Bayesian model selection in cosmology

Martin Kilbinger Institut d'Astrophysique de Paris (IAP) AP

Shanghai Normal University 3 August 2009

Model selection

• Traditional parameter estimation:

Q: For a specific model with *n* parameters which is the most likely (best-fit) parameter and confidence interval given the data?

Model selection:

Q: Which of two or more models with parameters n_1 , n_2 , ... is the most likely to fit the data?

• Examples in cosmology:

 \star Cosmological constant Λ vs. dark energy vs. modified gravity

★ Flat vs. curved

- **★** Primordial fluctuations: scale-free ($n_s=1$) vs. $n_s=const$ vs. running $n_s(k)$
- Other applications: Cluster profile reconstruction, exo-planets, nuisance parameters, ...

Bayesian evidence

• Posterior is normalised

$$E(d|m) = \int d^n \theta \mathcal{L}(d|\theta, m) \,\pi(\theta|m)$$

• Bayes factor

$$B_{12} = \frac{E(d|m_1)}{E(d|m_2)}$$

Posterior odds

How can we interpret the evidence?

• Bayes' theorem again:

 $p(m|d) \propto E(d|m)\pi(m)$

• Ratio for two models m_1 and m_2 :

$$\frac{p(m_1|d)}{p(m_2|d)} = B_{12} \frac{\pi(m_1)}{\pi(m_2)}$$

Posterior odds

Jeffre	/S'	sca	le
	, –	000	· •

log ₁₀ B ₁₂	Odds	Strength
0 0.5	1 3	weak
0.5 1	3 10	substantial
1 2	10 100	strong
>2	>100	decisive

Approximations to the Evidence

BIC (Bayesian Information Criterion) [Schwarz 1987]

(Similar: AIC, DIC) Problem: Penalty independent whether parameters constrained by data or not

• Laplace approximation: likelihood Gaussian, priors large and uniform [Lazarides, Ruiz de Austri & Trotta 2004, Heavens, Kitching & Verde 2007]

Laplace: prios might be small (physical parameter boundaries)

Fisher matrix not good approx.

CMB+SNIa+BAO: Dark energy, curvature

- Base model: flat Λ CDM, n_{par}=3 (Ω_m , Ω_b , h) Data: pure geometrical probes (WMAP5 distance priors, SNIa, BAO)
- Three models of dark energy:

w = -1 ΛCDM $w = w_0$ w CDM

 $w = w_0 + w_1(1-a) \qquad \qquad w(z) \text{CDM}$

• Flat ($\Omega_{K}=0$) vs. curved ($\Omega_{K}\neq 0$)

Priors

 Exclude phantom energy (w≥-1), require accelerated expansion for z<z_{acc}=0.5 (w<-1/3)

• Upper boundary for curvature: empty Universe, $\Omega_K < 1$, lower boundary $\Omega_K > -1$

Bayes' factor: dark energy, curvature

Evidence (reference model Λ CDM flat)

n_{par}

Priomordial Universe

• Density perturbation power spectrum

$$P_{\delta} \propto k^{n_{\rm s} + 1/2\alpha_{\rm s}\ln(k/k_0)}$$

 n_s : spectral index ($n_s = 1$: scale-free, Harrison-Zel'dovich spectrum) α_s : 'running' of spectral index

• Tensor perturbation (gravitational waves) power spectrum

 $P_{\rm t} \propto k^{n_{\rm t}}$

• Standard model has ns = const, $\alpha_s = n_t = 0$, r=tensor/scalar=0

Priors

• Slow-roll approximation of inflation

$$\epsilon = \frac{m_{\rm Pl}^2}{4\pi} \left[\frac{H'}{H}\right]^2;$$
$${}^{\ell}\lambda_H = \left(\frac{m_{\rm Pl}^2}{4\pi}\right)^{\ell} \frac{\left(H'\right)^{\ell-1}}{H^{\ell}} \frac{\mathrm{d}^{\ell+1}H}{\mathrm{d}\phi^{\ell+1}}; \ell \le 1,$$

depend on potential V of scalar field Φ causing inflation.

- Slow-roll condition: $\epsilon \ll 1$, $|\ell \lambda_H| \ll 1$
- Choose: $\varepsilon \leq 0.1$, $-0.1 < {}^{1}\lambda_{H} = \eta < 0.1$, ${}^{\ell}\lambda_{H} = 0$ for $\ell > 1$

Priors

• Relations between slow-roll and power-spectrum parameters

$$n_{\rm s} = 1 + 2\eta - 4\epsilon - 2(1+\mathcal{C})\epsilon^2 - \frac{1}{2}(3-5\mathcal{C})\epsilon\eta;$$

$$r = 16\epsilon \left[1 + 2\mathcal{C}(\epsilon - \eta)\right];$$

$$\alpha_{\rm s} = \frac{\epsilon}{1-\epsilon} \left(8\epsilon + 10\eta\right);$$

$$n_{\rm t} = -2\epsilon - (3+\mathcal{C})\epsilon^2 + (1+\mathcal{C})\epsilon\eta.$$

$$\mathcal{C} = 4(\ln 2 + \gamma) - 5 \approx -0.7296$$

Bayes' factor (CMB+SNIa+BAO)

Evidence (reference model Λ CDM flat n_s

	Parameter	Minimum	Maximum
linear	r	0	1.83
logarithmic	$(\ln r$	-80	0.604)

Constraints (CMB+SNIa+BAO)

