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Overview
• What are photometric redshifts (photoZ)? 

• Why are accurate photoZs important for 
cosmology? 

• How can we quantify the photoZ error distribution? 

• How can we avoid systematic errors?



The cosmos in 3D
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Clustering tomography 3

Figure 1. Mean !(✓) measured on the mock catalogues for 8 redshift-shells, amplified by (✓/deg)1.5 to highlight the BAO peak. The
errorbars correspond to the error in the mean. The blue dashed lines show the best-fitting model, described in Sec. 3.1 and 3.2, for the
cosmology of LasDamas, which simultaneously reproduces !(✓) for every shell. The vertical dotted line is a reference located at 6 deg.,
drawn to show how the BAO peak moves relative to a fixed scale depending on the redshift.

Cosmological constant density parameter ⌦
⇤

0.75
Matter density parameter ⌦

m

0.25
Baryonic density parameter ⌦

b

0.04
Dark energy equation of state wDE �1.0
Hubble constant

�
km s�1Mpc�1

�
H 70

Amplitude of density fluctuations �
8

0.8
Scalar spectral index n

s

1.0

Number of particles Np 12803

Box size (h�1Mpc) L 2400
Particle mass (1010M�) Mp 45.73
Softening length (h�1kpc) ✏ 53

Table 1. Cosmological parameters and specifications of the Las-
Damas simulation.

a di↵erent random seed. The specifications of these simula-
tions are outlined in Table 1. From each realization, a halo
catalogue is extracted using a friends-of-friends algorithm
(FoF; Davis et al. 1985), and populated with mock galax-
ies following a halo occupation distribution (HOD; Peacock
& Smith 2000, Berlind & Weinberg 2002)in order to repro-
duce the SDSS DR7 (Abazajian et al. 2009) clustering signal.
Each realisation provides 4 catalogues without overlap, re-
producing the SDSS DR7 geometry (northern Galactic cap
only), containing an average of 91137 galaxies per catalogue
within the redshift range [0.16, 0.44], and including redshift-
space distortions (RSD) from peculiar velocities. These cat-
alogues, and the corresponding random field (which contains
50 times more objects than one of these catalogues) needed
to measure the correlation functions, were modified to follow
the radial number density n(z) of the SDSS DR7 LRGs (see
Fig. 1 in Montesano et al. 2012).
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3 ANALYTICAL MODELING OF THE

COVARIANCE MATRIX OF W (θ)

An equally important aspect to the understanding of the sig-
nal in clustering analysis of galaxy surveys is the capability
to estimate the corresponding errors in the measurements.
This is of particular importance for analysis that use cor-
relation functions in Configuration space because the mea-
surements are highly correlated.

Notably there is scarce work in the literature aiming at
developing analytical estimates of the covariance matrix of
angular correlation functions besides the early work of Bern-
stein 1994, who developed an error estimate for the Landy
& Szalay estimator in terms of higher order correlations.

Most “data analysis” papers have relied on sub-
sampling techniques of the data itself , such as jack-knife,
bootstrap and field-to-field variations (e.g. Ross et al. 2007;
Meneux et al. 2009; Sawangwit et at. 2009). However as
noted in the comprehensive work of Norberg et al. 2009
all these approaches have failings, at least in 3-d clustering,
depending on the way they are implemented and the regime
of scales of interest. On the other hand, projection along
the line-of-sight alleviates this tension leading to a good
agreement with theoretical estimates, as shown by Cabré et
al. 2007 in the context of cross-correlations between galaxy
and CMB maps.

In what follows we try to revert the lack of analytical
work provided that we are interested on large angular scales,
where nonlinear (i.e. non-Gaussian) effects are weaker and
that we know how to model the signal itself. We thus concen-
trate in discussing how to model expected errors in angular
clustering, including the effects of sampling variance, shot-
noise, partial sky coverage, photo-z and redshift distortions.
We put particular emphasis on the description of the full
error matrix, and not only the diagonal components, and
leave for further work the assessment of possible systematic
effects.

