

2D and 3D Mapping Techniques

Jean-Luc Starck

CEA, IRFU, AIM, Service d'Astrophysique, France http://jstarck.cosmostat.org

Collaborators:

Francois Lanusse, Adrienne Leonard, Austin Peel, Sandrine Pires

Map Making: ILL Posed Inverse Problem

$$Y = H X + N$$

Need to add constraint

$$min_X = \parallel Y - HX \parallel^2 s.t. \ \mathcal{C}(X, H)$$

Map Making: ILL Posed Inverse Problem

$$Y = H X + N$$

Need to add constraint

$$min_X = \parallel Y - HX \parallel^2 s.t. \ \mathcal{C}(X, H)$$

Or blind ill posed problems

$$min_{H,X} = \parallel Y - HX \parallel^2 \quad s.t. \ \mathcal{C}(X,H)$$

- Part I: 2D and 3D WL Mass Maps

- Part II: CMB Map Recovery
- Part III: Radio-Interferometry Image Reconstruction

Convergence Map

•Mass Mapping:

- Originally, mass maps were considered not scientifically useful, but the situation is now clearly different.
- The field is evolving, and several 2D and 3D codes now exist.
- Science case work ongoing, and most requirements are not defined

Clusters

$$P_1(k) = \frac{k_1^2 - k_2^2}{k^2}$$
$$P_2(k) = \frac{2k_1k_2}{k^2}$$

2D Mass Mapping Problems

=> Mass-sheet degeneracy problem

•Missing data (mask and limited number densities):

Handling Missing Data (no noise): Binning+Smoothing

Mass mapping as an inverse problem

Binned data: $\gamma = F^* P F \kappa$

Unbinned data: $\gamma = T^* PF\kappa$

T = Non Equispaced Discrete Fourier Transform (NDFT)

$$\min_{\kappa} \frac{1}{2} \parallel \gamma - \mathbf{P}\kappa \parallel_2^2 \quad \text{with} \quad \mathbf{P} = T^* PF$$

$$g = \frac{\gamma}{1-\kappa} \longrightarrow \qquad \min_{\kappa} \frac{1}{2} \parallel (1-\kappa)g - \mathbf{P}\kappa \parallel_{2}^{2}$$

 $\mathbf{P} = T^* P F$ is not directly invertible \Rightarrow Linear inverse problem.

Mass mapping as an inverse problem

Binned data: $\gamma = F^* P F \kappa$

Unbinned data: $\gamma = T^* PF\kappa$

T = Non Equispaced Discrete Fourier Transform (NDFT)

$$\min_{\kappa} \frac{1}{2} \parallel \gamma - \mathbf{P}\kappa \parallel_2^2 \quad \text{with} \quad \mathbf{P} = T^* PF$$

$$g = \frac{\gamma}{1-\kappa} \longrightarrow \qquad \min_{\kappa} \frac{1}{2} \parallel (1-\kappa)g - \mathbf{P}\kappa \parallel_{2}^{2} + \mathcal{C}(\kappa)$$

 $\mathbf{P} = T^* P F$ is not directly invertible \Rightarrow Linear inverse problem.

Wavelet Aperture Mass (WAM)

$$M_{ap}(\boldsymbol{\theta}) = \int d^2 \boldsymbol{\vartheta} \, \gamma_t(\boldsymbol{\vartheta}) Q(|\boldsymbol{\vartheta}|)$$

$$M_{ap}(\theta) = (\mathbf{\Phi}^t \kappa)_{\theta}$$

⇒ Wavelets filters are formally **indentical** to Mass aperture

A. Leonard, S. Pires, J.-L. Starck, "Fast Calculation of the Weak Lensing Aperture Mass Statistic", MNRAS, 423, pp 3405-3412, 2012.

Wavelet Aperture Mass (WAM)

$$M_{ap}(\theta) = (\mathbf{\Phi}^t \kappa)_{\theta}$$

$$\mathbf{\Phi}^t \kappa = \alpha = \{\alpha_1, \dots, \alpha_J\}$$

The matrix Φ corresponds to the representation space, it is also called the dictionary.

