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Peak counts and IA

II (intrinsic - intrinsic): 2 (or more) galaxies in same (bg) halo!

Reduce close physical pairs, use only one galaxy per redshift, or 
galaxies at opposite side of aperture centre.  
Removal of large number of galaxies.!

Difficult to do for globally created convergence maps, would 
need local (e.g. aperture-based) peak counts.

redshift

Galaxies not distributed homogeneously but cluster: p(z) = p(✓, z)

• Di↵erent lines of sight probe LSS at di↵erent depths
• Additional dispersion which contaminates lensing signal
• Amplitude depends on the galaxy bias



Peak counts and IA

GI: One (or more) galaxy in halo that produces (most of the) peak 
lensing signal!

GI is proportional to halo redshift distribution nh(z), but GG 
monotonously increases with z, sensitive to ∫ nh(z) W(z) dz.!

GI < 0

redshift

Galaxies not distributed homogeneously but cluster: p(z) = p(✓, z)

• Di↵erent lines of sight probe LSS at di↵erent depths
• Additional dispersion which contaminates lensing signal
• Amplitude depends on the galaxy bias



Modeling IA for peak counts

Peaks are maxima in ν = S/N, S = 𝜅, N2 =  σ20ran + σ20corr. (II)!

Ignoring IA, measured ν over-estimates true ν, leading to `false’ 
peaks.!

CFHTLS Deep, 3.61 deg2 

[Soucail & Gavazzi 2007]: 5 out of  
14 WL peaks at ν > 3.5 do not  
correspond to galaxy over-  
densities.!

If 5 false peaks and IA model (tidal  
torque): constraints on IA

the angular scale !G. Thus, we find the 1 " and 2 " constraints on
C11 þ C22 for !G ¼ 10 to be <3:2 ; 10#5 and <1:1 ; 10#4. The
corresponding limits on the amplitude of the intrinsic alignments
A are A < 2:9 and A < 10. The results are fully consistent with
those from SDSS observations with A < 1:29.

Schirmer et al. (2007) analyze a total of$20 deg2 of data col-
lected from different observations with different observational
depths. They present a sample of shear-selected clusters contain-
ing a total of 158 candidates identified by two types of statistics.
Using only S-statistics, which is similar to the aperture mass sta-
tistics butwith different filtering functions, they find 91 peakswith
significances higher than 4. Among them, there are 48 dark peaks
without obvious optical counterparts. It is found that the fraction
of dark peaks is relatively high in shallow surveys with a low sur-
face number density of source galaxies. This indicates that a sig-
nificant number of dark peaks could be false ones resulting from
intrinsic ellipticities. Since their filtering functions are complicated
with different filtering scales, we cannot do quantitative analyses
on the constraints on the intrinsic alignmentswith these dark peaks.
However, we may give some rough estimates. In Schirmer et al.
(2007), the filtering scales used in peak identifications range from
1.60 to 19.80, with most of them being larger than 20. When we
compare the functional form of the Gaussian smoothing with the
filtering functions used in Schirmer et al. (2007), their filtering
should have the effects corresponding to Gaussian smoothings
with !G % 10. Thus, we use the results of !G ¼ 10 for a conser-
vative discussion. Without intrinsic alignments, our results show
that the average number of false peaks in 20 deg2 with #ran % 4 is
about six. The existence of intrinsic alignments enhances the av-
erage number of false peaks. If the 48 dark peaks are all false ones
and the number is +1 " from the average number of false peaks,
we need the average number to be Npeak $ 42. Then we have
to have a value of "2

0corr /"
2
0ran $ 35% to get such a high number

of false peaks. For the redshift distribution of source galaxies,
Schirmer et al. (2007) give$ ¼ 2, % ¼ 1:5, and zs ¼ 0:4 for shal-
low surveys. The surface number density is ng $ 12 arcmin#2,
and "& $ 0:48 (Schirmer et al. 2007). We then estimate "2

0ran $
0:0015. Thus, the ratio "2

0corr /"
2
0ran $ 35% requires the parame-

ter A to be A $ 32, which is much higher than the constraint
A & 1:29 from the SDSS. Therefore, it is very unlikely that the

