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Adaptive non Zero-Mean Gaussian Detection
Joana Frontera-Pons, Frédéric Pascal, Senior Member, IEEE, and Jean-Philippe Ovarlez, Member, IEEE

Abstract—Classical target detection schemes are usually ob-
tained by deriving the likelihood ratio under Gaussian hypothesis
and replacing the unknown background parameters by their
estimates. In most applications, interference signals are assumed
to be Gaussian with zero mean (or with a known mean vector)
and with unknown covariance matrix. When the mean vector
is unknown, it has to be jointly estimated with the covariance
matrix. In this paper, adaptive versions of the classical Matched
Filter and the Normalized Matched Filter, as well as two versions
of the Kelly detector are first derived and then analyzed for
the case where the mean vector of the background is unknown.
More precisely, theoretical closed-form expressions for false-
alarm regulation are derived and the Constant False Alarm Rate
property is pursued to allow the detector to be independent of
nuisance parameters. Finally, the theoretical contributions are
validated through simulations.

Index Terms—Adaptive target detection, non zero-mean Gaus-
sian distribution, false alarm regulation.

I. INTRODUCTION

TARGET detection methods have been extensively
investigated and analyzed in several signal processing

applications and radar processing [1], [2], [3], [4]. In all these
works as well as in several signal processing applications,
signals are assumed to be Gaussian with zero mean or with
a known mean vector (MV) that can be removed. In such
context, Statistical Detection Theory [5] has led to several
well-known algorithms, for instance the Matched Filter (MF)
and its adaptive versions, the Kelly detector [2] and the
Adaptive Normalized Matched Filter [6]. Other interesting
approaches based on subspace projection methods have been
derived and analyzed in [7]. However, when the mean vector
of the noise background is unknown, these techniques are no
longer adapted and improved methods have to be derived by
taking into account the mean vector estimation.

More precisely, this work deals with the classical Adaptive
Matched Filter (AMF), the Kelly detection test and the
Adaptive Normalized Matched Filter (ANMF). These
detectors have been derived under Gaussian assumptions and
benefit from great popularity in the target detection literature,
see e.g. [5], [7]. To evaluate the detector performance, the
classical process, according to the Neyman-Pearson criterion
is first to regulate the false-alarm, by setting a detection
threshold for a given probability of false-alarm (PFA). Since
the PFA is related to the cumulative distribution function
(CDF) of the detection test, this process is equivalent to the
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derivation of the detection test statistic. Then, the probability
of detection can be evaluated for different Signal-to-Noise
Ratios (SNR). Therefore, keeping the false-alarm rate constant
(CFAR) is essential to set a proper detection threshold [8],
[9]. The aim is to build a CFAR detector which provides
detection thresholds that are relatively immune to noise
and background variation, and allow target detection with a
constant false-alarm rate. The theoretical analysis of CFAR
methods for adaptive detectors is a challenging problem
since in adaptive schemes, the statistical distribution of the
detectors is not always available in a closed-form expression.

The theoretical contributions of this paper are twofold.
First, we derive the expression of each adaptive detector
under the Gaussian assumption where both the mean vector
and the covariance matrix (CM) are assumed to be unknown.
Then, the exact derivation of the distribution of each proposed
detection scheme under null hypothesis, i.e. when no target is
supposed to be present, is provided. Thus, through Gaussian
assumption, closed-form expressions for the false-alarm
regulation are obtained. This allows to theoretically set the
detection threshold for a given PFA. On the other hand,
one major difficulty for the background detection statistic
is to assume a tractable model or at least to account for
robustness to deviation from the assumed theoretical model
in the detection scheme. Since Gaussian assumption is not
always fulfilled, alternative robust estimation techniques are
proposed in [10]. However, it is essential to notice that the
derivations for many results in robust detection framework
strongly rely on the results obtained in the Gaussian context.
For instance, this is the case in [11] where the derivation
of a robust detector distribution is based on its Gaussian
counterpart.

One possible application of the detection schemes discussed
in this paper is hyperspectral imaging. Hyperspectral sensors
measure the radiance of materials within each pixel area at a
very large number of contiguous spectral bands and provide
image data containing both spatial and spectral information
(see [12], [13] for more details). By exploiting the spectral
information, hyperspectral target detection methods can be
used to detect targets embedded in the background and that
generally cannot be solved by spatial resolution [14], [15],
[16], [17]. Indeed, when the spectral signature of the desired
target is known, it can be used as a steering vector similarly
to the classical target detection methods studied here [18],
[19]. Since hyperspectral data represent the radiation at a
large number of wavelength for each position in an image,
they are real and positive. The other approaches found in
the literature center the hyperspectral image before applying
the detection test, i.e. the global mean of the whole image
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is removed in a preprocessing stage. This may lead to errors
due to the heterogeneity of the background. In order to
analyze the proposed techniques in real hyperspectral data,
the expressions for false alarm regulation obtained in this
paper should be derived in the real case. Alternatively, the
data could be transformed in order to match the hypothesis of
complex non-zero mean background model [20]. For instance,
using Hilbert transforms is a widely spread method for signal
processing in communications [21], [22], that converse real
data into complex data without changing the nature of the
data. This is beyond the scope of this work and constitute
part of perspectives to be further investigated.

