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Model selection

• Traditional parameter estimation:
Q: For a specific model with n parameters which is the most likely (best-fit) 
parameter and confidence interval given the data?

• Model selection:
Q: Which of two or more models with parameters n1, n2, ... is the most likely 
to fit the data?

• Examples in cosmology:

★ Cosmological constant Λ vs. dark energy vs. modified gravity

★ Flat vs. curved

★ Primordial fluctuations: scale-free (ns=1) vs. ns=const vs. running ns(k)

• Other applications: Cluster profile reconstruction, exo-planets,
nuisance parameters, ...



Bayesian evidence

• Bayes’ theorem

• Posterior is normalised

• Bayes factor

Evidence

Likelihood Prior

Posterior

m : model
d : data
θ : model parameter

E(d|m) =
∫

dnθL(d|θ, m) π(θ|m)

B12 =
E(d|m1)
E(d|m2)

p(θ|d, m) =
L(d|θ, m)π(θ|m)

E(d|m)



Posterior odds

• Bayes’ theorem again:

• Ratio for two models m1 and m2:

|log10 B12| Odds Strength

0 ... 0.5 1 ... 3 weak

0.5 ... 1 3 ... 10 substantial

1 ... 2 10 ... 100  strong

>2 >100 decisive

Jeffreys’ scale

p(m1|d)
p(m2|d)

= B12
π(m1)
π(m2)

p(m|d) ∝ E(d|m)π(m)

Posterior odds

How can we interpret the evidence?



Approximations to the Evidence

• BIC (Bayesian Information Criterion) [Schwarz 1987]

(Similar: AIC, DIC)
Problem: Penalty independent whether parameters constrained by data or not

• Laplace approximation: likelihood Gaussian, priors large and uniform
[Lazarides, Ruiz de Austri & Trotta 2004, Heavens, Kitching & Verde 2007]

likelihood @ maximum penalty for large parameter space
(Occam’s razor)

BIC = −2 lnLmax + k lnNdata

volume allowed by data initial volume (prior)

E ≈ (2π)n/2|F |−1/2(∆θ1 . . .∆θn)−1Lmax

Occam’s razor

︸ ︷︷ ︸

Laplace: prios might be 
small (physical 
parameter boundaries)

Fisher matrix not good 
approx.



CMB+SNIa+BAO:
Dark energy, curvature

• Base model: flat ΛCDM, npar=3
Data: pure geometrical probes (WMAP5 distance priors, SNIa, BAO)

• Three models of dark energy:

• Flat (ΩK=0) vs. curved (ΩK≠0)

(Ωm,Ωb, h)
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Fig. 2.— PMC sampling of the ‘boomerang’ posterior (13). Top
left: Perplexity (10) as function of iteration. Top right: Effective
sample size cumulative? (12). Bottom Evidence as function of
iteration (left), and as blow-up for the last iteration t = 10 (Bottom
right:).

cillation experiments), be predicted by a compelling hy-
pothesis (primordial gravitational waves from inflation)
or reflect our ignorance about the fundamental physics
(dynamical dark energy). Whatever be the case, future
surveys and analyses are to answer the question which
of the many models is the one to best describe the ob-
servations. So far, no extension of the standard model is
strongly required by the data.

In this section, we use the Bayesian evidence as a tool
to compare different models and their ability to describe
cosmological data. As described in Sect. 3, we use PMC
to sample the posterior and to calculate the evidence.
We use recent data of CMB (Hinshaw et al. 2009), SNIa
(Kowalski et al. 2008) and BAO (Eisenstein et al. 2005).
The extensions to the standard model of cosmology con-
cern dark energy and curvature (Sect. 5.2), and inflation-
ary models (Sect. 5.4).

5.1. PMC set-up

To run PMC we have to choose the initial proposal
q0, the number of sample points, N , and the number
of iterations, T . We take q0 being a Gaussian mixture
model with D components, which are deplaced from the
maximum-likelihood point by a random shift fshift which
is a fraction of the box size in each dimension. The co-
variance of the components corresponds to the Fisher
matrix, rescaled by a random number between fmin and
fmax.

We choose the number of iterations T to be 10. If after
10 iterations the perplexity is not high, say, below 0.6,
we run PMC for more iterations. The choice of the N
and D is linked: the average number of points sampled
under one mixture-component, N/D, should not be too
small, say below 500, to ensure numerical stable updating
of this component. We choose N = 7 500 and D = 10.
For the parameters controlling the mixture means and
covariances, we choose fshift = 0.02, fmin = 1 and fmax =
1.5.

If a PMC run turns out to perform badly, we have
to tune the proposal parameters until we find satisfying
results. If many component die off early, i.e. their weight
goes to zero, those components probably start off too far

from the high-density posterior region, and we decrease
fshift. The scaling factors fmin and fmax are adjusted
if the Fisher matrix is suspected to not well match the
posterior curvature.

For the final iteration we choose a five-times larger
number of sample points than for previous iterations.

5.2. Dark energy and curvature

Here we test the standard ΛCDM-model assumptions
of a cosmological constant and flatness. We parametrise
the dark energy equation-of-state parameter as constant
and as linear function in the scale factor, respectively.
Together with the basic model for which w = −1, we
compare the three cases

w = −1 ΛCDM (16)

w = w0 wCDM (17)

w = w0 + w1(1 − a) w(z)CDM (18)

In addition, each of the above models has either ΩK = 0
(“flat”) or ΩK "= 0 (“curved”).

We do not take into account dark energy clustering.
The observational data is reduced to purely geometrical
probes of the Universe; for CMB these are the distance
priors (Komatsu et al. 2009) and for BAO the distance
parameter A (Eisenstein et al. 2005).

Our reference flat ΛCDM model has the three parame-
ters Ωm, Ωb and h. All models share the same flat priors
for those three, common parameters. The prior ranges
for all parameters can be found in Table 2. We stress
again that the evidence depends on the prior. However,
if the prior for common parameters is the same for nested
models, the prior range does not influence the relative
evidence, or Bayes factor, if the high-density likelihood
region is situated far from the prior bounaries.

TABLE 2
Prior ranges for dark energy and curvature models. In
case of w(a) models, the prior on w1 depends on w0, see

Sect. 5.2.1.

Parameter Minimum Maximum
Ωm 0.15 0.45
Ωb 0.01 0.08
h 0.5 0.9
ΩK −1 1
w0 −1 −1/3
w1 −1 − w0 (−1/3 − w0)/(1 − aacc)

5.2.1. Dark-energy prior

The simple parametrization of w clearly is not moti-
vated by fundamental physics of dark energy. This choice
represents the most simple models which go beyond a
cosmological constant; it makes therefore sense to use
those extensions in a model-selection framework. To de-
fine a physical sensible prior of these dark-energy param-
eters, we restrict ourselves to a specific class of models.
Our goal is to find a model which is able to explain the
observed, recent accelerated expansion of the Universe.
The model should therefore include a component to the
matter-density tensor with w(a) < −1/3 for redshifts
a > aacc. We choose aacc = 2/3. To limit the equation of
state from below, we impose the condition w(a) > −1 for
all a, thereby exluding phantom energy as in Efstathiou
(2008). Fig. 4 shows the allowed range in the case of
two dark-energy parameters. We note that our approach



Priors

• Exclude phantom energy (w≥-1), require accelerated expansion for
z<zacc=0.5 (w<-1/3)

• Upper boundary for curvature: empty Universe, ΩK<1, lower boundary
ΩK>-1

carries the inconsistency that the data on which the ob-
servation of accelerated expansion is based on is part of
the data used in this analysis.

5.2.2. Curvature prior

A natural limit on the curvature is that of an empty
Universe; this certainly places an upper boundary on the
cuvature, corresponding to ΩK = 1. A lower bound-
ary, corresponding to an upper limit on the total matter-
energy density, is less stringent. For symmetry with the
upper limit, we choose ΩK > −1, thereby excluding high-
density Universes with more than twice the critical den-
sity. Ref

5.2.3. Results
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Fig. 3.— Evidence with respect to the reference flat ΛCDM
model. The CMB data corresponds to the WMAP5 distance priors
with three parameters (Ωm, Ωb, h).