Let us start by decomposing the fluctuations in the
number of objects “per pixel” in the sky into spherical co-
ordinates (Peebles 1973),

δ(n̂) =
∑

ℓ≥0

ℓ
∑

m=−ℓ

aℓmYℓm(n̂), (12)

where n̂ is the line-of-sight direction and Yℓm the spheri-
cal harmonics. The coefficients in this expansion form the
angular power spectrum,

⟨aℓmaℓ′m′⟩ ≡ δℓℓ′δmm′Cℓ (13)

that can be related to the angular correlation function using
the Addition theorem 7 yielding,

w(θ) =
∑

ℓ≥0

(

2ℓ+ 1
4π

)

Pℓ(cosθ)Cℓ (14)

where Pℓ are the Legendre polynomials of degree ℓ. The
covariance in the measurements of w(θ) can then be related

7 Pℓ(n̂ · n̂′) = 4π
2ℓ+1

∑ℓ
m=−ℓ = Yℓm(n̂)Y ⋆

ℓm(n̂)

to those in Cℓ as,

Covθθ′ =
∑

ℓ,ℓ′≥0

(

2l + 1
4π

)2

Pℓ(cos θ)Pℓ′(cos θ
′) Covℓℓ′ (15)

where

Covθθ′ ≡ ⟨w̃(θ)w̃(θ′)⟩, Covℓℓ′ ≡ ⟨C̃ℓC̃ℓ′⟩, (16)

and w̃(θ) and C̃ℓ denote the estimators used for w(θ) and Cℓ

respectively. In a full sky situation, and assuming the aℓm

spectra are Gaussianly distributed, the C̃ℓ measurements
are uncorrelated, Covℓℓ′ = Var(Cℓ)δℓℓ′ . In addition, one can
estimate each ℓ power using the 2ℓ+ 1 available modes,

C̃ℓ ≡
1

2ℓ+ 1

ℓ
∑

m=−ℓ

a2
ℓm (17)

thus, Var(Cℓ) = 2C2
ℓ /(2ℓ + 1). Replacing these relations

back into Eq. (15) leads to the final expression for Covθθ′ in
a full sky survey.

However a more realistic and interesting scenario is one
in which the sky coverage is partial. In Cabré et al. 2007 it
was shown, using Gaussian realizations of the aℓm spectra,
that errors in configurations space scale as 1/

√

fsky (which,
in turn, is the scaling of the available number of harmonic
modes). In what follows we will assume this scaling, and
compute the covariance matrix as (Dodelson 2003; Cabré
et al. 2007)

Covθθ′ =
2

fsky

∑

ℓ≥0

2ℓ+ 1
(4π)2

Pℓ(cos θ)Pℓ(cos θ
′) (Cℓ + 1/n̄)2

(18)
where we have also included the standard shot-noise con-
tribution arising in the variance of the Cℓ estimates (Pee-
bles 1973) (n̄ is the number of objects per steradian). We
remark that the assumption leading to Eq. (18) is not that
the Cℓ covariance remains diagonal in a partial sky survey
but instead that Cov(θ, θ′) can be obtained from its full sky
expression by the scaling 1/fsky . We discuss this further in
Appendix C.

To proceed further we thus need a model for the angu-
lar spectra. In real space the Cℓ spectra are given by (see
Appendix A)

Cℓ,Exact =
1

2π2

∫

4πk2dkP (k)Ψ2
ℓ(k) (19)

where P (k) is the real space matter power spectrum and,

Ψℓ(k) =

∫

dzφ(z)D(z)jℓ(kr(z)). (20)

Throughout this paper we will use the linear theory power
spectrum in Eq. (19). We have tested that the inclusion of
small scale nonlinear effects (or the damping of the baryon
acoustic features) have no impact in our predictions for the
errors at the (large) angular scales we are interested in.

