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Cosmic shear full nulling: 
sorting out dynamics, 

geometry and systematics

MNRAS 2014, FB, Nishimichi, Taruya



Growth of structure 
in a self-gravitating 

dust fluid



LSS stats



Reconstruction of the power spectrum: from sPT 
to Multi-point propagator reconstruction



in real space 

"The" BAO wiggle

Good performance of PT calculations (up 
to 2 loops)



Power spectra up to 1-loop and 2-loop order

•  Public codes for fast 
computations of power spectra 
at 2-loop order are now 
available.

http://
maia.ice.cat/
crocce/
mptbreeze/

http://www-
utap.phys.s.u-
tokyo.ac.jp/
~ataruya/
regpt_code.html

•Theoretical predictions are 
within 1% accuracy.
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1st computation of 2-loop order effects in  Okamura, Taruya, Matsubara, '11



Charting PT in Fourier space
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‣  Accuracy of linear and 1-loop results is obtained with a comparison 
with 2-loop results;
‣  Accuracy of 2-loop results is obtained with a comparisons with 
different prescriptions (that depart at 3-loop order)

‣  In the red region, 
improvement could be 
obtained from fits or Effective 
Theory approaches that 
should either be calibrated 
from N-body results or 
introduce free parameters. EFT

N-body



The nulling
• the idea is to exploit nulling in order to avoid 

linear-nonlinear mixing in the projection effects.

MNRAS 2014, FB, Nishimichi, Taruya



Mixture of information

Nonlinearity is more important on larger k at 
smaller z.

Linear information at high z is contaminated 
by nonlinearity at low z.

For any �, nearby nonlinear structure always 
comes in to the angular power spectrum.

stronger nonlinearity



Tomography?

More information is accessible by tomography.

can probe the structure growth at different times

Lensing profiles overlap with each other.

All are strongly affected by nearby structure.

ns(χ)

(g/a)2(χ)



Cosmic shear full nulling

Can we control the lensing response function as desired?

non-zero response only for a given interval of χ (or z)?

Let us introduce a weight function w(χs), which we can set arbitrarily.

condition

g(χ)

χmin χmax

?

0



Cosmic shear full nulling (cont.)
The condition for the weighted source 
number density, wns, can be rewritten as

+ {
We can always find solutions when the sources 
have a distribution with a finite width!



Demonstration: 
discrete source distribution

One can always find a solution 
with 3 distinct source redshifts 
@ z = z1, z2 & z3 (z1 < z2 < z3).
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Demonstration: discrete source distribution

We can play the same game with more 
source planes...
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FIG. 4: Adopted lens distribution for the available redshift source planes
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FIG. 5: The resulting power spectra for the third and fourth bin (top) and for the fifth and sixth (bottom). See text for details.

From the simulation of Sato et al.: 6 
source planes from which one can build 6 
lens distributions shown here.

k contributions for l: 200, 300, 400, 500

the available source planes

Nulling: it is possible to choose the 
weights so that the lens distributions 
have finite ranges in z.
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FIG. 4: Adopted lens distribution for the available redshift source planes
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FIG. 5: The resulting power spectra for the third and fourth bin (top) and for the fifth and sixth (bottom). See text for details.
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FIG. 4: Adopted lens distribution for the available redshift source planes
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FIG. 5: The resulting power spectra for the third and fourth bin (top) and for the fifth and sixth (bottom). See text for details.

• The bin auto-correlations



• The bin cross-correlations

5

0.0 0.5 1.0 1.5 2.0 2.5 3.0

0

200

400

600

z

w
!z
"

FIG. 4: Adopted lens distribution for the available redshift source planes
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FIG. 5: The resulting power spectra for the third and fourth bin (top) and for the fifth and sixth (bottom). See text for details.
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FIG. 6: The resulting cross power spectra between two subsequent bins (starting with third and fourth).

6

100 1000500200 300150 1500700
1.! 10

"7

2.! 10
"7

3.! 10
"7

4.! 10
"7

5.! 10
"7

!

1
!"

2
Π
#

!
2

C
!

100 1000500200 2000300150 1500700

4.! 10
"7

5.! 10
"7

1.! 10
"6

2.! 10
"6

!

1
!"

2
Π
#

!
2

C
!

100 1000500200 2000300150 1500700

3.! 10
"7

4.! 10
"7

5.! 10
"7

1.! 10
"6

!

1
!"

2
Π
#

!
2

C
!

FIG. 6: The resulting cross power spectra between two subsequent bins (starting with third and fourth).
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FIG. 6: The resulting cross power spectra between two subsequent bins (starting with third and fourth).