This paper is organized as follows. Section II introduces
the required background on classical detection techniques
as well as the obtention of the adaptive detectors for both
unknown MV and CM. Then, Section III provides the main
theoretical contributions of the paper by deriving the exact
“PFA-threshold” relationship for the AMF, the “plug-in” Kelly
detector and the ANMF under Gaussian assumption while a
generalized version of the Kelly detector is derived. Finally,
in Section IV, the theoretical analyses are validated through
Monte-Carlo simulations. Conclusions and perspectives are
drawn in Section V.

II. BACKGROUND

In the following, vectors (resp. matrices) are denoted by
bold-faced lowercase letters (resp. uppercase letters). T and
H respectively represent the transpose and the Hermitian
operators. |A| represents the determinant of the matrix A
and Tr(A) its trace. j is used to denote the unit imaginary
number. ∼ means “distributed as”. Γ(·) denotes the gamma
function. Eventually, <{x} represents the real part of the
complex vector x.

After providing the general background in non-zero mean
Gaussian detection, this section is devoted to review the
expressions of the adaptive detectors.

The problem of detecting a signal corrupted by an additive
noise b in a m-dimensional complex vector x can be stated
as a the following binary hypothesis test:{

H0 : x = b xi = bi , i = 1, . . . , N
H1 : x = αp + b, xi = bi , i = 1, . . . , N,

(1)

where α is an unknown complex scalar amplitude, and p
is the steering vector describing the sought signal. Since the
background statistics, i.e. the MV and the CM, are assumed to
be unknown, they have to be estimated from xi ∼ CN (µ,Σ)
a sequence of N independent and identically distributed (i.i.d.)
signal-free secondary data. Then, the adaptive detector is
commonly obtained by replacing the unknown parameters by
their estimates. In practice, an estimate may be obtained from
the pixels surrounding the pixel under test, which play the role
of the N i.i.d. signal-free secondary data vectors. The sample
size N has to be chosen large enough to ensure the invertibility
of the covariance matrix and small enough to justify both

stationarity and spatial homogeneity. Let us now recall the
detectors under interest in this work.

A. Adaptive Matched Filter

The MF detector is the optimal linear filter for maximizing
the SNR in the presence of additive Gaussian noise with
known parameters [5]. It corresponds to the Generalized Like-
lihood Ratio Test (GLRT) when the amplitude α of the target
to be detected is an unknown parameter. The MF detection
scheme can be written as:

ΛMF =
|pH Σ−1 (x− µ)|2

(pH Σ−1 p)

H1

≷
H0

λ , (2)

where H0 and H1 denote respectively the hypothesis of the
absence and the presence of a target to detect and λ is the test
threshold. Note that it differs from the classical MF (zero-mean
Gaussian Noise) by the term µ, the background mean, but
without any consequence since x−µ ∼ CN (0,Σ). Moreover,
the “PFA-threshold” relationship is given by [5]:

PFAMF = exp (−λ). (3)

The two-step GLRT, called the AMF and denoted Λ
(N)
AMF Σ̂ to

underline the dependency with N , is usually built replacing the
covariance matrix Σ by a suitable estimate Σ̂ obtained from
the N secondary data {xi}i∈[1,N ] ∼ CN (µ,Σ). If we consider
a known mean vector µ, the adaptive version becomes:

Λ
(N)
AMF Σ̂ =

|pH Σ̂
−1

(x− µ)|2

(pH Σ̂
−1

p)

H1

≷
H0

λ . (4)

By choosing Σ̂ = Σ̂CSCM where Σ̂CSCM is the Centered
Sample Covariance Matrix (CSCM) defined in Appendix A,
the theoretical “PFA-threshold” relationship related to the test
given in (1) is given by [3]

PFAAMF Σ̂ = 2F1

(
N −m+ 1, N −m+ 2; N + 1; − λ

N

)
,

(5)
where 2F1(·) is the hypergeometric function [23] defined as,

2F1(a, b; c; z) =
Γ(c)

Γ(b)Γ(c− b)

∫ 1

0

tb−1(1− t)c−b−1

(1− tz)a
dt . (6)

This detector holds the CFAR property, meaning that its false
alarm expression only depends on the dimension of the vector
m and the number N of secondary data used for estimation,
thus being independent on the noise covariance matrix Σ and
the mean vector µ.