Redshift space distortions are accounted for by follow-
ing the same procedure that leads to the Cℓ expression in
Eq. (19) but starting from a power spectrum that includes
the Kaiser effect discussed in Sec. 2.2 and Eq. B8. The final
result is simply the following additive contribution to the
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was shown, using Gaussian realizations of the aℓm spectra,
that errors in configurations space scale as 1/

√

fsky (which,
in turn, is the scaling of the available number of harmonic
modes). In what follows we will assume this scaling, and
compute the covariance matrix as (Dodelson 2003; Cabré
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is imaged in multiple bands with griz, allowing photomet-
ric redshifts and p(z) to be estimated. The images were
processed and the object catalogues were created with the
same methods applied to CFHTLenS (Hildebrandt et al., in
prep). The number distribution of magnitudes as a function
of un-weighted objects led to choices of magnitude cut-o↵s
of i = 24.7 for CFHTLenS sources and r = 23.7 for RC-
SLenS sources. These numbers correspond to the 5-� detec-
tion limit in a 2.000 aperture (Erben et al. 2013).

Figure 1 shows the normalised �j(z) corresponding to
the eight photometric redshift bins considered in this analy-
sis with limits given by: [0.15, 0.29], [0.29, 0.43], [0.43, 0.57],
[0.57, 0.7], [0.7, 0.9], [0.9, 1.1], [1.1, 1.3], [1.3, 3.5]. The choice
of bin edges was motivated by the spectroscopic samples
used (i.e. using the LOWZ and CMASS partitions described
in Section 3.2), and z = 1.3 was the cut-o↵ redshift for pre-
vious CFHTLenS lensing analyses, motivated by the lack of
near-infrared photometry to constrain higher redshifts. The
top panel shows the �j(z) for the entire CFHTLenS area
overlapping with BOSS DR10, while the lower panel shows
the �j(z) for the RCSLenS overlap with BOSS DR10 and
WiggleZ. Compared with CFHTLenS, the RCSLenS �j(z)
are noticeably multi-modal, with flatter tails extending to
adjacent bins, which reflects poorer photometric redshift ac-
curacy due to the limited filter coverage, most critically the
missing u band.

As the calculation of w(✓) requires pair counts with ran-
dom positions (see Eqn. 3), we generate random catalogues
for each field, taking into account edges and masks.

3.2 Spectroscopic Surveys

We briefly summarise the spectroscopic data sets used in this
analysis but refer the interested reader to Blake et al. (2015)
for further details and statistics regarding the WiggleZ-
RCSLenS, BOSS-CFHTLenS, BOSS-RCSLenS overlap re-
gions, as they use nearly identical WiggleZ and BOSS spec-
troscopic samples.

BOSS

The Baryon Oscillation Spectroscopic Survey (BOSS; Eisen-
stein et al. 2011) is a spectroscopic survey of massive galax-
ies and quasars selected from SDSS photometry carried out
at the Sloan Telescope at Apache Point Observatory in
Sunspot, New Mexico, USA. Data Release 10 (DR10) con-
tains BOSS spectra taken through July 2012 and comprises
927,844 galaxy spectra over 6373.2 square degrees (Ahn et
al. 2013). BOSS galaxies were selected using colour and mag-
nitude cuts and are divided into the “LOWZ” sample with
red galaxies z < 0.43 and the “CMASS” sample which is de-
signed to be approximately stellar mass-limited for z > 0.43.
There is a total of 66.3 deg2 of total unmasked overlap
with CFHTLenS (W1 and W4, 2830 LOWZ galaxies, 5567
CMASS galaxies) and a total of 183.9 deg2 of total unmasked
overlap with RCSLenS (6 fields, 9214 LOWZ galaxies, and
18,156 CMASS galaxies). See Table 1 of Blake et al. (2015)
for numbers corresponding to each field. The 6 RCSLenS
fields are labelled as 0047, 0133, 1514, 1645, 2143 and 2329.
The field named 1303 has a very small number of galax-
ies with spectroscopic redshifts, and we exclude it from this

�
j(

z)

Figure 1. Summed probability redshift distributions �j(z) for
galaxies with single-point photometric redshifts zB in di↵erent
bins j. The top panel corresponds to the 66 square degrees of
unmasked overlap between CFHTLenS and BOSS DR10. The
bottom panel corresponds to the 184 square degrees where there
is unmasked overlap between RCSLenS and BOSS DR10.

analysis. We trim the catalogues to restrict them to the over-
lap regions (i.e. no BOSS or CFHTLenS/RCSLenS galaxies
falling outside of the overlap are included in the analysis).

