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Why investigating (an)-isotropy in expansion?���

u To test the cosmological principle 
§  We keep the homogeneity assumption 
§  We release the isotropy assumption and want 

to constrain the anisotropy. 

u To constrain the nature of Dark Energy 
We investigate a possible homogeneous 
anisotropic stress.   



Anisotropic spaces in a two slides���

Geometry: Spatial sections indexed by the time 

u                   tells how each spatial slice is glued to the 
previous one 

u                                                             gives the structure of the 
spatial slices.  

    Classification of anisotropic spaces from these constants. 
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Second slide���

hij(t) = a(t)2�iju                                               
 
Friedmann Lemaître (FL) case (for some cases). 
 
If                    ,                      Flat FL. 
 
The expansion describes everything 
 

u    
 
Matrix           is traceless and encodes volume preserving 
deformations. 
 
Deformation rate is the shear   
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Illustration of shear and expansion���

Expansion :  H 

Shear  �ij



�2 = �ij�
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Friedmann equation���

Ci
jk Contributes as  

 
1/a2

Contributes as  
 

1/a6

-Shear effects relevant at early times (BBN, CMB) 
 
-Constants of structure effects relevant at late time 
     see e.g. Bianchi VIIh papers.   
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Bianchi I���
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Unless there is anisotropic stress���

�0
ij + 3H�ij = ⇧ij 6= 0
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Observation? Effects on geodesic  ���

u Evolution of Energy 
 

u Evolution of direction 

     Lensing Potential 

ṅi = �Di⌃

⌃ =
1

2
�ijn

inj

⌃ Di⌃
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Effect on geodesic deviation (weak lensing)���

u Evolution of shape (e.g. a galaxy) 
 

d2Da
b

d�2
= Ra

cDc
b Deformation Matrix 

Source related to curvature 

u FL case :  Rab = 2DaDb� Gravitational potential 
(metric perturbation) 

Gradient orthogonal to line of sight 

S O 
DaDb�

Born Trajectory 

Derivative on central geodesic 



Effect of anisotropic background���

u Anisotropy as a perturbation 

Physical   Anisotropic                            FL                   
Space                          Background    Background 
 
u Double expansion scheme. 
 

u Effect of anisotropy appears at order  
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Harmonic space���

Depends on the observing direction  no
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Dominant effect���

�FL
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Standard FL lensing 

Anisotropic case. Dominant effect is 

is related to  �ijn
inj

O 

S 

Da↵

DaDb�

Post-Born trajectory 

Anisotropy acts like a deflecting potential on the central geodesic 

Only E modes 



E-B mode structure���

u Analogy with CMB lensing:  
        B modes generated by lensing. 

u Difference with CMB lensing:  
        The lensing potential is a pure quadrupole. 
        It is NOT-statistical   
        The 5 degrees of freedom are those of  
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E-B mode structure���

u Analogy with local boost (peculiar velocity)  
         
 
 
 Energy effect is 
 
 Aberration effect is 
      
u However       is a pure non-statistical dipole (l=1). 

u For an anisotropic expansion we look for a quadrupolar 
modulation which is of aberration type. We look into the 
shear so the analogy is with aberrated CMB polarization.  

T̃ = (1 + ↵)T �Da↵D
aT ↵ = v · n

↵T ! Y`1m1Y`2m2
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Ylm-ology���

Y`1m1Y`2m2 = Cm1m2m3
`1`2`3

C000
`1`2`3Y`3m3

DaY`1m1D
aY`2m2 = f(`1, `2, `3)Y`1m1Y`2m2

Local boost :  
`1 = 1

Anisotropic expansion 
`1 = 2

`3 = `2 ± 1

`2 � 2  `3  `2 + 2

Determines the structure of the correlations 



BB correlations���
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Off-diagonal correlations. EE and EB.���

hB`mE?
`+1m+M i

hE`mE?
`+2m+M i

The anisotropy generates also off-diagonal correlations 

M = �2,�1, 0, 1, 2

Interesting for two reasons 
 
u Of order       compared to EE correlations. 

u Enable to get the components              of the deflecting potential 
    and thus the       .  
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         Conclusion.���

u BB correlations in weak lensing can probe a late anisotropic era 
 
u The sensitivity in            is given by the  upper bounds on  
 

 
 
u Off diagonal correlations  are more powerful (first order in      ) 

u Off diagonal correlations allow for consistency checks. 

u The estimators can be based on those used to measure our peculiar 
velocity from CMB off-diagonal components  

    « epure si muove  » Planck 2013 results. XXVII. 1303.5087 
     and all references therein 
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