B. Kelly detector

The adaptive Kelly detector was derived in [2] and it is
based on the Generalized Likelihood Ratio Test (GLRT) as-
suming Gaussian distribution. In this case, only the covariance
matrix Σ is unknown and the mean vector µ is assumed to
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be known. The Kelly detection test is obtained according to:

Λ
(N)
KellyΣ̂CSCM

= (7)

|pH Σ̂
−1
CSCM (x− µ)|2(

pH Σ̂
−1
CSCMp

) (
N + (x− µ)H Σ̂

−1
CSCM (x− µ)

) H0

≷
H0

λ .

(8)

As shown in [2], the PFA for the Kelly test is given by:

PFAKelly = (1− λ)N−m+1 . (9)

The Kelly detector also satisfies the CFAR property. The AMF
(two-step GLRT-based) and the Kelly detector (GLRT-based)
have been derived on the same assumptions about the nature
of the observations. It is therefore interesting to compare
their detection performance for a given PFA. Note that for
large values of N the performances are substantially the same.

C. Adaptive Normalized Matched Filter

The Normalized Matched Filter (NMF) [24] was obtained
in Gaussian noise hypothesis but when considering that the
covariance matrix is of the form σ2 Σ with an unknown
variance σ2 but known structure Σ. The GLRT leads to

ΛNMF =
|pH Σ−1 (x− µ)|2

(pH Σ−1p)
(
(x− µ)H Σ−1 (x− µ)

) H1

≷
H0

λ,

(10)
The PFA-threshod relationship is given by [24]:

PFANMF = (1− λ)(m−1) . (11)

The two-step GLRT for this specific covariance structure,
referred to as ANMF, is generally obtained when the unknown
noise covariance matrix Σ is replaced by an estimate [7]:

Λ
(N)
ANMF Σ̂ =

|pH Σ̂
−1

(x− µ)|2(
pH Σ̂

−1
p
) (

(x− µ)H Σ̂
−1

(x− µ)
) H1

≷
H0

λ.

(12)
For the choice for Σ̂ = Σ̂CSCM , the PFA follows [7] :

PFAANMF Σ̂CSCM
= (1−λ)a−1 2F1(a, a−1; b−1;λ) , (13)

where a = N −m+ 2 and b = N + 2.

III. MAIN RESULTS

In this section, let us now assume that the mean vector µ is
an unknown parameter and let us derive the new corresponding
detection schemes. Then, using standard calculus on Wishart
distributions, recapped in Appendix A, the distributions of
each detection test is provided.

A. Adaptive Matched Filter Detector

When both covariance matrix Σ and mean vector µ are
unknown, the two-step GLRT procedure consists on replacing
them by their estimates Σ̂ and µ̂ built from the N secondary

data {xi}i∈[1,N ] in (2) leading to the AMF detector of the
following form:

Λ
(N)
AMF Σ̂,µ̂ =

|pH Σ̂
−1

(x− µ̂)|2

(pH Σ̂
−1

p)

H1

≷
H0

λ, (14)

where the notation Λ
(N)
AMF Σ̂,µ̂ is used to stress now the

dependency on the estimated mean vector µ̂. Under Gaussian
assumption, and for the particular MLE choice Σ̂ = Σ̂SCM

and µ̂ = µ̂SMV defined in Appendix A, the distribution of
this detection test is given in the next Proposition, through its
PFA.

Proposition III.1 Under Gaussian assumptions, the theoreti-
cal relationship between the PFA and the threshold λ is given
by

PFAAMF Σ̂,µ̂ = 2F1

(
N −m, N −m+ 1; N ; − λ

N + 1

)
,

(15)
where Σ̂ = Σ̂SCM and µ̂ = µ̂SMV .

Before turning into the proof, let us comment on this result.

• Interestingly, this detector also holds the CFAR property
in the sense that its false-alarm expression depends only
on the dimension m and on the number of secondary
data N , but not on the noise parameters µ and Σ. Note
that the only effect of estimating the mean is the loss
of one degree of freedom and the modification of the
threshold compared to (5). Obviously, the impact of these
modifications decrease as the number of secondary data
N used to estimate the unknown parameters increases.

• Moreover, the result has been obtained when using the
MLEs of the unknown parameters but the proof can be
easily extended to other covariance matrix estimators

such as Σ̂ =
1

N − 1

N∑
i=1

(xi − µ̂)(xi − µ̂)H which is the

unbiased covariance matrix estimate.