48 dark peaks are all false ones from intrinsic ellipticities of back-
ground galaxies. As we discussed previously, and as is also dis-
cussed in Schirmer et al. (2007), the joint effects of small mass
clumps and the intrinsic ellipticities could contribute significantly
to the number of dark peaks with high significance. It should be
pointed out that the functional form and the scale of the filtering
function adopted by Schirmer et al. (2007) are optimized to detect
clusters with NFW density profiles. With Gaussian smoothings,
the number of peaks and their propertiesmay change quantitatively.
It is therefore desirable to analyze the observations with Gauss-
ian smoothings so that we can perform detailed analyses on the
statistics of false peaks. On the other hand, it is also worthwhile
to investigate the noise properties and the associated statistics of
false peaks under different smoothing schemes. As the catalog of
Schirmer et al. (2007) is the largest one so far, frommany aspects
careful observational and theoretical studies on these dark peaks
are highly valuable.
Future surveyswith larger areaswill result inmanymore peaks.

If a large number of false peaks from intrinsic ellipticities can be
securely identified, we can put tight constraints on the level of
intrinsic alignments. Considering Poisson fluctuations, we can es-
timate, as follows, how well the quantity x ¼ "2

0corr /"
2
0ran can be

constrained from N false peaks with #ran % #0. With an average
cumulative number of peaks of Npeak / # exp(## 2 /2) for # % 3,
where # is the true significance (e.g., van Waerbeke 2000), we
have, for the central value of x, denoted by xc,
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where Nran is the average number of false peaks expected in the
fieldwithout considering intrinsic alignments. The)1" constraints
on x can then be obtained by
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For instance, with N ¼ 50 and #0 ¼ 4, we have 'x $ 1:8%; i.e.,
the quantity x can be constrained to the level of xc ) 1:8% (1 ").
From 'x to '("2

0corr), it depends on "2
0ran, and thus on ng and "&.

Furthermore, from the constraint on "2
0corr to the constraint on A,

we need the redshift distribution of background galaxies. With
ng ¼ 30 arcmin#2, "& ¼ 0:4, $ ¼ 2, % ¼ 1:5, and zs ¼ 0:7, we

Fig. 6.—Number of false peaks with #ran % 3:5 in 3.61 deg2. The solid line
shows the average number of false peaks. The upper and lower dashed lines rep-
resent#1" and#2" Poisson deviations from themean, respectively. The horizontal
dash-dotted line is atNpeak ¼ 5.The twovertical dotted lines correspond to the values
of "2

0corr /"
2
0ran for the CFHTLS Deep survey with A ¼ 0:57 and 1.29, from left to

right, respectively.

FAN18 Vol. 669

Fan et al. (2007): 



Modelling IA for peak counts

Peak count model: Draw halos from mass function, source 
galaxies from n(z), create convergence maps, count peaks  

Add correlations between galaxy and halo potential for each 
galaxy. Need to identify (galaxy, halo) pairs.!

If parametric model: can marginalise over IA parameters.!

Late-type (spiral) galaxies: tidal torque: coupling of angular 
momentum to tidal shear and inertia (Lee & Pen 2000)!

Early-type (elliptical) galaxies: stretching of galaxy potential in 
external tidal field

Chieh-An Lin, MK, B.M. Schaefer (Uni Heidelberg)

chieh-an.lin@cea.fr Chieh-An Lin (CEA/SAp-AIM)

Our model

We use “fast simultations” to model peak abundance.

Fast simulations

• Generate halo masses by sampling from a provided mass function
• Assign density profiles to the halos (e.g. NFW)
• Place the halos randomly on the field of view
• Carry out ray-tracing simulation

Code name: CAMELUS
(Counts of Amplified Mass Elevations from Lensing with Ultrafast Simulation)

CAMELUS: A New Model to Predict Weak Lensing Peak Counts IWCS2, Nice — September 9th, 2014 15

1410.6955, 1506.01076, cosmostat.org/software/camelus/



Modelling IA for peak counts
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Modelling IA for peak counts

Simulation: 
Halo with M=1015 Msol, cube of size R=32 Mpc,  
10000 galaxies. 
!
Create, correlated angular momenta according to 
!
!
!
1. Create uncorrelated momenta Lr, i ~ 𝒩(0, 1) 
2. Transform to                   with  
!
!
!
!
Ellipticity 

Potential of NFW mass distribution.