BOSS galaxies are assigned completeness weights as in
Eqn. 18 of Anderson et al. (2014) in order to correct for the
e↵ects of redshift failures, fibre collisions and other known
systematics, and we use these weights in our determination
of the cross-correlations of the galaxies. Specifically, the pair
counts in Eqn. 3 are weighted by the completeness weights.
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4.1 Stage III: the Dark Energy Survey

The Dark Energy Survey (DES)1 (Abbott et al. 2005) is an op-
tical and near-infrared survey which is currently being deployed
at the Cerro Tololo observatory in the Chilean Andes, and has re-
cently come to light in late 2011. The wide-field survey will cover
5,000 sq. deg. in the Southern sky, reaching ⇠ 24 magnitude in
the SDSS bands g, r, i, z and Y . Additionally, the J,H,K bands for
the same fields are expected to be added from the ESO Vista sur-
vey. About 300 million galaxies are expected to be observed with
shapes, photo-z’s and positions, as well as 100,000 galaxy clusters
and 1,000 Type Ia SNe using a smaller repeated imaging survey.

In this paper we will study the Fisher-matrix forecasted errors
on dark energy and PNG using the weak lensing, galaxy clustering,
and the combined data from this survey. For this purpose, we will
assume the specifications summarised in Table 1 and that the red-
shift distribution of the sources can be well approximated by the
law (Smail et al. 1994)

dN
dz

(z) =
1

�
⇣

↵+1
�

⌘ �
z↵

z↵+1
0

exp
2

6

6

6

6

4

�
 

z
z0

!�3
7

7

7

7

5

, (18)

where the parameters are set to ↵ = 2, � = 1.5, in which case
z0 is related to the median redshift by z0 ' z̄/1.41. We will fi-
nally split this distribution in eight equally populated redshift bins.
Due to the uncertainty in the photo-z determination, we will write
the theoretical redshift distribution of the sources as the convolu-
tion of these redshift bins with a Gaussian characterised by a dis-
persion matching the photometric redshift uncertainty �z(z). This
approach assumes that the photometric redshift estimation is per-
fectly calibrated to a spectroscopic sample; the distribution of the
redshift errors is Gaussian and the r.m.s. error�z(z) is known; catas-
trophic errors can be identified and downweighted in the analysis.
See Kitching et al. (2008); Bernstein & Huterer (2010) for more
detailed approaches which take into account more of the possible
systematics arising in this case.

Finally, in the absence of a detailed model we will assume the
fiducial value of the galaxy bias to follow the law b(z) =

p
1 + z

following Rassat et al. (2008), but we will study the effect of mod-
ifying the fiducial bias in Section 6.4.

4.2 Stage IV: Euclid

Euclid2 is a future space mission of the European Space Agency
(ESA), which is expected to survey the whole extragalactic sky
(up to 20,000 sq. deg.) from the L2 point in space (Laureijs et al.
2009). Launch is currently scheduled in 2018. In our analysis we
approximate this planned survey with the settings and specifica-
tions described in the Euclid Assessment Study Report (Laureijs
et al. 2009). Although the specifications of the survey have since
evolved (Laureijs et al. 2011), this does not affect the current study
because our intention is to draw broad conclusions that will be rel-
evant to the whole class of stage IV surveys including WFIRST,
LSST, and others. See in any case Section 6.10 for a discussion of
how the results change when using the latest Red Book specifica-
tions. The Euclid mission is expected to perform two main surveys,
photometric and spectroscopic.

The photometric part should measure photo-z and elliptici-
ties in the optical and near-infrared bands (one broad visual band

1
http://www.darkenergysurvey.org/

2
http://sci.esa.int/euclid

Figure 2. Redshift distributions used for the forecasts of both photometric
and spectroscopic data sets for the Euclid satellite and the DES. The photo-z
distributions are given by an analytic function (Smail et al. 1994), while the
spectroscopic part is numerically estimated by Geach et al. (2010), where
the Euclid specified flux cut is used, 4 · 10�16 erg s�1 cm�2. The distribu-
tions have been already convolved with the probability density function of
redshift measurement errors.