Proof: For simplicity matters, the following notations are
used: Σ̂ = Σ̂SCM and µ̂ = µ̂SMV .
Since the derivation of the PFA is done under hypothesis H0,
let us set {xi}i∈[1,N ] ∼ CN (µ,Σ) and x ∼ CN (µ,Σ), where
all these vectors are independent. Now, let us denote

ŴN−1 =

N∑
i=1

(xi − µ̂)(xi − µ̂)H = N Σ̂SCM . (16)

Note that as an application of the Cochran theorem (see e.g.
[25]), one has

ŴN−1
dist.
=

N−1∑
i=1

(xi−µ)(xi−µ)H = (N−1) Σ̂CSCM , (17)

where dist.
= means is equal in distribution to.
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Since µ̂ ∼ CN

(
µ,

1

N
Σ

)
, one has x − µ̂ ∼

CN

(
0,
N + 1

N
Σ

)
. This can be equivalently rewritten as

√
N/(N + 1)(x− µ̂) ∼ CN (0,Σ). (18)

Now, let us set y =

√
N

N + 1
(x− µ̂) with y ∼ CN (0,Σ).

As we jointly estimate the mean and the covariance matrix,
a degree of freedom is lost, compared to the case when only
the covariance matrix is unknown.
Let us now consider the classical AMF test (i.e. µ known) built
from N − 1 secondary data, rewritten in terms of ŴN−1:

Λ
(N−1)
AMF Σ̂ = (N − 1)

|pH Ŵ−1
N−1 y|2

(pH Ŵ−1
N−1 p)

, (19)

where y ∼ CN (0,Σ) and whose “PFA-threshold” relation-
ship is given by (5) where N is replaced by N − 1.

Now, for the joint estimation problem, the AMF can be
rewritten as:

Λ
(N)
AMF Σ̂,µ̂ = N

|pH Ŵ−1
N−1 (x− µ̂)|2

(pH Ŵ−1
N−1 p)

, (20)

= N
N + 1

N

|pH Ŵ−1
N−1 y|2

(pH Ŵ−1
N−1 p)

, (21)

dist.
=

(N + 1)

(N − 1)
Λ
(N−1)
AMF Σ̂ . (22)

where (x− µ̂) has been replaced by
√
N + 1/N y with y ∼

CN (0,Σ), as previously.
Hence, one can determine the false-alarm relationship:

PFAAMF Σ̂,µ̂ = P
(

Λ
(N)
AMF Σ̂,µ̂ > λ|H0

)
, (23)

= P

(
(N + 1)

(N − 1)
Λ
(N−1)
AMF Σ̂ > λ|H0

)
, (24)

= P
(

Λ
(N−1)
AMF Σ̂ > λ′|H0

)
, (25)

where λ′ =
(N − 1)

(N + 1)
λ, which leads to the conclusion.

B. Kelly Detector

The exact GLRT Kelly detector for both unknown mean
vector µ and covariance matrix Σ is now derived since it
does not correspond to the Kelly detector given in (7) in which
an estimate of the mean is simply plugged (two-step GLRT).
Following the same lines as in [2], we now assume that both
the mean vector and the covariance matrix are unknown. The
likelihood functions under H0 and H1 are given by:

fi(x) =

(
1

πm|Σ|
exp

[
−Tr

(
Σ−1Ti

)])N+1

, (26)

for i ∈ {0, 1}, where

(N + 1) T0 = (x− µ0)(x− µ0)H +

N∑
i=1

(xi − µ0)(xi − µ0)H ,

(27)

(N + 1) T1 = (x− αp− µ1)(x− αp− µ1)H

+

N∑
i=1

(xi − µ1)(xi − µ1)H , (28)

and

µ0 =
1

N + 1

(
x +

N∑
i=1

xi

)
, (29)

µ1 =
1

N + 1

(
x− αp +

N∑
i=1

xi

)
. (30)

Under H0 and H1, the maxima are achieved at

max
Σ,µ

fi =

(
1

(πe)m|Ti|

)N+1

, for i = 0, 1, (31)

and taking the (N + 1)th root, one obtains the following
statistic:

L(α) =
|T0|
|T1|

H1

≷
H0

η . (32)

Then, as this statistic still depends on the unknown amplitude
α of the signal, it has to be maximized w.r.t α, which is
equivalent to minimize T1 w.r.t α. A way to do this is to
introduce the following sample covariance matrix:

S0 =

N∑
i=1

(xi − µ0)(xi − µ0)H . (33)

Then, (N + 1) |T0| can be written as

(N + 1) |T0| = |S0|
(
1 + (x− µ0)H S−10 (x− µ0)

)
. (34)

In the same way, and after some manipulations, (N + 1) |T1|
becomes

(N + 1) |T1| =|S0|

(
N∑
i=1

(xi − µ1)H S−10 (xi − µ1)