A nulling approach, continuous limit6 Francis Bernardeau, Takahiro Nishimichi, Atsushi Taruya

0.0 0.5 1.0 1.5 2.0 2.5 3.0

-2.0

-1.5

-1.0

-0.5

0.0

0.5

1.0

z

p
iHzL

n
HzL

0.0 0.5 1.0 1.5 2.0 2.5 3.0
0.0

0.2

0.4

0.6

0.8

1.0

z

w
iHzL

Figure 7. The adopted profiles in redshifts for the sources (top
panel) and the resulting profiles for the lens distribution (bot-
tom panel) for the fiducial cosmological model. The profiles for
the sources have been obtained from the form (26) after they
are convolved with a kernel that mimic the photometric redshifts
error distribution.

linearity of the constraints (19-20). As a consequence, one
can convolve p(�s,�1

,�
1

+ ��
1

) with any kernel function
G(�

1

��0
1

) broader or of width comparable to the typical
expected error distribution in the distance. We can then
build a set of profiles as

p
e↵.(�s;�1

,�
1

+��
1

) =ˆ
d�0

1

p(�,�0
1

,�0
1

+��
1

) G(�
1

��0
1

). (29)

with arbitrary values for �
1

and ��
1

that determine respec-
tively the overall distance to the sources and its width. By
linearity, the resulting shape preserves the nulling property
of the original distribution. An example of such a profile is
presented on Fig. 7, top panel thick line, with the corre-
sponding lens distribution (bottom panel, thick line) where
we use for G(�

1

��0
1

) a kernel that corresponds to a (1+z)3%
dispersion in the redshift determinations.

It is possible to vary �
1

to build a whole set of nulling
functions that can form a basis on which to analyze the
data. We propose on Fig. 7 an explicit construction of such
functions. Here we assume for the total source distribution,

n(z) ⇠ (z/z
0

)

2

exp[�(z/z
0

)

1.5
] (30)

with z
0

= 0.8. The functions are regularly spaced in ra-
dial distances, i.e. �i = (0.05 + i)c/H

0

for i = 1, 13 and
��

1

= 0.2 c/H
0

. They are found to be smooth enough to
be constructible from a realistic z distribution. The nulling
property for this choice of functions is clearly visible on the
bottom panel as the lens distributions are seen to be re-
stricted into definite intervals.

Clearly such functions can serve as a basis for the source
profiles. It can indeed be used to reconstruct any source
distribution with the observed redshift resolution. One can
then replace standard tomographic binning by a finite set
of such functions with no loss of information. We leave for
further studies the description of an optimal choice of basis.

4 IMPLICATIONS

4.1 Accuracy of nulling in realistic situations

There are two sources that in practice prevent us from a per-
fect nulling. Firstly, any dispersion of the photometric red-
shift widens the lensing profile as we have already discussed.
Secondly, nulling requires the background geometry of the
universe between the source galaxies and us to be known as
an incorrect assumption in the cosmological model leads to a
failed nulling profile. In this subsection, we quantify the im-
perfectness of nulling from these two effects employing two
adjacent profiles which do not overlap when the nulling is
perfect, and discuss the requirements to achieve successful
nulling properties.

We consider a redshift interval of 1 < z < 2 and im-
plement nulling to the source galaxies in this (photometric)
redshift range with various assumptions. We consider the
source distribution function given by Eq. (30), and adopt
Eq. (26) to construct a smooth profile. If nulling is imple-
mented successfully, the resulting lensing profile should be
consistent with zero at lower redshifts (i.e., z < 1). We pre-
pare another profile to cover 0 < z < 1 and check whether
the nulled profile really does not respond to the structure
between the observer and z = 1 by taking the cross correla-
tion of the two profiles. We construct the second profile by
giving a uniform weight over the source galaxies at z < 1

for simplicity.
The weighted source number density, p

e↵

(z)n(z), for the
two profiles are shown in the top panel of Fig. 8 when the
dispersion of the photometric redshift is given by �z(z) =

�
0

(1 + z) with various values of �
0

; �
0

= 0, 0.03, 0.06, 0.09
and 0.12 for solid, dashed, dotted dot-dashed dot-dot-dashed
line, respectively. We plot the profile implementing nulling
by thick lines while the other profile covering 0 < z < 1 is
depicted by thin lines. The bottom panel shows the lensing
profile w (see equation 18 for the definition) corresponding
to the source distribution in the top panel in the same line
type. The two profiles approach zero at z = 1 when we do
not consider the dispersion in photo-z (i.e., �

0

= 0; solid).
For increasing the value of �

0

, the overlap between the two
becomes significant.

In order to quantify this overlap, we compute the cross
power spectrum between the two profiles. Since the cross
spectrum is expected to be zero in the ideal situation of
�
0

= 0, it provides us a measure of the accuracy of nulling.
It is convenient to introduce the cross correlation coefficient
between the two profiles:

r12` =

C12

`p
C11

` C22

`

. (31)

Although C12

` itself is dependent on the normalization of
the weight functions p

1

(z) and p
2

(z), which can be chosen
arbitrarily, the coefficient r12` is not and it quantifies the
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Charting PT
• To get insights into the development of 

gravitational instabilities;
•  To test/complement N-body simulations;
•  Provide predictions from first principles in a 

large variety of models, and for a large numbers 
of parameters. 



Charting PT in harmonic space (for cosmic shear 
observations)
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Conclusions
There has been a lot of developments beyond mere recipes 
for the constructions of power spectra beyond linear 
regime.

The goal is to obtain controllable predictions from first 
principles.

These results are directly applicable to cosmic shear 
observations taking advantage of the nulling construction. 