In Fig. 3 we plot the Bayes factor for various mod-
els with respect to the standard model. Note that the
Bayesian evidence of the standard model differes between
different combinations of data. In most cases there is
positive evidence in favour of the standard model. This
evidence against more complex models increases if more
probes are combined. This is not surprising: no deviation
from w = −1 and ΩK = 0 has been found, additional pa-
rameters are not supported by the data. The more data
are added the tighter get the constraints around the stan-
dard values, therefore the stronger gets the evidence in
favour of this simplest model.

The largest positive evidence is 1.8, for the w(z)CDM
model and WMAP alone. In this case, as can be seen
in Fig. 4, a large part of the prior range is still allowed
by the data, and a region of comparible size is excluded.
There is weak evidence that the two extra-parameters w0
and w1 are indeed required by the data. When adding
SNIa and BAO, most of the prior range is excluded.
This ‘waste’ of parameter space is punished by decreasing
Bayes factor. The situation seen here is the analogous to
Lindley’s paradox as described in Sect. 2.

5.3. Stability of the results
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Fig. 4.— 68%- and 95% confidence regions for WMAP (solid blue
lines), WMAP+SNIa (dashed green) and WMAP+SNIa+BAO
(dotted red curves). The allowed range for the dark-energy pa-
rameters w0 and w1 lies between the two red straigt lines.
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To test the reliability of the results, we take two cases
of the ones presented in Sect. 5.2 and repeat the PMC
runs a 25 times. We vary the initial proposal components
from ML point) for a given scheme (fixed parameters
fshift, fmin, fmax, nd, see Sect. . . .).

5.4. Primordial perturbations

We test various descriptions and parametrisations of
primordial fluctuations. The (dark-matter) density fluc-
tuations are given by the power spectrum as function of
scale k,

Pδ ∝ kns+1/2αs(k/k0), (19)

with the parameters ns being the spectral index, and αs
the ‘running’ of the spectral index, i.e. the first-order
Taylor term of the exponent. The pivot scale k0 is fixed
to .... In addition, tensor-modes (gravitational waves)

CMB
CMB+SNIa
CMB+SNIa+BAO



Bayes’ factor: dark energy, curvature

carries the inconsistency that the data on which the ob-
servation of accelerated expansion is based on is part of
the data used in this analysis.

5.2.2. Curvature prior

A natural limit on the curvature is that of an empty
Universe; this certainly places an upper boundary on the
cuvature, corresponding to ΩK = 1. A lower bound-
ary, corresponding to an upper limit on the total matter-
energy density, is less stringent. For symmetry with the
upper limit, we choose ΩK > −1, thereby excluding high-
density Universes with more than twice the critical den-
sity. Ref

5.2.3. Results
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Fig. 3.— Evidence with respect to the reference flat ΛCDM
model. The CMB data corresponds to the WMAP5 distance priors
with three parameters (Ωm, Ωb, h).

In Fig. 3 we plot the Bayes factor for various mod-
els with respect to the standard model. Note that the
Bayesian evidence of the standard model differes between
different combinations of data. In most cases there is
positive evidence in favour of the standard model. This
evidence against more complex models increases if more
probes are combined. This is not surprising: no deviation
from w = −1 and ΩK = 0 has been found, additional pa-
rameters are not supported by the data. The more data
are added the tighter get the constraints around the stan-
dard values, therefore the stronger gets the evidence in
favour of this simplest model.

The largest positive evidence is 1.8, for the w(z)CDM
model and WMAP alone. In this case, as can be seen
in Fig. 4, a large part of the prior range is still allowed
by the data, and a region of comparible size is excluded.
There is weak evidence that the two extra-parameters w0
and w1 are indeed required by the data. When adding
SNIa and BAO, most of the prior range is excluded.
This ‘waste’ of parameter space is punished by decreasing
Bayes factor. The situation seen here is the analogous to
Lindley’s paradox as described in Sect. 2.

5.3. Stability of the results
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To test the reliability of the results, we take two cases
of the ones presented in Sect. 5.2 and repeat the PMC
runs a 25 times. We vary the initial proposal components
from ML point) for a given scheme (fixed parameters
fshift, fmin, fmax, nd, see Sect. . . .).

5.4. Primordial perturbations

We test various descriptions and parametrisations of
primordial fluctuations. The (dark-matter) density fluc-
tuations are given by the power spectrum as function of
scale k,

Pδ ∝ kns+1/2αs(k/k0), (19)

with the parameters ns being the spectral index, and αs
the ‘running’ of the spectral index, i.e. the first-order
Taylor term of the exponent. The pivot scale k0 is fixed
to .... In addition, tensor-modes (gravitational waves)
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Priomordial Universe

• Density perturbation power spectrum

ns: spectral index (ns =1: scale-free, Harrison-Zel’dovich spectrum)
αs: ‘running’ of spectral index

• Tensor perturbation (gravitational waves) power spectrum

• Standard model has ns = const, αs  = nt = 0, r=tensor/scalar=0

carries the inconsistency that the data on which the ob-
servation of accelerated expansion is based on is part of
the data used in this analysis.

5.2.2. Curvature prior

A natural limit on the curvature is that of an empty
Universe; this certainly places an upper boundary on the
cuvature, corresponding to ΩK = 1. A lower bound-
ary, corresponding to an upper limit on the total matter-
energy density, is less stringent. For symmetry with the
upper limit, we choose ΩK > −1, thereby excluding high-
density Universes with more than twice the critical den-
sity. Ref

5.2.3. Results
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Fig. 3.— Evidence with respect to the reference flat ΛCDM
model. The CMB data corresponds to the WMAP5 distance priors
with three parameters (Ωm, Ωb, h).

In Fig. 3 we plot the Bayes factor for various mod-
els with respect to the standard model. Note that the
Bayesian evidence of the standard model differes between
different combinations of data. In most cases there is
positive evidence in favour of the standard model. This
evidence against more complex models increases if more
probes are combined. This is not surprising: no deviation
from w = −1 and ΩK = 0 has been found, additional pa-
rameters are not supported by the data. The more data
are added the tighter get the constraints around the stan-
dard values, therefore the stronger gets the evidence in
favour of this simplest model.

The largest positive evidence is 1.8, for the w(z)CDM
model and WMAP alone. In this case, as can be seen
in Fig. 4, a large part of the prior range is still allowed
by the data, and a region of comparible size is excluded.
There is weak evidence that the two extra-parameters w0
and w1 are indeed required by the data. When adding
SNIa and BAO, most of the prior range is excluded.
This ‘waste’ of parameter space is punished by decreasing
Bayes factor. The situation seen here is the analogous to
Lindley’s paradox as described in Sect. 2.

5.3. Stability of the results
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To test the reliability of the results, we take two cases
of the ones presented in Sect. 5.2 and repeat the PMC
runs a 25 times. We vary the initial proposal components
from ML point) for a given scheme (fixed parameters
fshift, fmin, fmax, nd, see Sect. . . .).

5.4. Primordial perturbations

We test various descriptions and parametrisations of
primordial fluctuations. The (dark-matter) density fluc-
tuations are given by the power spectrum as function of
scale k,

Pδ ∝ kns+1/2αs ln(k/k0), (19)

with the parameters ns being the spectral index, and αs
the ‘running’ of the spectral index, i.e. the first-order
Taylor term of the exponent. The pivot scale k0 is fixed
to .... In addition, tensor-modes (gravitational waves)

have the power spectrum

Pt ∝ knt , (20)

with tensor index nt. The ratio between tensor and scalar
perturbation is denoted by r. In the standard model,
αs = nt = r = 0, only ns is a free parameter. Although
tensor-modes are expected from most models of the early
Universe, they are not detected so far with the given
sensitivity of current data and r is set to zero.