+ (x− αp− µ1)H S−10 (x− αp− µ1)

)
,

= |S0| (A+B). (35)

Now, let us rewrite the two terms A and B to separate the

terms involving α. By recalling that µ1 = µ0 −
1

N + 1
αp,

one obtains:

A =1 +
N |α|2

(N + 1)2
pH S−10 p +

2

N + 1
<

{
ᾱpH S−10

N∑
i=1

(xi − µ0)

}
,

(36)

B =(x− µ0)H S−10 (x− µ0) +
N2 |α|2

(N + 1)2
pH S−10 p

−
2N

N + 1
<
{
ᾱpH S−10 (x− µ0)

}
. (37)
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Notice that x − µ0 = −
N∑
i=1

(xi − µ0), then rearranging the

expression of (N + 1)|T1|, one has

(N + 1) |T1|
|S0|

=
(N + 1) |T0|
|S0|

+
N |α|2

(N + 1)
pH S−10 p

−2<
{
ᾱpH S−10 (x− µ0)

}
. (38)

Now, the term depending on α can be rewritten as follows

N

(N + 1)
pH S−10 p

∣∣∣∣∣α− N + 1

N

pH S−10 (x− µ0)

pH S−10 p

∣∣∣∣∣
2

−
N + 1

N

∣∣pH S−10 (x− µ0)
∣∣2

pH S−10 p
. (39)

Minimizing |T1| w.r.t α is equivalent to cancelling the square
term in the previous equation. Thus, the GLRT can now be
written according to the following definition.

Definition III.1 (The generalized Kelly detector) Under
Gaussian assumptions, the extension of Kelly’s test when both
the mean vector and the covariance matrix of the background
are unknown takes the following form:

Λ =
β(N)

∣∣pHS−10 (x− µ0)
∣∣2

(pHS−10 p)
(
1 + (x− µ0)H S−10 (x− µ0)

) H1

≷
H0

λ, (40)

where β(N) =
N + 1

N
and

• S0 =

N∑
i=1

(xi − µ0)(xi − µ0)H ,

• µ0 =
1

N + 1

(
x +

N∑
i=1

xi

)
.

Let us now comment on this new detector. One can notice
that both the covariance matrix S0 as well as the mean µ0

estimates depend on the data x under test, which is not
the case in other classical detectors where the unknown
parameters are estimated from signal-free secondary data.
Consequently, S0 and x−µ0 are not independent. Moreover,
the covariance matrix estimate S0 is not Wishart-distributed
due to the non-standard mean estimate µ0. Thus, the
derivation of this ratio distribution is very difficult.

As for previous detector, it would be intuitive to think that
the proposed test behaves as the classical Kelly’s test but for
N − 1 degrees of freedom. To prove that let us first rewrite
(40) as follows:

Λ =

∣∣pH S−10 y
∣∣2(

pH S−10 p
) (

1 +
N

N + 1
yH S−10 y

) H1

≷
H0

λ , (41)

where we use:

• (x− µ0) =
N

N + 1
(x− µ̂SMV ),

• µ̂SMV =
1

N

N∑
i=1

xi,

• y =

√
N

N + 1
(x− µ̂SMV ) ∼ CN (0,Σ).

Now, let us set S
(i)
0 =

N∑
i=1

(
xi − µ(i)

0

) (
xi − µ(i)

0

)H
,

where µ(i)
0 =

1

N

 N∑
j 6=i

xj + x

. Then, the test becomes

N + 1

N

∣∣∣pH S
(i)
0

−1
(x− µ̂SMV )

∣∣∣2(
pH S

(i)
0

−1
p
) (

1 + (x− µ̂SMV )
H

S
(i)
0

−1
(x− µ̂SMV )

) .
(42)

One can notice that each xi (including x) plays the same
role, thus the distribution of this test is the same for every
permutation of the (N+1)-sample (x,x1, . . . ,xN ). However,
the dependency between the covariance matrix estimate and
the data under test x still remains.

To fill this gap, another way of taking advantage of the
Kelly’s detector when the mean vector is unknown can be to
use the classical scheme recalled in (7) and to plug the classical
estimator of the mean, based only on the N secondary data,

i.e. µ̂SMV =
1

N

N∑
i=1

xi. This leads to the two-step GLRT

Kelly’s detector:

Λ
(N)
KellyΣ̂SCM ,µ̂SMV

=

|pH Σ̂
−1
SCM (x− µ̂SMV )|2(

pH Σ̂
−1
SCMp

) (
N + (x− µ̂SMV )H Σ̂

−1
SCM (x− µ̂SMV )

) H1

≷
H0

λ .

