Best methods measure
better shear than 7%

• STEP 2: Sub-percent
level not yet reached
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Principle of photo-zs

• Redshifted galaxy spectra have different colors

!"#$#%&$'()

'&*+"(,$

!"#$%#&"%' ()*"++,"# -../

-.!/01203/4#56/0778

[from Y. Mellier]

• 4000 Å-break strongest
feature → ellipticals
(old stellar population)
best, spirals ok,
irregular/star-burst
(emission lines) very
unreliable
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Photometric redshifts

• Redshift desert z ≈ 1.5− 2.5, neither 4000 Å-break nor Ly-break
in visible range

• Confusion between low-z dwarf ellipticals and high-z galaxies
• Need UV band and IR for high redshifts! But: UV very

insensitive, IR absorbed by atmosphere, have go to space
• Need database of galaxy spectra templates (observed or synthetic)
• Calibrate with spectroscopic galaxy sample. But always

Nspec $ NWL
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Photo-z calibration

Minimize
catastrophic
failures

zph − z

1 + z
<∼ 0.5

17.5 ≤ i′AB ≤ 24

[Ilbert et al. 2006]
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Photometric errors and cosmology
Degradation of wa-constraint as fct.
of uncertainty
in photo-z parameters ∆zbias = ∆σz

Cumulative number of galaxies in
spectroscopic sample for
degradation = 1.5

perfect redshifts:
σ0(wa) =0.69 (I)
σ0(wa) =0.96 (II) [Ma, Hu & Huterer 2006]
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Size of spectroscopic sample

Error on bias and dispersion in µth redshift bins

∆zµ
bias =

σµ
z (ind. gal)√

Nµ
spect

∆σµ
z =

σµ
z (ind. gal)√

Nµ
spect/2

Assume σz(ind. gal) = 0.1, 5 photo-z bands. To reach ∆zµ
bias = 10−3,

we need a total of Nspec = 5 · 104 spectra!
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Requirements for high-precision cosmology

• some 104 spectra to very faint magnitudes
• IR bands from space

Other possibilities

• Intermediate calibration step between ≈ 5 bands and spectra:
large number of broad bands from UV to far-IR (103 spectra
sufficient?)

• Angular correlation between photo-z bins to determine true
z-distribution (e.g. correlation between low- and high-z bins ←
contamination by catastrophic outliers)
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Intrinsic alignment

Intrinsic-intrinsic correlation (II)

• Reminder: basic equation of weak lensing ε = εs + γ

• Second-order correlations

〈εiε
∗
j 〉 = 〈εs

iε
s∗
j 〉+ 〈εs

iγ
∗
j 〉+ 〈γjε

s∗
j 〉+ 〈γiγ

∗
j 〉

• 〈εs
iε

s∗
j 〉 += 0 for zi ≈ zj , and if shapes of galaxies intrinsically

correlated, e.g. through spin-coupling with dm halo, tidal torques
• II measured in COMBO-17 (Heymans et al. 2004), not measured

in SDSS (Hirata et al. 2004). B-modes as diagnostics?
• Theoretical predictions do not agree with each other
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Theoretical predictions of II-correlation

[Brown et al. 2002]

Conclusion
• II-contamination probably unimportant. Can be reduced by going

deep, and down-weighting (physically) close pairs (photo-zs!)
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Intrinsic-shear correlation (GI)

• 〈εs
iγ
∗
j 〉 += 0 for zi < zj , and if

foreground galaxy aligned with its
halo that causes lensing signal

δ>0 δ>0

mass quadrupole

• Anti-correlation
between background
shear and foreground
orientation →
underestimate σ8 by up
to 10%

• Unlike II, GI cannot be
down-weighted!