The models are considering within the slow-roll ap-
proximation of inflation, as will be described in the next
section.

5.4.1. Slow-roll parameters

The slow-roll approximation of inflation provides an
inifinite hierarchy of flow equations which describe the
dynamics of the single scalar field which drives inflation
(see Easther & Peiris 2006, and references therein). The
slow-roll parameters ε and !λH are defined in terms of
the potential V of the scalar field φ, and the Hubble
parameter H ,

ε =
m2

Pl

4π

[

H ′

H

]2

; (21)

!λH =

(

m2
Pl

4π

)!
(H ′)!−1

H!

d!+1H

dφ!+1
; & ≤ 1, (22)

where the prime denotes derivation with respect to φ.
The hierarchy of flow parameters can be truncated, since
if some LλH = 0, all higher terms !λH , & > L vanish. We
consider the expansion up to first-order and set 1λH = η,
2λH = 0. The parameters of the primordial power spec-
tra can be written in terms of the slow-roll parameters
as

ns = 1 + 2η − 4ε − 2(1 + C)ε2 − 1

2
(3 − 5C)εη; (23)

r = 16ε [1 + 2C(ε − η)] ; (24)

αs =
ε

1 − ε
(8ε + 10η) ; (25)

nt = −2ε − (3 + C)ε2 + (1 + C)εη. (26)

Here, C = 4(ln 2+γ)−5 ≈ −0.7296 where γ is the Euler-
Mscheroni constant. For slow-roll inflation to take place,
the slow-roll conditions ε % 1 and |!λH | % 1 for all &
have to be satisfied.

5.4.2. Priors

We use the slow-roll conditions to define priors on the
primordial parameters as 0 ≤ ε ≤ 0.1 and |η| < 0.1.
Although the exact values of the prior boundaries are
somewhat arbitrary, they have been considered by Mar-
tin & Ringeval (2006) as natural limits for the valid-
ity of the Taylor-expansion of the power spectrum P (k)
in ln(k/k∗) around the pivot scale k∗ = 0.05 Mpc−1.
Check whether our pivot scale k = 0.002 has any
influence. We choose an uninformative (i.e. flat) prior
on the slow-roll parameters. Why not e.g. flat
in log[p]? From eqs. 23-26) we get the correspond-
ing ranges of the power-spectra parameters, see Table
3, which are now motivated from fundamental physical
principles within the slow-roll model of inflation. We
choose flat priors for the power-spectra parameters as

well, although they are non-linearly related to the slow-
roll parameters and the prior will have a different shape.
However, we ignore this for simplicity. See Trotta (2007)
for a similar approach to define a prior on the spectral
index tilt.

TABLE 3
Prior ranges for primordial model comparison. The priors
on primordial parameters are derived from the slow-roll

approximation.

Parameter Minimum Maximum
Ωm 0.01 0.6
Ωb 0.01 0.1
τ 0.01 0.3
109∆2

R
1.4 3.5

h 0.2 1.4
ns 0.37 1.22
αs -0.033 0.2
r 0 1.83
(ln r -80 0.604)
nt -0.2 0

Inflationary models in general predict the power spec-
trum of primordial density perturbations to be a near
scale-free power law, Pδ(k) ∝ kns with spectral index ns
slightly below unity. Tensor perturbations (gravitational
waves) are expected to be non-zero, but their amplitude
is unknown and current data have not been able to detect
those modes.

We compare various models to the standard paradigm,
which now has six parameters (Ωm, Ωb, h, ns, ∆2

R
, τ).

The slow-roll parameter priors give us a range where the
power-spectra parameters are to be found. For our model
testing, we single out individual parameters or combina-
tions thereof. A strictly consistent and thorough treat-
ment should have the slow-roll parameters as primary
parameters; this will be left for a future analysis.

5.4.3. Results

In Fig. 6 we show the Bayes factor of various models
with respect to the standard model. A running spec-
tral index is favoured weakly, all other cases are dis-
favoured. The evidence against the Harrison-Zel’dovich
model (ns = 1) is inconclusive, whereas tensor perturba-
tions are moderately disfavoured. For illustration, we in-
clude a tensor-mode model with flat prior for ln r instead
of r; the minimum is chosen to be -80, corresponding to
the Planck length as energy scale of inflation. The large
prior of the logarithmis tensor-to-scalar ratio causes this
model to be strongly disfavoured. Note however that this
example is not really consistent with flat priors for the
slow-roll parameters; it rather corresponds to a model
in which very small slow-roll parameters are much more
likely than moderately large ones.

TABLE 4
Relative evidence for various models of primordial

perturbation spectra. Old priors!

Model npar log E ln E E

ns = 1(HZ) 5 0.396 0.911 2.488e+00
ns =const 6 0.000 0.000 9.997e-01
running 7 0.528 1.216 3.375e+00
tensor 7 -1.599 -3.683 2.515e-02
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with tensor index nt. The ratio between tensor and scalar
perturbation is denoted by r. In the standard model,
αs = nt = r = 0, only ns is a free parameter. Although
tensor-modes are expected from most models of the early
Universe, they are not detected so far with the given
sensitivity of current data and r is set to zero.

The models are considering within the slow-roll ap-
proximation of inflation, as will be described in the next
section.

5.4.1. Slow-roll parameters

The slow-roll approximation of inflation provides an
inifinite hierarchy of flow equations which describe the
dynamics of the single scalar field which drives inflation
(see Easther & Peiris 2006, and references therein). The
slow-roll parameters ε and !λH are defined in terms of
the potential V of the scalar field φ, and the Hubble
parameter H ,
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where the prime denotes derivation with respect to φ.
The hierarchy of flow parameters can be truncated, since
if some LλH = 0, all higher terms !λH , & > L vanish. We
consider the expansion up to first-order and set 1λH = η,
2λH = 0. The parameters of the primordial power spec-
tra can be written in terms of the slow-roll parameters
as

ns = 1 + 2η − 4ε − 2(1 + C)ε2 − 1

2
(3 − 5C)εη; (23)

r = 16ε [1 + 2C(ε − η)] ; (24)

αs =
ε

1 − ε
(8ε + 10η) ; (25)

nt = −2ε − (3 + C)ε2 + (1 + C)εη. (26)

Here, C = 4(ln 2+γ)−5 ≈ −0.7296 where γ is the Euler-
Mscheroni constant. For slow-roll inflation to take place,
the slow-roll conditions ε % 1 and |!λH | % 1 for all &
have to be satisfied.

5.4.2. Priors

We use the slow-roll conditions to define priors on the
primordial parameters as 0 ≤ ε ≤ 0.1 and |η| < 0.1.
Although the exact values of the prior boundaries are
somewhat arbitrary, they have been considered by Mar-
tin & Ringeval (2006) as natural limits for the valid-
ity of the Taylor-expansion of the power spectrum P (k)
in ln(k/k∗) around the pivot scale k∗ = 0.05 Mpc−1.
Check whether our pivot scale k = 0.002 has any
influence. We choose an uninformative (i.e. flat) prior
on the slow-roll parameters. Why not e.g. flat
in log[p]? From eqs. 23-26) we get the correspond-
ing ranges of the power-spectra parameters, see Table
3, which are now motivated from fundamental physical
principles within the slow-roll model of inflation. We
choose flat priors for the power-spectra parameters as

well, although they are non-linearly related to the slow-
roll parameters and the prior will have a different shape.
However, we ignore this for simplicity. See Trotta (2007)
for a similar approach to define a prior on the spectral
index tilt.

TABLE 3
Prior ranges for primordial model comparison. The priors
on primordial parameters are derived from the slow-roll

approximation.