(43)

In this case, the distribution can be derived. This is the purpose
of the following proposition.

Proposition III.2 The theoretical relationship between the
PFA and the threshold is given by

PFAKellyΣ̂SCM ,µ̂SMV
=

Γ(N)

Γ(N −m+ 1) Γ(m− 1)

×
∫ 1

0

[
1 +

λ

1− λ

(
1−

u

N + 1

)]m−N
uN−m(1− u)m−2 du .

(44)

Proof: The detection test rewritten with Σ̂
−1
SCM =

N Ŵ−1
N−1 becomes:

Λ
(N)

Kelly Σ̂,µ̂
=

N2
∣∣∣pHŴ−1

N−1(x− µ̂)
∣∣∣2

N
(
pH Ŵ−1

N−1 p
) (

N +N yH Ŵ−1
N−1 (x− µ̂)

) ,
(45)
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and replacing (x− µ̂) by

√
N + 1

N
y, one obtains:

Λ
(N)

Kelly Σ̂,µ̂
=

N + 1

N
N2

∣∣∣pH Ŵ−1
N−1 y

∣∣∣2
N
(
pH Ŵ−1

N−1 p
)(

N +
N + 1

N
N yH Ŵ−1

N−1 y

)
(46)

=

∣∣∣pH Ŵ−1
N−1 y

∣∣∣2(
pH Ŵ−1

N−1 p
)( N

N + 1
+ yH Ŵ−1

N−1 y

)
(47)

with y ∼ CN (0,Σ).
The classical Kelly detector obtained when the mean vector is
known is recalled here, built with N − 1 zero-mean Gaussian
data, and written with ŴN−1:

Λ
(N−1)
Kelly Σ̂

=

∣∣∣pH Ŵ−1
N−1 y

∣∣∣2(
pH Ŵ−1

N−1 p
)(

1 + yH Ŵ−1
N−1 y

) . (48)

It is worth pointing out that the term N/(N + 1) resulting
from the mean estimation in Λ

(N)

Kelly Σ̂,µ̂
does not appear in the

classical Kelly detector (48). This fact prevents from relating
the two expressions. Thus, a proof similar to the Proposition
III.1 is not feasible.
According to [7], [4], an equivalent LR can be expressed as:

κ̂2 =
Λ
(N)

Kelly Σ̂,µ̂

1− Λ
(N)

Kelly Σ̂,µ̂

H1

≷
H0

λ

1− λ
. (49)

Following the same development proposed in [7], the statistic
κ̂2 can be identified as the ratio θ/β between two independent
scalar random variables θ and β. For this particular develop-
ment of Kelly distribution with non-centered data, the scalar
random variable β is found to have the same distribution as the
function 1−u/(N+1) where u is a random variable following
a complex central beta distribution with N − m + 1,m − 1
degrees of freedom:

u ∼ fu(u) =
Γ(N)

Γ(N −m+ 1) Γ(m− 1)
uN−m (1− u)m−2 ,

(50)
whereas the p.d.f. of the variable θ is distributed according to
the complex F -distribution with 1, N −m degrees of freedom
scaled by 1/(N −m):

θ ∼ fθ(θ) = (N −m) (1 + θ)m−N−1 (51)

One can now derive the cumulative density function of the
Kelly test as:

P
(

Λ
(N)

Kelly Σ̂,µ̂
≤ λ

)
= P

(
κ̂2 ≤ λ

1− λ

)
= P

(
θ ≤ β λ

1− λ

)
(52)

=

∫ 1

0

[∫ λ
1−λ (1−u/(N+1))

0

fθ(v) dv

]
fu(u) du . (53)

Solving the integral one obtains the “PFA-threshold” relation-
ship:

PFAKellyΣ̂,µ̂ =
Γ(N)

Γ(N −m+ 1) Γ(m− 1)

×
∫ 1

0

[
1 +

λ

1− λ

(
1−

u

N + 1

)]m−N
uN−m(1− u)m−2 du .

(54)

However, the final expression can not be further simplified
to a closed-form expression as those obtained for the other
detectors.

C. Adaptive Normalized Matched Filter

Similarly, the ANMF for both mean vector and covariance
matrix estimation becomes:

ΛANMF Σ̂,µ̂ =
|pH Σ̂

−1
(x− µ̂)|2

(pH Σ̂
−1

p)
(

(x− µ̂)H Σ̂
−1

(x− µ̂)
) H1

≷
H0

λ .

(55)

Proposition III.3 The theoretical relationship between the
PFA and the threshold is given by

PFAANMF Σ̂,µ̂ = (1− λ)a−12F1 (a, a− 1; b− 1;λ) , (56)

where a = (N − 1) − m + 2, b = (N − 1) + 2 and where
Σ̂ = Σ̂SCM and µ̂ = µ̂SMV .