R+I+Z and Y, J,H IR bands), up to mag ⇠ 24.5 in the visual and
24 in the IR. The requirement specifications are described in Table
1. The expected number of observed galaxies is of the order of a
billion. For this survey we will also use the approximated redshift
distribution by Smail et al. (1994), dividing the sample in 12 red-
shift bins, whose distribution is again convolved with the expected
photometric errors, as shown in Fig. 2. The photometric galaxies
are distributed in the redshift range 0 < z < 2.5.

The spectroscopic survey is expected to use a slitless spec-
trometer which will mainly detect the H↵ emission line of galaxies.
The spectrometer will have a resolution �/�� = 500, giving a red-
shift uncertainty of �z(z) = 0.001(1 + z). The wavelength range of
this instrument will be limited to 1000 nm < � < 2000 nm, meaning
that only galaxies at 0.5 < z < 2 will have measurable H↵ lines and
thus redshifts. The limiting flux is placed at 4 · 10�16 erg s�1 cm�2,
which combined with the expected success rate of the spectrometer
e = 35% yields ⇠ 60 million galaxies, using the predicted tabulated
calculations by Geach et al. (2010), which was based on empirical
data of the luminosity function of H↵ emitter galaxies out to z = 2.
We will use this tabulated prediction as our fiducial redshift dis-
tribution of the sources, consistently with the Euclid Study Report
specifications (Laureijs et al. 2009). The remaining specifications
are again to be found in Table 1. We will finally split the distribu-
tion into 12 equally populated redshift bins, as we can see in Fig. 2.
Again, we will take the fiducial value of the galactic bias to fol-
low the law b(z) =

p
1 + z following Rassat et al. (2008), which is

a good approximation to recent studies from semianalytic models
of galaxy formation such as e.g. by Orsi et al. (2010), but we will
study the effect of changing this choice in Section 6.4.
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4.1 Stage III: the Dark Energy Survey

The Dark Energy Survey (DES)1 (Abbott et al. 2005) is an op-
tical and near-infrared survey which is currently being deployed
at the Cerro Tololo observatory in the Chilean Andes, and has re-
cently come to light in late 2011. The wide-field survey will cover
5,000 sq. deg. in the Southern sky, reaching ⇠ 24 magnitude in
the SDSS bands g, r, i, z and Y . Additionally, the J,H,K bands for
the same fields are expected to be added from the ESO Vista sur-
vey. About 300 million galaxies are expected to be observed with
shapes, photo-z’s and positions, as well as 100,000 galaxy clusters
and 1,000 Type Ia SNe using a smaller repeated imaging survey.

In this paper we will study the Fisher-matrix forecasted errors
on dark energy and PNG using the weak lensing, galaxy clustering,
and the combined data from this survey. For this purpose, we will
assume the specifications summarised in Table 1 and that the red-
shift distribution of the sources can be well approximated by the
law (Smail et al. 1994)
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where the parameters are set to ↵ = 2, � = 1.5, in which case
z0 is related to the median redshift by z0 ' z̄/1.41. We will fi-
nally split this distribution in eight equally populated redshift bins.
Due to the uncertainty in the photo-z determination, we will write
the theoretical redshift distribution of the sources as the convolu-
tion of these redshift bins with a Gaussian characterised by a dis-
persion matching the photometric redshift uncertainty �z(z). This
approach assumes that the photometric redshift estimation is per-
fectly calibrated to a spectroscopic sample; the distribution of the
redshift errors is Gaussian and the r.m.s. error�z(z) is known; catas-
trophic errors can be identified and downweighted in the analysis.
See Kitching et al. (2008); Bernstein & Huterer (2010) for more
detailed approaches which take into account more of the possible
systematics arising in this case.

Finally, in the absence of a detailed model we will assume the
fiducial value of the galaxy bias to follow the law b(z) =

p
1 + z

following Rassat et al. (2008), but we will study the effect of mod-
ifying the fiducial bias in Section 6.4.