Parameter Minimum Maximum
Ωm 0.01 0.6
Ωb 0.01 0.1
τ 0.01 0.3
109∆2

R
1.4 3.5

h 0.2 1.4
ns 0.37 1.22
αs -0.033 0.2
r 0 1.83
(ln r -80 0.604)
nt -0.2 0

Inflationary models in general predict the power spec-
trum of primordial density perturbations to be a near
scale-free power law, Pδ(k) ∝ kns with spectral index ns
slightly below unity. Tensor perturbations (gravitational
waves) are expected to be non-zero, but their amplitude
is unknown and current data have not been able to detect
those modes.

We compare various models to the standard paradigm,
which now has six parameters (Ωm, Ωb, h, ns, ∆2

R
, τ).

The slow-roll parameter priors give us a range where the
power-spectra parameters are to be found. For our model
testing, we single out individual parameters or combina-
tions thereof. A strictly consistent and thorough treat-
ment should have the slow-roll parameters as primary
parameters; this will be left for a future analysis.

5.4.3. Results

In Fig. 6 we show the Bayes factor of various models
with respect to the standard model. A running spec-
tral index is favoured weakly, all other cases are dis-
favoured. The evidence against the Harrison-Zel’dovich
model (ns = 1) is inconclusive, whereas tensor perturba-
tions are moderately disfavoured. For illustration, we in-
clude a tensor-mode model with flat prior for ln r instead
of r; the minimum is chosen to be -80, corresponding to
the Planck length as energy scale of inflation. The large
prior of the logarithmis tensor-to-scalar ratio causes this
model to be strongly disfavoured. Note however that this
example is not really consistent with flat priors for the
slow-roll parameters; it rather corresponds to a model
in which very small slow-roll parameters are much more
likely than moderately large ones.

TABLE 4
Relative evidence for various models of primordial

perturbation spectra. Old priors!

Model npar log E ln E E

ns = 1(HZ) 5 0.396 0.911 2.488e+00
ns =const 6 0.000 0.000 9.997e-01
running 7 0.528 1.216 3.375e+00
tensor 7 -1.599 -3.683 2.515e-02
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with tensor index nt. The ratio between tensor and scalar
perturbation is denoted by r. In the standard model,
αs = nt = r = 0, only ns is a free parameter. Although
tensor-modes are expected from most models of the early
Universe, they are not detected so far with the given
sensitivity of current data and r is set to zero.

The models are considering within the slow-roll ap-
proximation of inflation, as will be described in the next
section.

5.4.1. Slow-roll parameters

The slow-roll approximation of inflation provides an
inifinite hierarchy of flow equations which describe the
dynamics of the single scalar field which drives inflation
(see Easther & Peiris 2006, and references therein). The
slow-roll parameters ε and !λH are defined in terms of
the potential V of the scalar field φ, and the Hubble
parameter H ,
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where the prime denotes derivation with respect to φ.
The hierarchy of flow parameters can be truncated, since
if some LλH = 0, all higher terms !λH , & > L vanish. We
consider the expansion up to first-order and set 1λH = η,
2λH = 0. The parameters of the primordial power spec-
tra can be written in terms of the slow-roll parameters
as

ns = 1 + 2η − 4ε − 2(1 + C)ε2 − 1

2
(3 − 5C)εη; (23)

r = 16ε [1 + 2C(ε − η)] ; (24)

αs =
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1 − ε
(8ε + 10η) ; (25)

nt = −2ε − (3 + C)ε2 + (1 + C)εη. (26)

Here, C = 4(ln 2+γ)−5 ≈ −0.7296 where γ is the Euler-
Mscheroni constant. For slow-roll inflation to take place,
the slow-roll conditions ε % 1 and |!λH | % 1 for all &
have to be satisfied.

5.4.2. Priors

We use the slow-roll conditions to define priors on the
primordial parameters as 0 ≤ ε ≤ 0.1 and |η| < 0.1.
Although the exact values of the prior boundaries are
somewhat arbitrary, they have been considered by Mar-
tin & Ringeval (2006) as natural limits for the valid-
ity of the Taylor-expansion of the power spectrum P (k)
in ln(k/k∗) around the pivot scale k∗ = 0.05 Mpc−1.
Check whether our pivot scale k = 0.002 has any
influence. We choose an uninformative (i.e. flat) prior
on the slow-roll parameters. Why not e.g. flat
in log[p]? From eqs. 23-26) we get the correspond-
ing ranges of the power-spectra parameters, see Table
3, which are now motivated from fundamental physical
principles within the slow-roll model of inflation. We
choose flat priors for the power-spectra parameters as

well, although they are non-linearly related to the slow-
roll parameters and the prior will have a different shape.
However, we ignore this for simplicity. See Trotta (2007)
for a similar approach to define a prior on the spectral
index tilt.

TABLE 3
Prior ranges for primordial model comparison. The priors
on primordial parameters are derived from the slow-roll

approximation.

Parameter Minimum Maximum
Ωm 0.01 0.6
Ωb 0.01 0.1
τ 0.01 0.3
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1.4 3.5

h 0.2 1.4
ns 0.37 1.22
αs -0.033 0.2
r 0 1.83
(ln r -80 0.604)
nt -0.2 0

Inflationary models in general predict the power spec-
trum of primordial density perturbations to be a near
scale-free power law, Pδ(k) ∝ kns with spectral index ns
slightly below unity. Tensor perturbations (gravitational
waves) are expected to be non-zero, but their amplitude
is unknown and current data have not been able to detect
those modes.

We compare various models to the standard paradigm,
which now has six parameters (Ωm, Ωb, h, ns, ∆2

R
, τ).

The slow-roll parameter priors give us a range where the
power-spectra parameters are to be found. For our model
testing, we single out individual parameters or combina-
tions thereof. A strictly consistent and thorough treat-
ment should have the slow-roll parameters as primary
parameters; this will be left for a future analysis.

5.4.3. Results

In Fig. 6 we show the Bayes factor of various models
with respect to the standard model. A running spec-
tral index is favoured weakly, all other cases are dis-
favoured. The evidence against the Harrison-Zel’dovich
model (ns = 1) is inconclusive, whereas tensor perturba-
tions are moderately disfavoured. For illustration, we in-
clude a tensor-mode model with flat prior for ln r instead
of r; the minimum is chosen to be -80, corresponding to
the Planck length as energy scale of inflation. The large
prior of the logarithmis tensor-to-scalar ratio causes this
model to be strongly disfavoured. Note however that this
example is not really consistent with flat priors for the
slow-roll parameters; it rather corresponds to a model
in which very small slow-roll parameters are much more
likely than moderately large ones.

TABLE 4
Relative evidence for various models of primordial

perturbation spectra. Old priors!

Model npar log E ln E E

ns = 1(HZ) 5 0.396 0.911 2.488e+00
ns =const 6 0.000 0.000 9.997e-01
running 7 0.528 1.216 3.375e+00
tensor 7 -1.599 -3.683 2.515e-02
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with tensor index nt. The ratio between tensor and scalar
perturbation is denoted by r. In the standard model,
αs = nt = r = 0, only ns is a free parameter. Although
tensor-modes are expected from most models of the early
Universe, they are not detected so far with the given
sensitivity of current data and r is set to zero.

The models are considering within the slow-roll ap-
proximation of inflation, as will be described in the next
section.

5.4.1. Slow-roll parameters

The slow-roll approximation of inflation provides an
inifinite hierarchy of flow equations which describe the
dynamics of the single scalar field which drives inflation
(see Easther & Peiris 2006, and references therein). The
slow-roll parameters ε and !λH are defined in terms of
the potential V of the scalar field φ, and the Hubble
parameter H ,

ε =
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where the prime denotes derivation with respect to φ.
The hierarchy of flow parameters can be truncated, since
if some LλH = 0, all higher terms !λH , & > L vanish. We
consider the expansion up to first-order and set 1λH = η,
2λH = 0. The parameters of the primordial power spec-
tra can be written in terms of the slow-roll parameters
as

ns = 1 + 2η − 4ε − 2(1 + C)ε2 − 1

2
(3 − 5C)εη; (23)

r = 16ε [1 + 2C(ε − η)] ; (24)

αs =
ε

1 − ε
(8ε + 10η) ; (25)

nt = −2ε − (3 + C)ε2 + (1 + C)εη. (26)

Here, C = 4(ln 2+γ)−5 ≈ −0.7296 where γ is the Euler-
Mscheroni constant. For slow-roll inflation to take place,
the slow-roll conditions ε % 1 and |!λH | % 1 for all &
have to be satisfied.