Proof: The proof is similar to the proof of Proposition
III.1. The main difference is due to the normalization term
(x−µ̂)H Σ̂

−1
(x−µ̂). Indeed, the correction factor N/(N−1)

appears both at the numerator and at the denominator, and
consequently, it disappears. The same argument is also true for
the factor N that arises from the covariance matrix estimates,
i.e. since the detector is homogeneous of degree 0 in terms of
covariance matrix estimates (i.e. ΛANMF Σ̂,µ̂ = ΛANMF γ Σ̂,µ̂

for any real γ), this scalar also disappears. Thus, the distribu-
tion of the ANMF with an estimate of the mean is exactly the
same as in (13) where N is replaced by N − 1.

IV. EXPERIMENTAL RESULTS

In this section, we validate the theoretical analysis on
simulated data. The experiments were conducted on m = 5
dimensional Gaussian vectors, for different values of N , the
number of secondary data and the computations have been
made through 106 Monte-Carlo trials. The true covariance is
chosen as a Toeplitz matrix whose entries are Σi,j = ρ|i−j|

and where ρ = 0.4. The mean vector is arbitrarily set to have
all entries equal to (3 + 4j).

A. False Alarm Regulation with simulated data

The False Alarm (FA) regulation is presented for previous
detection schemes having a closed-form expression, i.e. for all
except the generalized Kelly detector. Fig. 1 shows the false-
alarm regulation for the MF, the AMF when only the covari-
ance matrix is unknown and the AMF for both covariance
matrix and mean vector unknown. The steering vector used
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µ known theo.
µ known MC
eq.(15)
µ unknown MC

Fig. 1: PFA versus threshold for the AMF for different values
of N (m = 5, p = [1, . . . , 1]T , ρ = 0.4, µ = (4 + 3 j) p)
when a) µ and Σ are known (MF) (red and black curves), b)
only µ is known (gray and blue curves) and c) Proposition
III.1: both µ and Σ are unknown (yellow and green curves).

for the simulations is the unity vector p = [1, . . . , 1]T without
loss of generality as all the PDFs are found to be independent
of the steering vector p. The perfect agreement of the green
and yellow curves illustrates the results of Proposition III.1.
Moreover, remark that when N increases both AMF get closer
to each other, and they approach the known parameters case
MF.

Fig. 2 and Fig. 3 present the FA regulation for the
Kelly detector and the ANMF respectively, under Gaussian
assumption. For clarity purposes, the results are displayed in
terms of the threshold η = (1− λ)−(N+1) for Adaptive Kelly
detectors, and η = (1−λ)−m for ANMF and NMF detectors,
respectively and a logarithmic scale is used. This validates
results of Proposition III.2 and III.3 for the SCM-SMV.

Remark that the derived relationships given by eqs. (15)
and (56) are quite similar to those for which the mean is
known. However, as illustrated in Fig. 1 and Fig. 3, there
is an important difference for small values of N . It is worth
pointing out that the theoretical “PFA-threshold” relationships
presented above depend only on the size of the vectors m and
the number of secondary data used to estimate the parameters
N . Thus, the detector outcome will not depend on the true
value of the covariance matrix or the mean vector. These
three detectors hold the CFAR property with respect to the
background parameters. However, their distribution strongly
relies on the underlying distribution of the background, i.e.
if Gaussian assumption is not fulfilled the “PFA-threshold”
relationship will divert from the theoretical results derived in
this paper.

B. Performance Evaluation

The four detection schemes are compared in terms of
probability of detection. The experiments were conducted to

0 1 2 3 4 5 6 7 8
−4

−3.5

−3

−2.5

−2

−1.5

−1

−0.5

0

N = 6

N = 10

N = 20

PUtain de merdre mandfkjqsjkdhfsqkjhdfjklsq

Threshold η

lo
g
1
0
(P
F
A
)

µ known theo.
µ known MC
eq.(44)
µ unknown MC

Fig. 2: PFA versus threshold for the “plug-in” Kelly detector
for different values of N (m = 5, p = [1, . . . , 1]T , ρ = 0.4,
µ = (4 + 3 j) p) when a) only µ is known (gray and blue
curves) and b) Proposition III.2: both µ and Σ are unknown
(yellow and green curves).