 0.01

 0.1

 1

 22  22.5  23  23.5  24  24.5  25

-C
G

I
50

0/C
G

G
50

0
Limiting magnitude, R

GI contamination vs. survey depth

A
B
C
D

[Hirata et al. 2004, 2007] SDSS+2SLAQ
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Non-linear structure formation

Problems

• Non-linear predictions of dark-matter Pδ not better than ≈ 5% on
small scales [Peacock&Dodds 1996, Smith, Peacock et al. 2003]

• With baryonic physics much worse!
• Dark energy dependence not really tested, extrapolations valid?
• Accuracy of non-linear bispectrum Bδ 15− 30% [Scoccimarro &

Couchman 2001]

• Halo model, semi-analytic, works also for higher-order statistics,
but many fine-tuning parameters
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Necessary accuracy of Pδ not to be dominated by systematic errors in
Pδ (@ k ∼ 1 h/Mpc).
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[Huterer & Takada 2005]
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Non-Gaussian errors

• Second-order correlations

〈εiε
∗
j 〉 = 〈εs

iε
s∗
j 〉+ 〈γiγ

∗
j 〉 = σ2

εδij + ξ+(ϑij)

• Error of second-order correlations is square of above.
Schematically:

cov = c1 σ4
ε + c2 σ2

ε 〈γγ〉+ c3 〈γγγγ〉
≡ D + M + V

D : ’diagonal term’, shot noise due to intrinsic
ellipticity and finite numbers of galaxies

M :mixed term
V : sample “cosmic” variance, due to finite observed volume
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Cosmic variance term V

If shear field were Gaussian: V = 3 〈γγ〉2, cov known analytically
[Schneider, van Waerbeke, MK & Mellier]. But this is not the case! What
is 〈γγγγ〉c?

Possible ways to get Vnon−Gauss:

• Field-to-field variance from data, if large number of independent
patches observed

• From ray-tracing simulations
• Fitting formulae [Semboloni et al. 2007]

• Cov. of Pκ, fourth-order statistics from halo-model, [e.g. Cooray &
Hu 2001]
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Covariance for CFHTLS Wide, 55 deg2
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Non-Gaussian cosmic variance important on small scales

〈M2
ap〉, survey area = 3 square degree
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Fig. 1.— Shown above in the top panel is a color image from the Magellan images of the merging cluster 1E0657−558, with the white
bar indicating 200 kpc at the distance of the cluster. In the bottom panel is a 500 ks Chandra image of the cluster. Shown in green contours
in both panels are the weak lensing κ reconstruction with the outer contour level at κ = 0.16 and increasing in steps of 0.07. The white
contours show the errors on the positions of the κ peaks and correspond to 68.3%, 95.5%, and 99.7% confidence levels. The blue +s show
the location of the centers used to measure the masses of the plasma clouds in Table 2.

nated by collisionless dark matter, the potential will trace
the distribution of that component, which is expected
to be spatially coincident with the collisionless galax-
ies. Thus, by deriving a map of the gravitational po-
tential, one can discriminate between these possibilities.
We published an initial attempt at this using an archival
VLT image (Clowe et al. 2004); here we add three addi-
tional optical image sets which allows us to increase the
significance of the weak lensing results by more than a
factor of 3.

In this paper, we measure distances at the redshift of
the cluster, z = 0.296, by assuming an Ωm = 0.3, λ =
0.7, H0 = 70km/s/Mpc cosmology which results in 4.413
kpc/′′ plate-scale. None of the results of this paper are
dependent on this assumption; changing the assumed
cosmology will result in a change of the distances and
absolute masses measured, but the relative masses of
the various structures in each measurement remain un-
changed.