5.4.2. Priors

We use the slow-roll conditions to define priors on the
primordial parameters as 0 ≤ ε ≤ 0.1 and |η| < 0.1.
Although the exact values of the prior boundaries are
somewhat arbitrary, they have been considered by Mar-
tin & Ringeval (2006) as natural limits for the valid-
ity of the Taylor-expansion of the power spectrum P (k)
in ln(k/k∗) around the pivot scale k∗ = 0.05 Mpc−1.
Check whether our pivot scale k = 0.002 has any
influence. We choose an uninformative (i.e. flat) prior
on the slow-roll parameters. Why not e.g. flat
in log[p]? From eqs. 23-26) we get the correspond-
ing ranges of the power-spectra parameters, see Table
3, which are now motivated from fundamental physical
principles within the slow-roll model of inflation. We
choose flat priors for the power-spectra parameters as

well, although they are non-linearly related to the slow-
roll parameters and the prior will have a different shape.
However, we ignore this for simplicity. See Trotta (2007)
for a similar approach to define a prior on the spectral
index tilt.

TABLE 3
Prior ranges for primordial model comparison. The priors
on primordial parameters are derived from the slow-roll

approximation.

Parameter Minimum Maximum
Ωm 0.01 0.6
Ωb 0.01 0.1
τ 0.01 0.3
109∆2
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1.4 3.5

h 0.2 1.4
ns 0.37 1.22
αs -0.033 0.2
r 0 1.83
(ln r -80 0.604)
nt -0.2 0

Inflationary models in general predict the power spec-
trum of primordial density perturbations to be a near
scale-free power law, Pδ(k) ∝ kns with spectral index ns
slightly below unity. Tensor perturbations (gravitational
waves) are expected to be non-zero, but their amplitude
is unknown and current data have not been able to detect
those modes.

We compare various models to the standard paradigm,
which now has six parameters (Ωm, Ωb, h, ns, ∆2

R
, τ).

The slow-roll parameter priors give us a range where the
power-spectra parameters are to be found. For our model
testing, we single out individual parameters or combina-
tions thereof. A strictly consistent and thorough treat-
ment should have the slow-roll parameters as primary
parameters; this will be left for a future analysis.

5.4.3. Results

In Fig. 6 we show the Bayes factor of various models
with respect to the standard model. A running spec-
tral index is favoured weakly, all other cases are dis-
favoured. The evidence against the Harrison-Zel’dovich
model (ns = 1) is inconclusive, whereas tensor perturba-
tions are moderately disfavoured. For illustration, we in-
clude a tensor-mode model with flat prior for ln r instead
of r; the minimum is chosen to be -80, corresponding to
the Planck length as energy scale of inflation. The large
prior of the logarithmis tensor-to-scalar ratio causes this
model to be strongly disfavoured. Note however that this
example is not really consistent with flat priors for the
slow-roll parameters; it rather corresponds to a model
in which very small slow-roll parameters are much more
likely than moderately large ones.

TABLE 4
Relative evidence for various models of primordial

perturbation spectra. Old priors!

Model npar log E ln E E

ns = 1(HZ) 5 0.396 0.911 2.488e+00
ns =const 6 0.000 0.000 9.997e-01
running 7 0.528 1.216 3.375e+00
tensor 7 -1.599 -3.683 2.515e-02

have the power spectrum
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with tensor index nt. The ratio between tensor and scalar
perturbation is denoted by r. In the standard model,
αs = nt = r = 0, only ns is a free parameter. Although
tensor-modes are expected from most models of the early
Universe, they are not detected so far with the given
sensitivity of current data and r is set to zero.

The models are considering within the slow-roll ap-
proximation of inflation, as will be described in the next
section.

5.4.1. Slow-roll parameters

The slow-roll approximation of inflation provides an
inifinite hierarchy of flow equations which describe the
dynamics of the single scalar field which drives inflation
(see Easther & Peiris 2006, and references therein). The
slow-roll parameters ε and !λH are defined in terms of
the potential V of the scalar field φ, and the Hubble
parameter H ,

ε =
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where the prime denotes derivation with respect to φ.
The hierarchy of flow parameters can be truncated, since
if some LλH = 0, all higher terms !λH , & > L vanish. We
consider the expansion up to first-order and set 1λH = η,
2λH = 0. The parameters of the primordial power spec-
tra can be written in terms of the slow-roll parameters
as

ns = 1 + 2η − 4ε − 2(1 + C)ε2 − 1

2
(3 − 5C)εη; (23)

r = 16ε [1 + 2C(ε − η)] ; (24)

αs =
ε

1 − ε
(8ε + 10η) ; (25)

nt = −2ε − (3 + C)ε2 + (1 + C)εη. (26)

Here, C = 4(ln 2+γ)−5 ≈ −0.7296 where γ is the Euler-
Mscheroni constant. For slow-roll inflation to take place,
the slow-roll conditions ε % 1 and |!λH | % 1 for all &
have to be satisfied.

5.4.2. Priors

We use the slow-roll conditions to define priors on the
primordial parameters as 0 ≤ ε ≤ 0.1 and |η| < 0.1.
Although the exact values of the prior boundaries are
somewhat arbitrary, they have been considered by Mar-
tin & Ringeval (2006) as natural limits for the valid-
ity of the Taylor-expansion of the power spectrum P (k)
in ln(k/k∗) around the pivot scale k∗ = 0.05 Mpc−1.
Check whether our pivot scale k = 0.002 has any
influence. We choose an uninformative (i.e. flat) prior
on the slow-roll parameters. Why not e.g. flat
in log[p]? From eqs. 23-26) we get the correspond-
ing ranges of the power-spectra parameters, see Table
3, which are now motivated from fundamental physical
principles within the slow-roll model of inflation. We
choose flat priors for the power-spectra parameters as

well, although they are non-linearly related to the slow-
roll parameters and the prior will have a different shape.
However, we ignore this for simplicity. See Trotta (2007)
for a similar approach to define a prior on the spectral
index tilt.

TABLE 3
Prior ranges for primordial model comparison. The priors
on primordial parameters are derived from the slow-roll

approximation.

Parameter Minimum Maximum
Ωm 0.01 0.6
Ωb 0.01 0.1
τ 0.01 0.3
109∆2

R
1.4 3.5

h 0.2 1.4
ns 0.37 1.22
αs -0.033 0.2
r 0 1.83
(ln r -80 0.604)
nt -0.2 0

Inflationary models in general predict the power spec-
trum of primordial density perturbations to be a near
scale-free power law, Pδ(k) ∝ kns with spectral index ns
slightly below unity. Tensor perturbations (gravitational
waves) are expected to be non-zero, but their amplitude
is unknown and current data have not been able to detect
those modes.

We compare various models to the standard paradigm,
which now has six parameters (Ωm, Ωb, h, ns, ∆2

R
, τ).

The slow-roll parameter priors give us a range where the
power-spectra parameters are to be found. For our model
testing, we single out individual parameters or combina-
tions thereof. A strictly consistent and thorough treat-
ment should have the slow-roll parameters as primary
parameters; this will be left for a future analysis.

5.4.3. Results

In Fig. 6 we show the Bayes factor of various models
with respect to the standard model. A running spec-
tral index is favoured weakly, all other cases are dis-
favoured. The evidence against the Harrison-Zel’dovich
model (ns = 1) is inconclusive, whereas tensor perturba-
tions are moderately disfavoured. For illustration, we in-
clude a tensor-mode model with flat prior for ln r instead
of r; the minimum is chosen to be -80, corresponding to
the Planck length as energy scale of inflation. The large
prior of the logarithmis tensor-to-scalar ratio causes this
model to be strongly disfavoured. Note however that this
example is not really consistent with flat priors for the
slow-roll parameters; it rather corresponds to a model
in which very small slow-roll parameters are much more
likely than moderately large ones.