4.2 Stage IV: Euclid

Euclid2 is a future space mission of the European Space Agency
(ESA), which is expected to survey the whole extragalactic sky
(up to 20,000 sq. deg.) from the L2 point in space (Laureijs et al.
2009). Launch is currently scheduled in 2018. In our analysis we
approximate this planned survey with the settings and specifica-
tions described in the Euclid Assessment Study Report (Laureijs
et al. 2009). Although the specifications of the survey have since
evolved (Laureijs et al. 2011), this does not affect the current study
because our intention is to draw broad conclusions that will be rel-
evant to the whole class of stage IV surveys including WFIRST,
LSST, and others. See in any case Section 6.10 for a discussion of
how the results change when using the latest Red Book specifica-
tions. The Euclid mission is expected to perform two main surveys,
photometric and spectroscopic.

The photometric part should measure photo-z and elliptici-
ties in the optical and near-infrared bands (one broad visual band
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Figure 2. Redshift distributions used for the forecasts of both photometric
and spectroscopic data sets for the Euclid satellite and the DES. The photo-z
distributions are given by an analytic function (Smail et al. 1994), while the
spectroscopic part is numerically estimated by Geach et al. (2010), where
the Euclid specified flux cut is used, 4 · 10�16 erg s�1 cm�2. The distribu-
tions have been already convolved with the probability density function of
redshift measurement errors.

R+I+Z and Y, J,H IR bands), up to mag ⇠ 24.5 in the visual and
24 in the IR. The requirement specifications are described in Table
1. The expected number of observed galaxies is of the order of a
billion. For this survey we will also use the approximated redshift
distribution by Smail et al. (1994), dividing the sample in 12 red-
shift bins, whose distribution is again convolved with the expected
photometric errors, as shown in Fig. 2. The photometric galaxies
are distributed in the redshift range 0 < z < 2.5.

The spectroscopic survey is expected to use a slitless spec-
trometer which will mainly detect the H↵ emission line of galaxies.
The spectrometer will have a resolution �/�� = 500, giving a red-
shift uncertainty of �z(z) = 0.001(1 + z). The wavelength range of
this instrument will be limited to 1000 nm < � < 2000 nm, meaning
that only galaxies at 0.5 < z < 2 will have measurable H↵ lines and
thus redshifts. The limiting flux is placed at 4 · 10�16 erg s�1 cm�2,
which combined with the expected success rate of the spectrometer
e = 35% yields ⇠ 60 million galaxies, using the predicted tabulated
calculations by Geach et al. (2010), which was based on empirical
data of the luminosity function of H↵ emitter galaxies out to z = 2.
We will use this tabulated prediction as our fiducial redshift dis-
tribution of the sources, consistently with the Euclid Study Report
specifications (Laureijs et al. 2009). The remaining specifications
are again to be found in Table 1. We will finally split the distribu-
tion into 12 equally populated redshift bins, as we can see in Fig. 2.
Again, we will take the fiducial value of the galactic bias to fol-
low the law b(z) =

p
1 + z following Rassat et al. (2008), which is

a good approximation to recent studies from semianalytic models
of galaxy formation such as e.g. by Orsi et al. (2010), but we will
study the effect of changing this choice in Section 6.4.
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From images to photometry

Photometry is challenging!

• bright objects 
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From images to photometry
Photometry is challenging!

Alternative: 
Apply a Convolutional  

Neural Network 
directly to the image  
cutouts produced by  

traditional tools



Hoyle 2015 
 arXiv:1504.07255

Consistent with state-of-
the art „conventional“ 

method   

Photometry provides 
incomplete information 

about redshift

Uncertainty in  
photometric redshift

In the following we use traditional photometry  
as inputs.
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X phot−X spec
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Sample distribution 
from different methods Traditional ML methods  

(e.g. ANNz) determine a  
single ‚best fit‘ prediction

This can lead to biased 
observables  

We need to estimate
the error distribution!



How can we estimate the photoZ error distribution?

Individual Galaxy Galaxy Sample

STACK

Basic idea: View regression as a classification problem. 
The probabilities for class membership  
determine the height of the redshift bin.

Problem: Computationally and storage expensive



Alternative: The Highest Weight Element (HWE)
10 Rau et al.