0 1 2 3 4 5 6 7 8
−4

−3.5

−3

−2.5

−2

−1.5

−1

−0.5

0

N = 6

N = 10

N = 20

Threshold η

lo
g
1
0
(P
F
A
)

NMF Monte-Carlo
NMF theo.
µ known theo.
µ known MC
eq.(56)
µ unknown MC

Fig. 3: PFA versus threshold for the ANMF for different values
of N (m = 5, p = [1, . . . , 1]T , ρ = 0.4, µ = (4 + 3 j) p)
when a) µ and Σ are known (NMF) (red and black curves),
b) only µ is known (gray and blue curves) and c) Proposition
III.3: both µ and Σ are unknown (yellow and green curves).

detect a vector αp embedded in Gaussian noise with the same
distribution parameters than for false alarm regulation. The
Monte-Carlo simulation was set for dimensions m = 5 and
N = 10 and for the probability of false alarm PFA = 10−3.
Then, the threshold λ has been adjusted according to the false
alarm regulation relative to each detectors (AMF, ANMF,
two-step GLRT Kelly, Generalized Kelly). Fig. 4 presents the
detection probability versus the SNR defined as α2 pH Σ−1 p
with the known steering vector p = [1, . . . , 1]T . The
detectors delivering the best performance results are the
Kelly detectors (“two-step GLRT” and generalized). Actually,
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Fig. 4: Probability of detection for PFA = 10−3 correspond-
ing to different values of SNR = α2 p Σ−1 p in Gaussian case.
(m = 5, N = 20, p = [1, . . . , 1]T , ρ = 0.4).

these detectors lead to very similar performance with a small
improvement of the generalized (resp. “two-step GLRT”)
one at low (resp. high) SNR. As expected, the AMF and
the ANMF require a higher SNR to achieve same performance.

V. CONCLUSION

Four adaptive detection schemes, the AMF, Kelly detectors
with a “two-step GLRT” and a generalized versions as well
as the ANMF, have been analyzed in the case where both
the covariance matrix and the mean vector are unknown
and need to be estimated. In this context, theoretical closed-
form expressions for false-alarm regulation have been derived
under Gaussian assumptions for the SCM-SMV estimates
for three detection schemes. The resulting “PFA-threshold”
expressions highlight the CFARness of these detectors since
they only depend on the size and the number of data, but not
on the unknown parameters. Finally, the theoretical analysis
has been validated through Monte Carlo simulations and the
performances of the detectors have been compared in terms
of probability of detection. This work finds its purpose in
signal processing methods for which both mean vector and
covariance matrix are unknown. Specifically, the proposed
methods could be applied for hyperspectral target detection.

APPENDIX

A m-dimensional vector x = u+ jv has a complex normal
distribution with mean µ and covariance matrix Σ = E[(x−
µ)(x − µ)H ], denoted CN (µ,Σ), if z = (uT ,vT )T ∈ R2m

has a normal distribution [26]. If rank(Σ) = m, the probability
density function exists and is of the form

fx(x) = π−m|Σ|−1 exp{−(x− µ)HΣ−1(x− µ)}. (57)

The resulting Maximum Likelihood Estimates (MLE) are the
well-known SCM and SMV defined as:

µ̂SMV =
1

N

N∑
i=1

xi Σ̂SCM =
1

N

N∑
i=1

(xi − µ̂)(xi − µ̂)H ,

(58)
where the xi are i.i.d. CN (µ,Σ). Further, we shall denote the
Centered SCM (CSCM) as:

Σ̂CSCM =
1

N

N∑
i=1

(xi − µ)(xi − µ)H . (59)

Let x1, ...,xN be an i.i.d. N -sample, where xi ∼
CN (µ,Σ). Let us define µ̂ = µ̂SMV and Ŵ = N Σ̂SCM

referred to as a Wishart matrix. Thus one has (see [27] for the
real case):
• µ̂ and Ŵ are independently distributed;
• µ̂ ∼ CN (µ, 1

NΣ);
• Ŵ ∼ CW(N − 1,Σ) is Whishart distributed with N − 1

degrees of freedom
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[22] V. Čižek, “Discrete hilbert transform,” Audio and Electroacoustics, IEEE
Transactions on, vol. 18, no. 4, pp. 340–343, 1970.

[23] M. E. Abramowitz et al., Handbook of mathematical functions: with
formulas, graphs, and mathematical tables. Courier Dover Publications,
1964, vol. 55.

[24] L. L. Scharf and B. Friedlander, “Matched subspace detectors,” Signal
Processing, IEEE Transactions on, vol. 42, no. 8, pp. 2146–2157, 1994.

[25] T. W. Anderson, An Introduction to Multivariate Statistical Analysis.
John Wiley & Sons, New York, 1984.

[26] A. van den Bos, “The multivariate complex normal distribution-a gen-
eralization,” Information Theory, IEEE Transactions on, vol. 41, no. 2,
pp. 537–539, 1995.

[27] A. K. Gupta and D. K. Nagar, Matrix Variate Distributions. Chapman
& Hall/CRC, 2000.