TABLE 4
Relative evidence for various models of primordial

perturbation spectra. Old priors!

Model npar log E ln E E

ns = 1(HZ) 5 0.396 0.911 2.488e+00
ns =const 6 0.000 0.000 9.997e-01
running 7 0.528 1.216 3.375e+00
tensor 7 -1.599 -3.683 2.515e-02
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with tensor index nt. The ratio between tensor and scalar
perturbation is denoted by r. In the standard model,
αs = nt = r = 0, only ns is a free parameter. Although
tensor-modes are expected from most models of the early
Universe, they are not detected so far with the given
sensitivity of current data and r is set to zero.

The models are considering within the slow-roll ap-
proximation of inflation, as will be described in the next
section.

5.4.1. Slow-roll parameters

The slow-roll approximation of inflation provides an
inifinite hierarchy of flow equations which describe the
dynamics of the single scalar field which drives inflation
(see Easther & Peiris 2006, and references therein). The
slow-roll parameters ε and !λH are defined in terms of
the potential V of the scalar field φ, and the Hubble
parameter H ,
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where the prime denotes derivation with respect to φ.
The hierarchy of flow parameters can be truncated, since
if some LλH = 0, all higher terms !λH , & > L vanish. We
consider the expansion up to first-order and set 1λH = η,
2λH = 0. The parameters of the primordial power spec-
tra can be written in terms of the slow-roll parameters
as

ns = 1 + 2η − 4ε − 2(1 + C)ε2 − 1

2
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Here, C = 4(ln 2+γ)−5 ≈ −0.7296 where γ is the Euler-
Mscheroni constant. For slow-roll inflation to take place,
the slow-roll conditions ε % 1 and |!λH | % 1 for all &
have to be satisfied.

5.4.2. Priors

We use the slow-roll conditions to define priors on the
primordial parameters as 0 ≤ ε ≤ 0.1 and |η| < 0.1.
Although the exact values of the prior boundaries are
somewhat arbitrary, they have been considered by Mar-
tin & Ringeval (2006) as natural limits for the valid-
ity of the Taylor-expansion of the power spectrum P (k)
in ln(k/k∗) around the pivot scale k∗ = 0.05 Mpc−1.
Check whether our pivot scale k = 0.002 has any
influence. We choose an uninformative (i.e. flat) prior
on the slow-roll parameters. Why not e.g. flat
in log[p]? From eqs. 23-26) we get the correspond-
ing ranges of the power-spectra parameters, see Table
3, which are now motivated from fundamental physical
principles within the slow-roll model of inflation. We
choose flat priors for the power-spectra parameters as

well, although they are non-linearly related to the slow-
roll parameters and the prior will have a different shape.
However, we ignore this for simplicity. See Trotta (2007)
for a similar approach to define a prior on the spectral
index tilt.

TABLE 3
Prior ranges for primordial model comparison. The priors
on primordial parameters are derived from the slow-roll

approximation.

Parameter Minimum Maximum
Ωm 0.01 0.6
Ωb 0.01 0.1
τ 0.01 0.3
109∆2
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1.4 3.5

h 0.2 1.4
ns 0.37 1.22
αs -0.033 0.2
r 0 1.83
(ln r -80 0.604)
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Inflationary models in general predict the power spec-
trum of primordial density perturbations to be a near
scale-free power law, Pδ(k) ∝ kns with spectral index ns
slightly below unity. Tensor perturbations (gravitational
waves) are expected to be non-zero, but their amplitude
is unknown and current data have not been able to detect
those modes.

We compare various models to the standard paradigm,
which now has six parameters (Ωm, Ωb, h, ns, ∆2

R
, τ).

The slow-roll parameter priors give us a range where the
power-spectra parameters are to be found. For our model
testing, we single out individual parameters or combina-
tions thereof. A strictly consistent and thorough treat-
ment should have the slow-roll parameters as primary
parameters; this will be left for a future analysis.

5.4.3. Results

In Fig. 6 we show the Bayes factor of various models
with respect to the standard model. A running spec-
tral index is favoured weakly, all other cases are dis-
favoured. The evidence against the Harrison-Zel’dovich
model (ns = 1) is inconclusive, whereas tensor perturba-
tions are moderately disfavoured. For illustration, we in-
clude a tensor-mode model with flat prior for ln r instead
of r; the minimum is chosen to be -80, corresponding to
the Planck length as energy scale of inflation. The large
prior of the logarithmis tensor-to-scalar ratio causes this
model to be strongly disfavoured. Note however that this
example is not really consistent with flat priors for the
slow-roll parameters; it rather corresponds to a model
in which very small slow-roll parameters are much more
likely than moderately large ones.

TABLE 4
Relative evidence for various models of primordial

perturbation spectra. Old priors!

Model npar log E ln E E

ns = 1(HZ) 5 0.396 0.911 2.488e+00
ns =const 6 0.000 0.000 9.997e-01
running 7 0.528 1.216 3.375e+00
tensor 7 -1.599 -3.683 2.515e-02
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with tensor index nt. The ratio between tensor and scalar
perturbation is denoted by r. In the standard model,
αs = nt = r = 0, only ns is a free parameter. Although
tensor-modes are expected from most models of the early
Universe, they are not detected so far with the given
sensitivity of current data and r is set to zero.

The models are considering within the slow-roll ap-
proximation of inflation, as will be described in the next
section.

5.4.1. Slow-roll parameters

The slow-roll approximation of inflation provides an
inifinite hierarchy of flow equations which describe the
dynamics of the single scalar field which drives inflation
(see Easther & Peiris 2006, and references therein). The
slow-roll parameters ε and !λH are defined in terms of
the potential V of the scalar field φ, and the Hubble
parameter H ,

ε =
m2

Pl

4π

[

H ′

H

]2

; (21)

!λH =

(

m2
Pl

4π

)!
(H ′)!−1

H!

d!+1H

dφ!+1
; & ≤ 1, (22)

where the prime denotes derivation with respect to φ.
The hierarchy of flow parameters can be truncated, since
if some LλH = 0, all higher terms !λH , & > L vanish. We
consider the expansion up to first-order and set 1λH = η,
2λH = 0. The parameters of the primordial power spec-
tra can be written in terms of the slow-roll parameters
as

ns = 1 + 2η − 4ε − 2(1 + C)ε2 − 1

2
(3 − 5C)εη; (23)

r = 16ε [1 + 2C(ε − η)] ; (24)

αs =
ε

1 − ε
(8ε + 10η) ; (25)

nt = −2ε − (3 + C)ε2 + (1 + C)εη. (26)

Here, C = 4(ln 2+γ)−5 ≈ −0.7296 where γ is the Euler-
Mscheroni constant. For slow-roll inflation to take place,
the slow-roll conditions ε % 1 and |!λH | % 1 for all &
have to be satisfied.

5.4.2. Priors

We use the slow-roll conditions to define priors on the
primordial parameters as 0 ≤ ε ≤ 0.1 and |η| < 0.1.
Although the exact values of the prior boundaries are
somewhat arbitrary, they have been considered by Mar-
tin & Ringeval (2006) as natural limits for the valid-
ity of the Taylor-expansion of the power spectrum P (k)
in ln(k/k∗) around the pivot scale k∗ = 0.05 Mpc−1.
Check whether our pivot scale k = 0.002 has any
influence. We choose an uninformative (i.e. flat) prior
on the slow-roll parameters. Why not e.g. flat
in log[p]? From eqs. 23-26) we get the correspond-
ing ranges of the power-spectra parameters, see Table
3, which are now motivated from fundamental physical
principles within the slow-roll model of inflation. We
choose flat priors for the power-spectra parameters as

well, although they are non-linearly related to the slow-
roll parameters and the prior will have a different shape.
However, we ignore this for simplicity. See Trotta (2007)
for a similar approach to define a prior on the spectral
index tilt.