2. METHODOLOGY AND DATA

We construct a map of the gravitational poten-
tial using weak gravitational lensing (Mellier 1999;
Bartelmann & Schneider 2001), which measures the dis-
tortions of images of background galaxies caused by the
gravitational deflection of light by the cluster’s mass.
This deflection stretches the image of the galaxy pref-
erentially in the direction perpendicular to that of the
cluster’s center of mass. The imparted ellipticity is typi-
cally comparable to or smaller than that intrinsic to the
galaxy, and thus the distortion is only measurable statis-
tically with large numbers of background galaxies. To do
this measurement, we detect faint galaxies on deep op-
tical images and calculate an ellipticity from the second
moment of their surface brightness distribution, correct-
ing the ellipticity for smearing by the point spread func-
tion (corrections for both anisotropies and smearing are
obtained using an implementation of the KSB technique
(Kaiser et al. 1995) discussed in Clowe et al. (2006)).
The corrected ellipticities are a direct, but noisy, mea-
surement of the reduced shear "g = "γ/(1 − κ). The shear
"γ is the amount of anisotropic stretching of the galaxy
image. The convergence κ is the shape-independent in-
crease in the size of the galaxy image. In Newtonian

gravity, κ is equal to the surface mass density of the lens
divided by a scaling constant. In non-standard gravity
models, κ is no longer linearly related to the surface den-
sity but is instead a non-local function that scales as the
mass raised to a power less than one for a planar lens,
reaching the limit of one half for constant acceleration
(Mortlock & Turner 2001; Zhao et al. 2006). While one
can no longer directly obtain a map of the surface mass
density using the distribution of κ in non-standard grav-
ity models, the locations of the κ peaks, after adjusting
for the extended wings, correspond to the locations of
the surface mass density peaks.

Our goal is thus to obtain a map of κ. One can combine
derivatives of "g to obtain (Schneider 1995; Kaiser 1995)

∇ ln(1−κ) =
1

1 − g2
1 − g2

2

(

1 + g1 g2
g2 1 − g1

) (

g1,1 + g2,2
g2,1 − g1,2

)

,

which is integrated over the data field and converted into
a two-dimensional map of κ. The observationally un-
constrained constant of integration, typically referred to
as the “mass-sheet degeneracy,” is effectively the true
mean of ln(1−κ) at the edge of the reconstruction. This
method does, however, systematically underestimate κ
in the cores of massive clusters. This results in a slight
increase to the centroiding errors of the peaks, and our
measurements of κ in the peaks of the components are
only lower bounds.

For 1E0657−558, we have accumulated an exception-
ally rich optical dataset, which we will use here to mea-
sure "g. It consists of the four sets of optical images shown
in Table 1 and the VLT image set used in Clowe et al.
(2004); the additional images significantly increase the
maximum resolution obtainable in the κ reconstructions
due to the increased number of background galaxies,
particularly in the area covered by the ACS images,
with which we measure the reduced shear. We reduce
each image set independently and create galaxy cata-
logs with 3 passband photometry. The one exception
is the single passband HST pointing of main cluster,
for which we measure colors from the Magellan images.
Because it is not feasible to measure redshifts for all
galaxies in the field, we select likely background galax-
ies using magnitude and color cuts (m814 > 22 and not
in the rhombus defined by 0.5 < m606 − m814 < 1.5,
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Fig. 1.— Shown above in the top panel is a color image from the Magellan images of the merging cluster 1E0657−558, with the white
bar indicating 200 kpc at the distance of the cluster. In the bottom panel is a 500 ks Chandra image of the cluster. Shown in green contours
in both panels are the weak lensing κ reconstruction with the outer contour level at κ = 0.16 and increasing in steps of 0.07. The white
contours show the errors on the positions of the κ peaks and correspond to 68.3%, 95.5%, and 99.7% confidence levels. The blue +s show
the location of the centers used to measure the masses of the plasma clouds in Table 2.

nated by collisionless dark matter, the potential will trace
the distribution of that component, which is expected
to be spatially coincident with the collisionless galax-
ies. Thus, by deriving a map of the gravitational po-
tential, one can discriminate between these possibilities.
We published an initial attempt at this using an archival
VLT image (Clowe et al. 2004); here we add three addi-
tional optical image sets which allows us to increase the
significance of the weak lensing results by more than a
factor of 3.