Mass mapping as an inverse problem

Unbinned data: $\gamma = T^* PF\kappa$

T = Non Equispaced Discrete Fourier Transform (NDFT)

$$\min_{\kappa} \frac{1}{2} \| \gamma - \mathbf{P}\kappa \|_{2}^{2} + \mathcal{C}(\kappa) \quad \text{with } \mathbf{P} = T^{*}PF$$

$$M_{ap}(\theta) = (\mathbf{\Phi}^t \kappa)_{\theta}$$

=> A *multi-scale peak counting prior* (WAM Constraint)

$$\mathcal{C}(\kappa) = \sum_{\theta} \| (\Phi^t \kappa)_{\theta} \|_p = \sum_j \| \alpha_j \|_p$$
$$\|X\|_p = (\sum_i |X_i|^p)^{\frac{1}{p}}$$
$$\|X\|_p = \sum_i |X_i|^p$$
$$\|X\|_1 = \sum_i |X_i|$$

L1 Norm & Sparsity

Sparse Recovery & Inverse Problems

$$\widehat{Y} = \widehat{Y}$$

$$g = \frac{\gamma}{1 - \kappa} \quad \text{with} \quad \widehat{P} = T^* PF$$

$$T = \text{Non Equispaced Discrete Fourier Transform (NDFT)}$$

$$\min_{\kappa} \frac{1}{2} \parallel \gamma - \mathbf{P}\kappa \parallel_2^2$$

$$\text{sparse regularizaton}$$

$$\lim_{\kappa} \frac{1}{2} \parallel \gamma - \mathbf{P}\kappa \parallel_2^2 + \lambda \parallel \Phi^t \kappa \parallel_1$$

$$g = \frac{\gamma}{1 - \kappa} \quad \text{min} \frac{1}{2} \parallel (1 - \kappa)g - \mathbf{P}\kappa \parallel_2^2 + \lambda \parallel \Phi^t \kappa \parallel_1$$

=> Write the mass-mapping as a single optimization problem with a *multi-scale sparsity prior* addressing many issues (i.e. reduced shear, missing data, noise).

F. Lanusse, J.-L. Starck, A. Leonard, and S. Pires, High Resolution Weak Lensing Mass Mapping combining Shear and Flexion, submitted.

Flexion + Redshift Information

We can integrate flexion in our reconstruction framework

=> Jointly fit shear and flexion

$$\min_{\kappa} \frac{1}{2} \parallel (1-\kappa) \begin{bmatrix} g \\ F \end{bmatrix} - \begin{bmatrix} \mathbf{P} \\ \mathbf{Q} \end{bmatrix} \kappa \parallel_{2}^{2} + \lambda \parallel \mathbf{\Phi}^{t} \kappa \parallel_{1}$$

=> Jointly fit shear and flexion with redshift information

$$\min_{\kappa} \frac{1}{2} \parallel (1 - \mathbf{Z}\kappa) \begin{bmatrix} g \\ F \end{bmatrix} - \mathbf{Z} \begin{bmatrix} \mathbf{P} \\ \mathbf{Q} \end{bmatrix} \kappa \parallel_{2}^{2} + \lambda \parallel \mathbf{\Phi}^{t} \kappa \parallel_{1}$$

with
$$\mathbf{Z} = \sum_{critic}^{\infty} / \sum_{critic} (z_i)$$

Individual redshifts have two benefits:

$$\Sigma_{crit}^{\infty} = \lim_{z \to \infty} \Sigma_{crit}(z)$$
$$\Sigma_{crit}(z_s) = \frac{c^2}{4\pi G} \frac{D_S}{D_L D_{LS}}$$

•Directly map the surface mass density of the lens

•Mitigate the **mass-sheet degeneracy** when \mathcal{K} becomes significant (Bradac, Lombard and Schneider, 2004)

The 2D Glimpse Algorithm

$$\min_{\kappa} \frac{1}{2} F(\kappa) + \lambda \parallel \Phi^t \kappa \parallel_1 \text{ with } F(\kappa) = \frac{1}{2} \parallel (1 - \kappa)g - \mathbf{P}\kappa \parallel_2^2$$

Primal-dual splitting:

Fast and flexible algorithm

$$\begin{cases} \kappa^{(n+1)} = \kappa^{(n)} + \tau \left(\nabla F(\kappa^{(n)}) + \mathbf{\Phi} \alpha^{(n)} \right) \\ \alpha^{(n+1)} = \left(\mathrm{Id} - \mathrm{ST}_{\lambda} \right) \left(\alpha^{(n+1)} + \mathbf{\Phi}^{t} (2\kappa^{(n+1)} - \kappa^{(n)}) \right) \end{cases}$$

Condat-Vu algorithm, 2013

A few remarks:

- Recovers the convergence from the reduced shear
- P can be defined with and without binning the shear
- P can be ill-posed in case of missing data
- Sparse regularization of noise and missing data We use isotropic wavelets, well adapted to the recovery of clusters.
- Sparsity constraint λ estimated locally by noise simulations \implies Accounts for survey geometry, varying noise levels

 \sim

Solution Series and S

mardi 16 février 16

œ

mardi 16 février 16

œ

mardi 16 février 16

œ

Galaxy distribution: 93% of missing pixels, corresponding to 30 galaxies per square arcminute

Missing Data + Noise

œ

M.J. JEE , H.. HOEKSTRA , A. MAHDAVI , AND A. BABUL, HUBBLE SPACE TELESCOPE/ADVANCED CAMERA FOR SURVEYS CONFIRMATION OF THE DARK SUBSTRUCTURE IN A5201, Astrophysical Journal, Volume 783, Issue 2, article id. 78, 18 pp. (2014).