Figure 7. Sample PDFs weighted in three redshift intervals [0, 0.585[, [0.585, 0.7488[ and [0.7488, 3.818[. The PDFs are obtained using
the Highest Weight Element (upper left), the ordinal classification PDF estimator (upper right) and the ordinal classification PDF
estimator combined with a Gaussian mixture model (lower left). The histograms show the weighted spectroscopic redshift distribution
using weights determined using the respective algorithms. The lower right panel shows the weighted distribution of the HWE predictions
for the objects with the 5000 highest weights in the three intervals (blue) and the corresponding weighted histogram of spectroscopic
redshifts (red).

where the dimensionless 3D power spectrum �2(k) is given
in terms of the usual 3D matter power spectrum P
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From Eq. 32 is can be seen, that the modelling of C
`

de-
pends highly on the assumed sample PDF of the data. We
use the distributions shown in Fig. 5 to model the angular
correlation power spectrum with the CLASS software pack-
age (Blas, Lesgourgues & Tram 2011). We define the bias
introduced by the Cphot

`

of the angular correlation function
estimated using photometric redshifts, as the relative dif-
ference to the results based on the PDF of spectroscopic
redshifts Cspec

`

:

Bias
C` =

 
Cphot

`

� Cspec

`

Cspec
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!
. (35)

The resulting biases are shown in Fig. 9. We find that the
results obtained with the Highest Weight Element have a
lower systematic bias in C

`

by a factor of four compared
to the ANNz results and that the improvement is almost
independent of `.

5.3.2 Gravitational Lensing

We investigate two important applications in gravitational
lensing: quantifying cluster masses by the light deflection
from background sources, and obtaining cosmic shear corre-
lation functions. In contrast to the previously considered
analysis of the angular correlation function, applications
in gravitational lensing require careful selection of sources
with successfully measured shapes. Since the spectropho-
tometric dataset used previously is not representative for
datasets generally used in gravitational lensing analyses, we
first weight our catalogue such that it mimics a CFHTLS
shape catalogue. To do this, we obtain a photometric shape
catalogue from public CFHTLS data, which is then used as
the reference to weight the spectrophotometric dataset.

5.3.3 Catalogue Creation and Weighting

Whether the shape of an object can be measured, depends
primarily on its intrinsic size and magnitude in the respec-
tive band. We therefore reweight our spectrophotometric
catalogue such that it resembles a CFHTLS shape catalogue
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Figure 7. Sample PDFs weighted in three redshift intervals [0, 0.585[, [0.585, 0.7488[ and [0.7488, 3.818[. The PDFs are obtained using
the Highest Weight Element (upper left), the ordinal classification PDF estimator (upper right) and the ordinal classification PDF
estimator combined with a Gaussian mixture model (lower left). The histograms show the weighted spectroscopic redshift distribution
using weights determined using the respective algorithms. The lower right panel shows the weighted distribution of the HWE predictions
for the objects with the 5000 highest weights in the three intervals (blue) and the corresponding weighted histogram of spectroscopic
redshifts (red).
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results obtained with the Highest Weight Element have a
lower systematic bias in C

`

by a factor of four compared
to the ANNz results and that the improvement is almost
independent of `.

5.3.2 Gravitational Lensing

We investigate two important applications in gravitational
lensing: quantifying cluster masses by the light deflection
from background sources, and obtaining cosmic shear corre-
lation functions. In contrast to the previously considered
analysis of the angular correlation function, applications
in gravitational lensing require careful selection of sources
with successfully measured shapes. Since the spectropho-
tometric dataset used previously is not representative for
datasets generally used in gravitational lensing analyses, we
first weight our catalogue such that it mimics a CFHTLS
shape catalogue. To do this, we obtain a photometric shape
catalogue from public CFHTLS data, which is then used as
the reference to weight the spectrophotometric dataset.

5.3.3 Catalogue Creation and Weighting

Whether the shape of an object can be measured, depends
primarily on its intrinsic size and magnitude in the respec-
tive band. We therefore reweight our spectrophotometric
catalogue such that it resembles a CFHTLS shape catalogue
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Idea: Find nearest neighbor in color-magnitude space
Remember: We are primarily interested in the sample PDF 

The HWE is extremely fast to compute and extremely storage 
efficient.



Bandwidth selection

  

Bandwidth selection 
creates small bias at 
the 1-2% level 

Higher if e.g. lensing 
weights are included

Bandwidth selection with 
Silvermans “rule of thumb”
Silverman (1986, page 48)

bw = 0.031
Oversmoothed=1.2*bw

Undersmoothed=0.8*bw

Density estimate evaluated on 
spectroscopic calibration data! 