TABLE 3
Prior ranges for primordial model comparison. The priors
on primordial parameters are derived from the slow-roll

approximation.

Parameter Minimum Maximum
Ωm 0.01 0.6
Ωb 0.01 0.1
τ 0.01 0.3
109∆2

R
1.4 3.5

h 0.2 1.4
ns 0.37 1.22
αs -0.033 0.2
r 0 1.83
(ln r -80 0.604)
nt -0.2 0

Inflationary models in general predict the power spec-
trum of primordial density perturbations to be a near
scale-free power law, Pδ(k) ∝ kns with spectral index ns
slightly below unity. Tensor perturbations (gravitational
waves) are expected to be non-zero, but their amplitude
is unknown and current data have not been able to detect
those modes.

We compare various models to the standard paradigm,
which now has six parameters (Ωm, Ωb, h, ns, ∆2

R
, τ).

The slow-roll parameter priors give us a range where the
power-spectra parameters are to be found. For our model
testing, we single out individual parameters or combina-
tions thereof. A strictly consistent and thorough treat-
ment should have the slow-roll parameters as primary
parameters; this will be left for a future analysis.

5.4.3. Results

In Fig. 6 we show the Bayes factor of various models
with respect to the standard model. A running spec-
tral index is favoured weakly, all other cases are dis-
favoured. The evidence against the Harrison-Zel’dovich
model (ns = 1) is inconclusive, whereas tensor perturba-
tions are moderately disfavoured. For illustration, we in-
clude a tensor-mode model with flat prior for ln r instead
of r; the minimum is chosen to be -80, corresponding to
the Planck length as energy scale of inflation. The large
prior of the logarithmis tensor-to-scalar ratio causes this
model to be strongly disfavoured. Note however that this
example is not really consistent with flat priors for the
slow-roll parameters; it rather corresponds to a model
in which very small slow-roll parameters are much more
likely than moderately large ones.

TABLE 4
Relative evidence for various models of primordial

perturbation spectra. Old priors!

Model npar log E ln E E

ns = 1(HZ) 5 0.396 0.911 2.488e+00
ns =const 6 0.000 0.000 9.997e-01
running 7 0.528 1.216 3.375e+00
tensor 7 -1.599 -3.683 2.515e-02
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Fig. 6.— Evidence with respect to the reference flat ΛCDM model
with constant ns.

6. DISCUSSION

The Bayesian evidence E provides a mathematically
consistent and intuitive tool to compare different models
and to choose one model over another. It’s calculation
in high-dimentional parameter spaces is however numer-
ically challenging.

Simplification methods such as the Laplace approxima-
tion are not sufficient and cannot replace the full integra-
tion of the posterior over the parameter space. Laplace
assumes a multi-variate, single-peaked Gaussian likeli-
hood and a prior which is much larger than the likeli-
hood. If any of those assumptions is violated, this ap-
proximation can give values of lnE which are wrong by
several dex, therefore invalidating the evidence ratio and
the conclusion about model. Although in many cases the
likelihood might be close to Gaussian, or can be brought
in such a form by parameter transformations, this might
not always be possible. Often there exists a hard, physi-
cal prior which cuts off the likelihood.

Question: Is it easier (e.g. by parameter trans-
formation) to have a close-to-Gaussian likelihood
near the peak or in the tails?

Population Monte Carlo offers an efficient and reli-
able way to estimate the Bayesian evidence even in high-
dimensional spaces and for non-trivial likelihood shapes.
Repeated runs of PMC show the robustness of the re-
sults. If the initial proposal is badly chosen the estimate
of E can be significantly off; those cases can however be
identified by the in-built diagnostic tools of PMC, e.g. the
perplexity and effecive sample size, and also (in a less

formal way) the evolution of the proposal components as
function of iteration.

We have applied Bayesian model selection to two do-
mains of cosmology, the accelerated expansion of the Uni-
verse in the recent past and primordial fluctuations in
the early Universe. For the former, we analysed simple,
parametrised models of dark energy; the latter used the
slow-roll approximation of inflation. We used recent cos-
mological data corresponding to CMB, SNIa and BAO.

No dark-energy model is strongly or even only mod-
erately favoured over the standard ΛCDM paradigm.
This is inspite of the rather strong prior on dark-energy,
i.e. excluding phantom energy and requiring an accel-
erating component in the recent Universe. More gen-
eral dark-energy models with larger parameter space will
likely be disfavoured with respect to ΛCDM. This is even
true if future experiments find deviations of w from -1 un-
less the error bars get extremely small (Lindley-Jeffrey’s
paradox). This should serve as a motivation to define a
physical framework for dark-energy models with stronger
prior constraints on parameters.

Preious results (REF) report a weak preference of
the Harrison-Zel’dovich scale-invariant power spectrum
(ns = 1) with respect to a tilted one, with constant
spectral index. However, REF... In this work, the ev-
idence is inconclusive, and the HZ evidence is slightly
smaller than for tilted spectrum. Again, the results de-
pend on the prior on the spectral index. Contrary to
previous works which choose ad-hoc parameter priors,
we use physically motivated priors within the slow-roll
inflationary scenario. For more conservative priors on
the slow-roll parameters, e.g. ε, |η| ≤ 0.01, the resulting
prior on ns would decrease, and the HZ model would be
further disfavoured.

Tensor modes are moderately to strongly disfavoured,
depending on the prior on r. As consequence, a future
detection of tensor modes has to be done with very high
significance, to strongly disfavour a r = 0 model.
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have the power spectrum

Pt ∝ knt , (20)

with tensor index nt. The ratio between tensor and scalar
perturbation is denoted by r. In the standard model,
αs = nt = r = 0, only ns is a free parameter. Although
tensor-modes are expected from most models of the early
Universe, they are not detected so far with the given
sensitivity of current data and r is set to zero.

The models are considering within the slow-roll ap-
proximation of inflation, as will be described in the next
section.

5.4.1. Slow-roll parameters

The slow-roll approximation of inflation provides an
inifinite hierarchy of flow equations which describe the
dynamics of the single scalar field which drives inflation
(see Easther & Peiris 2006, and references therein). The
slow-roll parameters ε and !λH are defined in terms of
the potential V of the scalar field φ, and the Hubble
parameter H ,

ε =
m2

Pl

4π

[

H ′

H

]2

; (21)

!λH =

(

m2
Pl

4π

)!
(H ′)!−1

H!

d!+1H

dφ!+1
; & ≤ 1, (22)

where the prime denotes derivation with respect to φ.
The hierarchy of flow parameters can be truncated, since
if some LλH = 0, all higher terms !λH , & > L vanish. We
consider the expansion up to first-order and set 1λH = η,
2λH = 0. The parameters of the primordial power spec-
tra can be written in terms of the slow-roll parameters
as

ns = 1 + 2η − 4ε − 2(1 + C)ε2 − 1

2
(3 − 5C)εη; (23)

r = 16ε [1 + 2C(ε − η)] ; (24)

αs =
ε

1 − ε
(8ε + 10η) ; (25)

nt = −2ε − (3 + C)ε2 + (1 + C)εη. (26)

Here, C = 4(ln 2+γ)−5 ≈ −0.7296 where γ is the Euler-
Mscheroni constant. For slow-roll inflation to take place,
the slow-roll conditions ε % 1 and |!λH | % 1 for all &
have to be satisfied.