� =�GMvir
log (1 + r/rs)

rfc
; (1)

fc = log(1 + c)� c

1 + c

. (2)

Tidal shear 3⇥3 matrix at given point (x0, x1, x2),  , contains second derivatives

of �.

 ij =
@

2
�

@xi@xj
. (3)

Normalized (

P
ij

ˆ

 ij
ˆ

 ij = 1), traceless (tr

ˆ

 = 0) potential

ˆ

 ij =  ij �
tr 

3

�ij . (4)

Relation between angular momentum and potential [Lee & Pen(2001)], e↵ective

parametrization of misalignment between inertia and shear,

Cij = hLiLji =
1

3

 
1 + a

3

�ij � a

X

k

ˆ

 ik
ˆ

 kj

!
. (5)

Degree of misalignment a:

a = 0: perfect correlation between inertia and shear, recover isotropy

a = 3/5: no correlation, angular momentum random.

a ⇡ 0.24 from simulations.

Uncorrelated angular momentum drawn from Gaussian rv,

˜

Lr,i ⇠ N(0,�),

and normalized, Lr,i =
˜

Lr,i/|˜Lr|.
Cholesky decomposition of covariance,

C = AA

T
. (6)

Correlate angular momenta.

L = ALr. (7)

Ellipticity

" =

L

2
0 � L

2
1 + 2iL0L1

1 + L

2
2

. (8)

References

[Lee & Pen(2001)] Lee J., Pen U.-L., 2001, ApJ, 555, 106

4 B.M. Schäfer

should be emphasised that in this picture the angular momentum
does not originate from the vorticity ω which is amplified by the
nonlinear term rot(υ × ω) in the Euler-equation as explained in
Sect. 2.3, but is rather generated from (vorticity-free) shear flows,
in which protogalactic objects are embedded. During the shearing,
each protohalo is deformed and acquires a rotational motion com-
ponent. Eventually it decouples from the shear flow by collaps-
ing under its own gravity, which reduces the length of the lever
arms and makes torquing inefficient. For the perturbative descrip-
tion of the deformation of the object by the action of shear flows,
Lagrangian perturbation theory is suitable. The difficulty in this ap-
proach lies in the fact that the shear flows themselves influence the
boundary surface of the embedded object and hence its total mass
and inertia. Tidal torquing effectively solves the problem of gen-
erating vorticity from a laminar flow by introducing a non-simply
connected density and velocity fields, because during spherical col-
lapse the protohalo volume is separated from the ambient fields.

This mechanism was first quantitatively investigated by
Doroshkevich (1970), White (1984) and Wesson (1985), building
on the original idea by Hoyle (1949) and Sciama (1955). Assum-
ing a non-spherical shape of the protogalactic region, the angular
momentum grows at first order and linearly in time in Einstein-
de Sitter universes, whereas in spherical regions, the acquisition of
angular momentum is only a second order effect due to convec-
tive matter streams on the boundary surface, as shown by Peebles
(1969).

3.2 Acquisition of angular momentum by tidal torquing

Quite generally, the angular momentum L of a rotating mass distri-
bution ρ(r, t) contained in the physical volume V is given by:

L(t) =
∫

V
d3r (r − r̄) × υ(r, t)ρ(r, t), (23)

where υ(r, t) is the (rotational) velocity of the fluid element with
density ρ(r, t) = ⟨ρ⟩(1 + δ(r, t)) at position r around the centre of
gravity r̄. In perturbation theory, δ≪ 1, and the density field can be
approximated by assuming a constant density ⟨ρ⟩ = Ωmρcrit inside
the protogalactic region. White (1984), Catelan & Theuns (1996a),
Theuns & Catelan (1997) and Crittenden et al. (2001) have de-
scribed the growth of perturbations on an expanding background
in Lagrangian perturbation theory: The trajectory of dark mat-
ter particles in comoving coordinates to first order is given by
the Zel’dovich approximation as the dynamical model (Zel’dovich
1970):

x(q, t) = q − D+(t)∇Ψ(q)→ ẋ = −Ḋ+∇Ψ, (24)

which relates the initial particle positions q to the positions x at
time t. The particle velocity ẋ follows from the Zel’dovich-relation
by differentiation by the time-variable. The growth function D+(t)
describes the homogeneous time evolution of the displacement field
Ψ and contains the influence of the particular dark energy model.
In the Lagrangian frame, the expression for the angular momentum
becomes

L = ρ0a5
∫

VL
d3q (x − x̄) × ẋ ≃ ρ0a5

∫

VL
d3q (q − q̄) × ẋ, (25)

where the integration volume is defined in comoving coordinates
as well. Assuming that the gradient ∇Ψ(q) of the displacement
field Ψ(q) does not vary much across the Lagrangian volume VL,
a second-order Taylor expansion in the vicinity of the centre of
gravity q̄ is applicable:

Lagrange frameEuler frame

Figure 1. Principle of tidal torquing: A linear variation of the displacements
across the protogalactic object in the space-fixed Euler-frame translates to
a rotational motion in the comoving Lagrange-frame after collapse.