 Large samples difficult to obtain 
(here 17000 objects)

Bandwidth selection 
with Silvermans „rule of thumb“ 

bw = 0.031 
Oversmoothed  = 1.2*bw 
Undersmoothed = 0.8*bw

Bandwidth selection alone 
can create a bias at 1-2% level 

Higher if lensing weights  
are included



Sample selection bias
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Augment training set: 
put galaxies artificially 

at a higher redshift   

Remove galaxies 
with incomplete 

spectral calibration

Model guided  
Extrapolation

We loose data

How do we deal with this problem?



Data augmentation
Add artificial galaxies 
to the calibration data 
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fitting (templates)  
and simulations 

with ML
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Extrapolate into the unknown!

Hoyle et al. 2015 
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Data augmentation for machine learning redshifts 5

Figure 1. The distribution of magnitude and redshift for a random selection of each of the SDSS DR8 (left-hand panels), and DR10

(right-hand panels) data samples. In the upper panels, the dashed line marks the separation between the faint test sample and the bright

training sample. We modify the bright samples (in each distinct set of analyses) to generate the augmented data sample using SDSS
K-correct. We further augmented the training set using the simulated galaxies produced using the latest semi analytic models. The top

panel show a random selection of data, and the bottom panels show the absolute magnitudes density contours for each sample. In the

legend ‘sims’ denotes the augmented data using simulations, and ‘aug’ corresponds to the K-corrected data augmentation of the bright
galaxy sample.

deviation for Gaussian statistics. We calculate the value �68

using the cross-validation set and select the forest with the
smallest value as the winning forest.

At test time the faint test data is passed through the
winning forest to obtain a redshift estimate. We next cal-
culate �z0 and �68 as before, and additionally determine
the outlier rate, defined as the percentage of data with
|�z0 | > 0.15 (following, e.g., Hildebrandt et al. 2010), and
the median µ, of the distribution of �0

z. We use test sam-
ples of size 33% of the size of the faint galaxy sample size,
corresponding to 41k for the faint SDSS DR8 galaxies and
100k for the faint SDSS DR10 galaxies.

We present the results of the analysis performed on the
SDSS DR8 sample in Table 1. The top row shows the re-
sults of training and cross-validation on only the bright data.
The quoted values are calculated on the test sample of faint
galaxies, which we reiterate are never used in the training
and cross-validation stages. This is equivalent to extrapo-
lating the redshift estimate into area of input feature space
which is unexplored by the training data. The extrapolation
of analysis from a training set to an unrepresentative test set
is poor machine learning etiquette, which is akin to extrap-
olating a result into the unknown. We include this analysis
simply as a benchmark.

The final row of Table 1 corresponds to a standard ma-
chine learning experiment. Here we train, cross-validate and
test on random samples drawn solely from the faint galaxies.
This is also included as a benchmark, and shows how well
one might do in an ideal machine learning experiment, but
this is not the main objective of this paper. All the other
rows show combinations of training and cross-validations
sets. The results of an identical analysis using SDSS DR10
sample is presented in Table 2. We have also explored many
other combinations such as training on the simulations, and
cross-validating on the combined data, augmented data, and
simulations, however the other combinations never perform
substantially better or worse than the augmentation results
listed in Tables 1&2.

We see that most of the results from the data augmenta-
tion are between that of the best possible case (faint, faint)
and the worse case (bright, bright), apart from the analyses
using both the simulations training sample and the simu-
lations cross-validation sample. However, while the values
in this analysis are the poorest, we should note that the
simulations assume nothing about the data in the redshift
ranges of interest. They are using stellar population physics
with observational anchors at z=0 and z=2. In itself this is
still a remarkable result. We could have ignored all observed
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Summary
• Inaccurate photoZ can bias cosmological observables 

• We can accurately and efficiently estimate redshift 
distributions with representative calibration data 

• We are challenged by various sources of systematic error:  

• Missing spectra for faint objects 

• Bandwidth selection 

• Variations between fields

These effects are not understood well enough!
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