œ

Very preliminary results

Very preliminary results

œ

3 sigma using weights

Very preliminary results

4 sigma using weights

$$\gamma(\boldsymbol{\theta}) = \frac{1}{\pi} \int d^2 \boldsymbol{\theta}' \mathcal{D}(\boldsymbol{\theta} - \boldsymbol{\theta}') \kappa(\boldsymbol{\theta}')$$

Kappa (or convergence) is a dimensionless surface mass density of the lens

$$\kappa(\theta, w) = \frac{3H_0^2 \Omega_M}{2c^2} \int_0^w dw' \frac{f_K(w')f_K(w - w')}{f_K(w)} \frac{\delta[f_K(w')\theta, w']}{a(w')},$$

 f_{κ} is the angular diameter distance, which is a function of the comoving radial distance r and the curvature K.

$$\gamma = \mathbf{P}_{\gamma\kappa} \kappa + n_{\gamma},$$

$$\kappa = Q\delta + n$$

$$\gamma = \mathbf{R}\delta + n$$

Galaxies are not intrinsically circular: intrinsic ellipticity ~ 0.2-0.3; gravitational shear ~ 0.02

Reconstructions require knowledge of distances to galaxies

CosmoStat Lab

CosmoStat Lab

CosmoStat Lab

Linear Methods

Sparsity Recovery leads to Strong Improvement on

Redshift bias in location of detected peaks
Smearing along the line of sight
Damping of the reconstruction
Sensitivity at high redshift

CosmoStat Lab

œ

Weak Lensing & 3D Matter Distribution

A. Leonard, F.X. Dupe, and J.-L. Starck, <u>"A Compressed Sensing Approach to 3D Weak Lensing"</u>, Astronomy and Astrophysics , 539, A85, 2012.

A. Leonard, F. Lanusse, J-L. Starck, GLIMPSE: Accurate 3D weak lensing reconstruction usiing sparsity, Astronomy and Astrophysics, A&A, 2014.

Density constrast wavelet coefficients

==> Use Sparse recovery and Proximal optimization theory

$$\min_{\delta} \frac{1}{2} \| \gamma - R\delta \|_{\mathbf{\Sigma}^{-1}}^2 + \lambda \| \Phi^t \delta \|_1$$

 Φ = 2D Wavelet Transform on each redshift bin

mardi 16 février 16

 $\delta = \Phi \alpha$

WL 3D Cosmo-Door is now open

Mass Estimation

Cluster Masses from 3D Weak Lensing Reconstructions

A. Leonard, F. Lanusse, & J.-L. Starck 2015, MNRAS

- GLIMPSE 3D reconstructions provide a direct, unbiased & nonparametric estimate of the cluster mass (Leonard, Lanusse & Starck 2014, MNRAS, 440, 1281)
- Masses estimated integrating the density in the central 4 x 4 arcmin
- Error bars reflect the standard deviation in mass estimates 1000 Monte Carlo simulations of each cluster
- Cluster masses 2 x $10^{13}h^{-1}M_{\odot} \le M_{vir} \le 10^{15}h^{-1}M_{\odot}$
- Cluster redshifts $0.05 \le z \le 0.75$

28

Cluster Detections: 2D vs 3D mapping

- 3D reconstructions (GLIMPSE) may offer an SNR advantage over 2D reconstructions (MRLens) for the detection of clusters.
- Improvement particularly significant at high redshift.

A. Leonard, F. Lanusse, & J.-L. Starck 2015, MNRAS

Redshift Estimation: TMF vs GLIMPSE

Blue dots: GLIMPSE z estimates

Colored dots: TMF z estimates for

GLIMPSE recovers more accurate z's

Sparse Component Separation: the GMCA Method

A and X are estimated alternately and iteratively in two steps :

J. Bobin, J.-L. Starck, M.J. Fadili, and Y. Moudden, "Sparsity, Morphological Diversity and Blind Source Separation", IEEE Trans. on Image Processing, Vol 16, No 11, pp 2662 - 2674, 2007.
J. Bobin, J.-L. Starck, M.J. Fadili, and Y. Moudden, <u>"Blind Source Separation: The Sparsity Revolution"</u>, Advances in Imaging and Electron Physics, Vol 152, pp 221 -- 306, 2008.