In this paper, we measure distances at the redshift of
the cluster, z = 0.296, by assuming an Ωm = 0.3, λ =
0.7, H0 = 70km/s/Mpc cosmology which results in 4.413
kpc/′′ plate-scale. None of the results of this paper are
dependent on this assumption; changing the assumed
cosmology will result in a change of the distances and
absolute masses measured, but the relative masses of
the various structures in each measurement remain un-
changed.

2. METHODOLOGY AND DATA

We construct a map of the gravitational poten-
tial using weak gravitational lensing (Mellier 1999;
Bartelmann & Schneider 2001), which measures the dis-
tortions of images of background galaxies caused by the
gravitational deflection of light by the cluster’s mass.
This deflection stretches the image of the galaxy pref-
erentially in the direction perpendicular to that of the
cluster’s center of mass. The imparted ellipticity is typi-
cally comparable to or smaller than that intrinsic to the
galaxy, and thus the distortion is only measurable statis-
tically with large numbers of background galaxies. To do
this measurement, we detect faint galaxies on deep op-
tical images and calculate an ellipticity from the second
moment of their surface brightness distribution, correct-
ing the ellipticity for smearing by the point spread func-
tion (corrections for both anisotropies and smearing are
obtained using an implementation of the KSB technique
(Kaiser et al. 1995) discussed in Clowe et al. (2006)).
The corrected ellipticities are a direct, but noisy, mea-
surement of the reduced shear "g = "γ/(1 − κ). The shear
"γ is the amount of anisotropic stretching of the galaxy
image. The convergence κ is the shape-independent in-
crease in the size of the galaxy image. In Newtonian

gravity, κ is equal to the surface mass density of the lens
divided by a scaling constant. In non-standard gravity
models, κ is no longer linearly related to the surface den-
sity but is instead a non-local function that scales as the
mass raised to a power less than one for a planar lens,
reaching the limit of one half for constant acceleration
(Mortlock & Turner 2001; Zhao et al. 2006). While one
can no longer directly obtain a map of the surface mass
density using the distribution of κ in non-standard grav-
ity models, the locations of the κ peaks, after adjusting
for the extended wings, correspond to the locations of
the surface mass density peaks.

Our goal is thus to obtain a map of κ. One can combine
derivatives of "g to obtain (Schneider 1995; Kaiser 1995)

∇ ln(1−κ) =
1
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,

which is integrated over the data field and converted into
a two-dimensional map of κ. The observationally un-
constrained constant of integration, typically referred to
as the “mass-sheet degeneracy,” is effectively the true
mean of ln(1−κ) at the edge of the reconstruction. This
method does, however, systematically underestimate κ
in the cores of massive clusters. This results in a slight
increase to the centroiding errors of the peaks, and our
measurements of κ in the peaks of the components are
only lower bounds.

For 1E0657−558, we have accumulated an exception-
ally rich optical dataset, which we will use here to mea-
sure "g. It consists of the four sets of optical images shown
in Table 1 and the VLT image set used in Clowe et al.
(2004); the additional images significantly increase the
maximum resolution obtainable in the κ reconstructions
due to the increased number of background galaxies,
particularly in the area covered by the ACS images,
with which we measure the reduced shear. We reduce
each image set independently and create galaxy cata-
logs with 3 passband photometry. The one exception
is the single passband HST pointing of main cluster,
for which we measure colors from the Magellan images.
Because it is not feasible to measure redshifts for all
galaxies in the field, we select likely background galax-
ies using magnitude and color cuts (m814 > 22 and not
in the rhombus defined by 0.5 < m606 − m814 < 1.5,



Additional
slidesAdditional slides

Results from the bullet cluster

• Combined strong+weak lensing, optical, X-ray analysis [Bradač et
al., Clowe et al. 2006]

• Self-interaction of dark matter: σ/m < 1.25cm g−1 [Randall et
al. 2007]

• [Angus, Shan, Zhao & Famaey 2007]: MOND + 2 eV hot neutrinos as
collisionless dark matter, falsifiable by KATRIN β-decay
experiment by 2009. Not a new idea [Sanders 2003, McGaugh 2004]
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