5.4.2. Priors

We use the slow-roll conditions to define priors on the
primordial parameters as 0 ≤ ε ≤ 0.1 and |η| < 0.1.
Although the exact values of the prior boundaries are
somewhat arbitrary, they have been considered by Mar-
tin & Ringeval (2006) as natural limits for the valid-
ity of the Taylor-expansion of the power spectrum P (k)
in ln(k/k∗) around the pivot scale k∗ = 0.05 Mpc−1.
Check whether our pivot scale k = 0.002 has any
influence. We choose an uninformative (i.e. flat) prior
on the slow-roll parameters. Why not e.g. flat
in log[p]? From eqs. 23-26) we get the correspond-
ing ranges of the power-spectra parameters, see Table
3, which are now motivated from fundamental physical
principles within the slow-roll model of inflation. We
choose flat priors for the power-spectra parameters as

well, although they are non-linearly related to the slow-
roll parameters and the prior will have a different shape.
However, we ignore this for simplicity. See Trotta (2007)
for a similar approach to define a prior on the spectral
index tilt.

TABLE 3
Prior ranges for primordial model comparison. The priors
on primordial parameters are derived from the slow-roll

approximation.

Parameter Minimum Maximum
Ωm 0.01 0.6
Ωb 0.01 0.1
τ 0.01 0.3
109∆2

R
1.4 3.5

h 0.2 1.4
ns 0.37 1.22
αs -0.033 0.2
r 0 1.83
(ln r -80 0.604)
nt -0.2 0

Inflationary models in general predict the power spec-
trum of primordial density perturbations to be a near
scale-free power law, Pδ(k) ∝ kns with spectral index ns
slightly below unity. Tensor perturbations (gravitational
waves) are expected to be non-zero, but their amplitude
is unknown and current data have not been able to detect
those modes.

We compare various models to the standard paradigm,
which now has six parameters (Ωm, Ωb, h, ns, ∆2

R
, τ).

The slow-roll parameter priors give us a range where the
power-spectra parameters are to be found. For our model
testing, we single out individual parameters or combina-
tions thereof. A strictly consistent and thorough treat-
ment should have the slow-roll parameters as primary
parameters; this will be left for a future analysis.

5.4.3. Results

In Fig. 6 we show the Bayes factor of various models
with respect to the standard model. A running spec-
tral index is favoured weakly, all other cases are dis-
favoured. The evidence against the Harrison-Zel’dovich
model (ns = 1) is inconclusive, whereas tensor perturba-
tions are moderately disfavoured. For illustration, we in-
clude a tensor-mode model with flat prior for ln r instead
of r; the minimum is chosen to be -80, corresponding to
the Planck length as energy scale of inflation. The large
prior of the logarithmis tensor-to-scalar ratio causes this
model to be strongly disfavoured. Note however that this
example is not really consistent with flat priors for the
slow-roll parameters; it rather corresponds to a model
in which very small slow-roll parameters are much more
likely than moderately large ones.

TABLE 4
Relative evidence for various models of primordial

perturbation spectra. Old priors!

Model npar log E ln E E

ns = 1(HZ) 5 0.396 0.911 2.488e+00
ns =const 6 0.000 0.000 9.997e-01
running 7 0.528 1.216 3.375e+00
tensor 7 -1.599 -3.683 2.515e-02
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with tensor index nt. The ratio between tensor and scalar
perturbation is denoted by r. In the standard model,
αs = nt = r = 0, only ns is a free parameter. Although
tensor-modes are expected from most models of the early
Universe, they are not detected so far with the given
sensitivity of current data and r is set to zero.

The models are considering within the slow-roll ap-
proximation of inflation, as will be described in the next
section.

5.4.1. Slow-roll parameters

The slow-roll approximation of inflation provides an
inifinite hierarchy of flow equations which describe the
dynamics of the single scalar field which drives inflation
(see Easther & Peiris 2006, and references therein). The
slow-roll parameters ε and !λH are defined in terms of
the potential V of the scalar field φ, and the Hubble
parameter H ,

ε =
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Pl

4π
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; (21)

!λH =

(
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dφ!+1
; & ≤ 1, (22)

where the prime denotes derivation with respect to φ.
The hierarchy of flow parameters can be truncated, since
if some LλH = 0, all higher terms !λH , & > L vanish. We
consider the expansion up to first-order and set 1λH = η,
2λH = 0. The parameters of the primordial power spec-
tra can be written in terms of the slow-roll parameters
as

ns = 1 + 2η − 4ε − 2(1 + C)ε2 − 1

2
(3 − 5C)εη; (23)

r = 16ε [1 + 2C(ε − η)] ; (24)

αs =
ε

1 − ε
(8ε + 10η) ; (25)

nt = −2ε − (3 + C)ε2 + (1 + C)εη. (26)

Here, C = 4(ln 2+γ)−5 ≈ −0.7296 where γ is the Euler-
Mscheroni constant. For slow-roll inflation to take place,
the slow-roll conditions ε % 1 and |!λH | % 1 for all &
have to be satisfied.

5.4.2. Priors

We use the slow-roll conditions to define priors on the
primordial parameters as 0 ≤ ε ≤ 0.1 and |η| < 0.1.
Although the exact values of the prior boundaries are
somewhat arbitrary, they have been considered by Mar-
tin & Ringeval (2006) as natural limits for the valid-
ity of the Taylor-expansion of the power spectrum P (k)
in ln(k/k∗) around the pivot scale k∗ = 0.05 Mpc−1.
Check whether our pivot scale k = 0.002 has any
influence. We choose an uninformative (i.e. flat) prior
on the slow-roll parameters. Why not e.g. flat
in log[p]? From eqs. 23-26) we get the correspond-
ing ranges of the power-spectra parameters, see Table
3, which are now motivated from fundamental physical
principles within the slow-roll model of inflation. We
choose flat priors for the power-spectra parameters as

well, although they are non-linearly related to the slow-
roll parameters and the prior will have a different shape.
However, we ignore this for simplicity. See Trotta (2007)
for a similar approach to define a prior on the spectral
index tilt.

TABLE 3
Prior ranges for primordial model comparison. The priors
on primordial parameters are derived from the slow-roll

approximation.

Parameter Minimum Maximum
Ωm 0.01 0.6
Ωb 0.01 0.1
τ 0.01 0.3
109∆2

R
1.4 3.5

h 0.2 1.4
ns 0.37 1.22
αs -0.033 0.2
r 0 1.83
(ln r -80 0.604)
nt -0.2 0

Inflationary models in general predict the power spec-
trum of primordial density perturbations to be a near
scale-free power law, Pδ(k) ∝ kns with spectral index ns
slightly below unity. Tensor perturbations (gravitational
waves) are expected to be non-zero, but their amplitude
is unknown and current data have not been able to detect
those modes.

We compare various models to the standard paradigm,
which now has six parameters (Ωm, Ωb, h, ns, ∆2

R
, τ).

The slow-roll parameter priors give us a range where the
power-spectra parameters are to be found. For our model
testing, we single out individual parameters or combina-
tions thereof. A strictly consistent and thorough treat-
ment should have the slow-roll parameters as primary
parameters; this will be left for a future analysis.

5.4.3. Results

In Fig. 6 we show the Bayes factor of various models
with respect to the standard model. A running spec-
tral index is favoured weakly, all other cases are dis-
favoured. The evidence against the Harrison-Zel’dovich
model (ns = 1) is inconclusive, whereas tensor perturba-
tions are moderately disfavoured. For illustration, we in-
clude a tensor-mode model with flat prior for ln r instead
of r; the minimum is chosen to be -80, corresponding to
the Planck length as energy scale of inflation. The large
prior of the logarithmis tensor-to-scalar ratio causes this
model to be strongly disfavoured. Note however that this
example is not really consistent with flat priors for the
slow-roll parameters; it rather corresponds to a model
in which very small slow-roll parameters are much more
likely than moderately large ones.

TABLE 4
Relative evidence for various models of primordial

perturbation spectra. Old priors!

Model npar log E ln E E

ns = 1(HZ) 5 0.396 0.911 2.488e+00
ns =const 6 0.000 0.000 9.997e-01
running 7 0.528 1.216 3.375e+00
tensor 7 -1.599 -3.683 2.515e-02
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