Object classification in SDSS DR12

Farhang Habibi LAL - Université Paris SUD-11

Aim

To automatically separate stars, galaxies and Quasars by using the colour indices in the absence of spectroscopic data.

Cosmological surveys

All sky surveys —> cosmic structures

Deep surveys —> structures formation & evolution

Group

Cluster

Void

To know about the nature of <u>Dark Matter</u> & <u>Dark Energy</u>

Galaxies are units of cosmic structures

Object classification

Cosmic structures contain galaxies.

 Images taken by surveys include galaxies, QSOs and foreground stars.

How to separate these three objects?

Nearby galaxies

Iuminosity spread on CCD: stars ~ 1 arcsec galaxies ~ 10 arcsec

full moon ~1800 arcsec

Far galaxies

Iuminosity spread on CCD: stars, QSOs ~ 1 arcsec galaxies ~ 1 arcsec

Stellar energy spectrum

Jacoby, & H., Hunter, D. A., and Osnistian, C. A. 1984, Astrophys. J. Supp. Ser., 56, 257

Galactic energy spectrum

QSO energy spectrum

Blue

Red

Photometric systems

<u>Magnitude</u> in a filter ~ -Log (<u>Flux</u> in the same filter)

<u>Colour</u> = <u>Mag(filter 1)</u> - <u>Mag(filter 2)</u>

higher colour index: Redder object

Stellar colour-magnitude diagram

galactic colour-magnitude diagram

Colour indices can be used to classify the celestial objects

Galaxies

Stars

SDSS Survey (Sloan digital sky survey)

.2 m class telescope .complete up to ~ 2.6 GLy ~ 4 million spectroscopically classified objects

SDSS DR12 photo-spec sample ~ 2,100,000 objects (after data cleaning)

SDSS DR12 photo-spec sample ~ 2,100,000 objects (after data cleaning)

Colour indices as "features" for classification

Colour indices as "features" for classification

Colour indices as "features" for classification

Object's size as "feature" for classification

with good seeing MW-like galaxies can be resolved by morphology but not for faint galaxies (dwarfs)

Object's size as "feature" for classification

Supervised Classification

Parameters of the separating curve are derived by the logistic regression method.

Logistic regression (thanks to Andrew Ng)

Cost function to be minimised

 $J(\theta) = -\frac{1}{m} \left[\sum y^{(i)} \log(h_{\theta}(x^{(i)})) + (1 - y^{(i)}) \log(1 - h_{\theta}(x^{(i)})) + (1 - y^{(i)}) \log(1 - h_{\theta}(x^{(i)})) \right]$

Sigmoid (logistic) function

$$h_{\theta} = \frac{1}{1 - e^{-\theta^T x}}$$

m: total number of objects in the training set i: object's index

 x_i : vector of features of an object

 y_i : object's label, 0 for stars, 1 for galaxies θ : vector of parameters to be fitted

Logistic regression

- We take into account size of objects and 10 colours (c1=u-g, c2=u-r, ...) plus one magnitude (u) and their quadratic function (ci.cj) to have 77 features.
- The separation region is constrained by a 12 dimension hyper parabola defined by 79 parameters.
- From ~670,000 stars, ~1,100,000 galaxies and 250,000 QSOs we randomly put 20000 form each object into the training sample.

Results from the L.R. fit

Results from the classification

- Classification efficiency for the whole sample: 94% galaxies: 96% stars: 92% QSOs: 88%
- Mean size of the galaxies classified wrongly: 0.5 arcsec correctly: 3 arcsec
- Mean magnitude (extinction corrected) of the stars classified wrongly: z = 19 (fainter stars) correctly: z = 17
- Mean redshift of the QSOs classified wrongly: redshift = 2 (further QSOs) correctly: redshift = 1.5

Wrongly and correctly classified galaxies

Wrongly and correctly classified stars

Wrongly and correctly classified QSOs

Ongoing work

Comparison with other classifiers

 Random forest technique: Whole sample efficiency ~ 95% efficiency per object to be investigated (special thanks to Mehdi Cherti)

A basic classifier works nicely so far!

2. Go deeper in finding the sources of the misclassifications.

Conclusions & Perspectives

- in SDSS DR12, ~ 94% of galaxies, stars and QSOs can be correctly separated using their colours and size by implementing Logistic Regression.
- 4% of galaxies (small angular size) can be mis-classified as point-like sources.
- 9% of (faint) stars can be mis-classified as galaxy-QSO.
- 12% of (further) QSOs can be mis-classified as galaxy-star.
- Classifying the simulated objects according to the LSST observation ability (higher redshifts and fainter objects).
- What is the effect of misclassified objects on photo-z determination of galaxies and cosmological parameters?