$$\mathbf{Y} = \mathbf{A}\mathbf{X}$$

1) Estimate X assuming A is fixed :

$$\{X\} = \operatorname{Argmin}_{X} \|\mathbf{Y} - \mathbf{A}\mathbf{X}\|_{F,\Sigma}^{2} + \sum_{j} \lambda_{j} \|\Phi^{t} x_{j}\|_{1}$$

=> Sparse coding (proximal theory, etc)

2) Estimate A assuming X is fixed (a simple least square problem) :

$$\{A\} = \operatorname{Argmin}_{A} \|\mathbf{Y} - \mathbf{A}\mathbf{X}\|_{F, \Sigma}^{2}$$

=> Least square estimator

Traces of tSZ effect

Coma: 217GHz PR2-HFI - NILC

Coma: 217GHz PR2-HFI - SEVEM

Coma: 217GHz PR2-HFI - SMICA

Quality map

Radio interferometry & Compressed Sensing

Y = HX + N

Sky X

Compressed Sensing & LOFAR Cygnus A Data

Garsden et al, "LOFAR Image Sparse Reconstruction", A&A, 575, A90, 2015.

http://arxiv.org/abs/1406.7242

J. Girard

H. Garsden

S. Corbel

Garsden et al, "LOFAR Image Sparse Reconstruction", A&A, 575, A90, 2015, ArXiv:1406.7242.

C. Tasse

Colorscale: reconstructed 512x512 image of Cygnus A at 151 MHz (with resolution 2.8" and a pixel size of 1"). Contours levels are [1,2,3,4,5,6,9,13,17,21,25,30,35,37,40] Jy/Beam from a 327.5 MHz Cyg A VLA image (Project AK570) at 2.5" angular resolution and a pixel size of 0.5". **Recovered features in the CS image correspond to real structures observed at higher frequencies.**

Ingredients 1/2

We need **<u>dictionaries</u>** - space and time are independent

 $\psi(x, y, t) = \psi^{(xy)}(x, y)\psi^{(t)}(t)$

• for the 2D spatial signal

Starlets [Starck et al. 2011] (Isotropic Undecimated Wavelet Transform) $\varphi = B_3 - \text{spline}, \quad \frac{1}{2}\psi(\frac{x}{2}) = \frac{1}{2}\varphi(\frac{x}{2}) - \varphi(x)$ $h = [1,4,6,4,1]/16, \quad g = \delta - h, \quad \tilde{h} = \tilde{g} = \delta$ $I(k,l) = c_{J,k,l} + \sum_{j=1}^{J} w_{j,k,l}$

• for the 1D temporal signal

 $\gamma \alpha \gamma$

Simulating a transient sky and a radio observation

using 32 x 32 x 64 & 128 x 128 x 64 cubes Sky model

Dirty map

- "control" source: steady 10 FU* source A new so
- transient gaussian source: 10 FU maximum Need a ti
*FU = arbitrary flux unit

A new source appeared but side lobes as well ! Need a time-agile deconvolution algorithm Reconstruction

Sparsity & Mapping

- \checkmark Sparsity is a very efficient tool to regularize inverse problems.
- ✓ Radio-Interferometry
 - 2D and 3D mapping from visibilities.

✓ CMB Map Recovery:

Joint CMB map reconstruction from WMAP and Planck data

http://www.cosmostat.org/research/cmb/planck_wpr2/

J. Bobin, F. Sureau, J.-L. Starck, CMB reconstruction from the WMAP and Planck PR2 data, submitted to A&A, 2015

✓ Weak Lensing Mass Map Reconstruction

➡ GLIMPSE2D: A new mass mapping algorithm, based on sparsity and proximal optimization theory:

- Does not require angular binning of the ellipticities, accounts for reduced shear, and proper regularization of missing data.

- => Can include individual redshift PDFs of sources and flexion measurements if available
- ⇒ Can be also be used for non-parametric high-resolution cluster density mapping from weak lensing alone
- F. Lanusse , J.-L. Starck, A. Leonard, and S. Pires, High Resolution Weak Lensing Mass Mapping combining Shear and Flexion , submitted, <u>http://www.cosmostat.org/software/glimpse</u>
- GLIMPSE3D: Significant improvement over linear methods (Redshift bias, Smearing, Damping, Resolution).

A. Leonard, F. Lanusse, J-L. Starck, "GLIMPSE: Accurate 3D weak lensing reconstruction using sparsity", A&A, 571, id.L1, 2014 A. Leonard, F. Lanusse, J-L. Starck, "Weak lensing reconstructions in 2D & 3D: implications for cluster studies" MNRAS, 449, 2015.

Conclusions

45