∂αΨ(q) ≃ ∂αΨ(q̄) +
∑

β

(q − q̄)βΨαβ, (26)

The expansion coefficient is the tidal shear Ψσγ at the point q̄:

Ψσγ(q̄) = ∂σ∂γΨ(q̄), (27)

because the Zel’dovich displacement field Ψ is related to gravita-
tional potential Φ and can be computed as the solution to Poisson’s
equation ∆Ψ = δ from the cosmological density field δ. The gradi-
ent ∂αΨ(q̄) of the Zel’dovich potential displaces the protogalactic
object, which is neglected in the further derivation, as I only trace
differential advection velocities responsible for inducing rotation.
Identifying the tensor of second moments of the mass distribution
of the protogalactic object as the inertia Iβσ,

Iβσ = ρ0a3
∫

VL
d3q (q − q̄)β(q − q̄)σ (28)

one obtains the final expression of the angular momentum Lα:

Lα = a2Ḋ+ϵαβγ
∑

σ

IβσΨσγ. (29)

Here, eqn. (29) implicitly assumes a peak constraint because the
inertia of the protogalactic volume is needed, which can only be
defined in a sensible way for a density peak from which a halo
forms by collapse.

Fig. 1 illustrates the torquing action on a protogalactic region
in the Euler- and Lagrange frames: If the Zel’dovich displacements
∇Ψ vary linearly across the protogalactic cloud, they introduce a
rotational motion in the comoving Lagrangian frame. Being pro-
portional to the second derivative of the potential Ψ, the rotation
is determined by the tidal forces Ψσγ = ∂σ∂γΨ. Tidal torquing is
effective until the moment of turn-around in the spherical collapse
picture, because the collapse dramatically reduces the lever arms.
After the collapse, the halo conserves the angular momentum it has
accumulated until turn-around.

Porciani et al. (2002a) give an intuitive argument on the ori-
entation of the angular momentum relative to the principal axis
system of the tidal shear, which is a very useful relation: In the
eigenframe of the tidal shear, the components of the angular mo-
mentum are simply given by Lα ∝ Iβγ(Ψβ − Ψγ), where the indices
are cyclic permutations of (1, 2, 3). Ψα with a single index are the
three eigenvalues of Ψ. Averaging over all orthogonal transforma-
tions relating the eigensystems of I and Ψ yields the result that the
largest component of L would be the one for which

∣

∣

∣Ψβ −Ψγ
∣

∣

∣ is
largest. Because of the ordering Ψ1 ! Ψ2 ! Ψ3, this is necessar-
ily L2, L2 ∝ |Ψ3 −Ψ1|, i.e. the angular momentum tends to align
itself parallel to Ψ2, i.e. the axes corresponding to the intermediate
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Modelling IA for peak counts



Modelling IA for peak counts

Need physical model that where smaller galaxies are more 
strongly distorted by external tidal field than more massive ones.!

Idea: Use stellar velocity dispersion σ2 = 2GM/R as indicator of 
mass or compactness.!

External tidal distorts gravitational potential φ, stars would 
“leak” towards largest ∇φ.!

Free parameter to describe leakage strength.

Early-type (elliptical) galaxies (TODO)
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Recent developments

Singh & Mandelbaum (2015),

arxiv.org/1510.06752

The IA signal amplitude depends

on the shape measurement method.
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Recent developments

Velliscig et al. (2015),

arxiv.org/1504.04025

Tenneti, Mandelbaum, & Di Matteo (2015),

arxiv.org/1510.07024

There is large variation in IA signals

in simulations (although some trends 

are shared). 

galaxy-dark matter misalignments

in hydro-simulations
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Self-calibration (WL+photometric clustering)

• driven by clustering signals → redshift cross-correlations pick up

  signal for increased photo-z scatter
• catastrophics fraction and distribution are known → can leverage 

  cosmological information

Limitations of the photo-z model
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Performance of mitigation

nulled

IA ignored, no mitigation

wrong model, no mitigation

IA parametrisation

marginalised

self-calibration

w
a

w
0

• nulling works, but removes substantial amount of cosmological information
• self-calibration works, and recovers most/all of the constraints

Kirk+ (2015)


