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ABSTRACT
In this work we propose a hierarchical clustering methodol-
ogy for hyperspectral data based on the Hotelling’s T 2 statis-
tic. For each hypespectral sample data, the statistical sam-
ple mean is calculated using a window-based neighborhood.
Then, the pairwise similarities between any two hyperspectral
samples are computed in base to the Hotelling’s T 2 statis-
tic. This statistic assumes a Gaussian distribution of the data
while hyperspectral data have been proven to be long tailed
distributed. In order to improve the statistic robustness we
use a Fixed Point estimator, and compare it to the classical
sample mean estimator. The similarities are then used to hier-
archically cluster the hyperspectral data. We give some pre-
liminary qualitative results of the proposed approach over the
Indian Pines hyperspectral scene. Results show that the use
of the Fixed Point estimator does not significantly affect the
clustering results. Further work will be focused on the use of
the robust Hotelling statistic.

Index Terms— hypespectral imaging, hierarchical clus-
tering, Fixed Point estimates

1. INTRODUCTION

Hyperspectral data have been proven not to be multivariate
normal but long tailed distributed [1]. In order to take into
account these features, the class of elliptical contoured distri-
butions is considered to describe clutter statistical behavior.
It provides a multivariate location-scatter family of distribu-
tions that primarily serves as heavy tailed alternative to the
multivariate normal model. A m-dimensional random com-
plex vector y = [y1y2...ym]T with mean µ and scatter matrix
⌃ has an elliptical distribution if its probability density func-
tion (PDF) has the form

f
y

(y) = |⌃|�1hm((y � µ)H⌃

�1(y � µ)), (1)

where H denotes the conjugate transpose operator and hm(.)
is any function such as (1) defines a PDF in Cm .

It is worth pointing out that the ECD class includes a
large number of distributions, notably the Gaussian distribu-
tion, multivariate t distribution, K-distribution or multivariate

Cauchy. Thus it allows for heterogeneity of the background
power with the texture. Although non-Gaussian models are
assumed for background modeling and test design, the pa-
rameters estimation is still performed using classical Gaus-
sian based estimators; as for the covariance matrix, generally
determined according to the SCM M̂SCM =

PN
i=1 yiy

H ap-
proach. We use here the Fixed Point estimators [2] as a robust
alternative for background statistical characterization.

In [3], authors propose a general approach for high-
resolution polarimetric SAR (POLSAR) data classification in
heterogeneous clutter, based on a statistical test of equality
of covariance matrices. Here we propose a similar approach
for hyperspectral data, using the Hotelling’s T 2 statistic as
a statistical test of equality of means [4]. We define a pair-
wise similarity between two pixels by using the output of the
Hotelling’s test for the means of the pixels calculated using a
sliding window. Then we segment the hyperspectral scene by
means of a hierarchical clustering algorithm [5] whose input
is given by the previously calculated pairwise distances. We
test the proposed approach in the Indian Pines hyperspectral
scene.

2. THE FIXED POINT ESTIMATES

According to the Fixed point approach, the joint estimation of
M and µ leads to [2]:
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For the matrix estimate, existence and uniqueness have
been established in [6]. Although the proof for simultaneous
scatter and location estimates is still an open question, they
have been found to be useful and reliable for elliptical con-
tours estimation parameters because of its easy implementa-



tion. They are specified by implicit equations and can be eas-
ily computed using a recursive algorithm. We refer to [7] for
a detailed performance analysis of the Fixed Point covariance
matrix estimate. The main results of the statistical properties
of the M̂

FP

are summarized: M̂

FP

is a consistent and un-
biased estimate of M; its asymptotic distribution is Gaussian
and is the same as the asymptotic distribution of a Wishart
matrix with mN/(m+ 1) degrees of freedom. They provide
a robust alternative to the classical estimators and its defini-
tion on hyperspectral detection framework was introduced in
[8].

3. HOTELLING’S T 2 HYPOTHESIS TESTS

Let X ⇠ CE(µ1,⌃1, hm,1) and Y ⇠ CE(µ2,⌃2, hm,2) be
two independent random vectors, elliptically distributed. We
intend to decide if they belong to the same class comparing
their mean vectors µ1 and µ2. The classification problem can
be formulated as a binary hypothesis test. Symbolically, we
aim to distinguish between:

(
H0 : µ1 = µ2

H1 : µ1 6= µ2

where the decision on the hypothesis test is made according
to some statistical based criteria. We propose a similarity
function based on the parameters estimation.

Hoteling’s T 2 statistic. Assuming x1, ...,xN1 and
y1, ...,yN2are an i.i.d. samples from X ⇠ Nm(µ1,⌃)
and Y ⇠ Nm(µ2,⌃) respectively. And the mean vector
computed as, µ̂x = 1

N1

PN1

i=1 xi and µ̂y = 1
N2

PN2

i=1 yi and
the covariance matrix estimated according to

W =

PN1
i=1(xi � µ̂x)(xi � µ̂x)

H +
PN2

i=1(yi � µ̂y)(yi � µ̂y)
H

N1 +N2 � 2

which correspond to the unbiased pool estimate. Then the
Hotelling T 2statistic test is defined as

t2 =
N1N2

N1 +N2
(µ̂x � µ̂y)

H
W

�1(µ̂x � µ̂y) (4)

This expression is easily derived from the likelihood function
of a multivariate normal model when H0 is assumed, see e.g.
[4]. And we shall write T 2(m,N1 +N2 � 2).
The distribution of the test under the null hypothesis can be
related to the F-distribution according to,

N1 +N2 �m� 1

(N1 +N2 � 2)m
t2 ⇠ F (m,N1 +N2 � 1�m).

A different situation arises when samples do not fit on a mul-
tivariate gaussian distribution. We can improve the robustness
of the test replacing the mean and matrix estimates for some
robust alternative (e.g. the Fixed Point) if its asymptotic dis-
tribution is gaussian.

The equality of the covariances matrices is a simplification
that will certainly modify the test, as the resulting matrix esti-
mate will not correspond to a Wishart distribution (1/N1⌃1+
1/N2⌃2). The results found on statistics literature for robust
Hotelling and for both matrix and mean comparison will be
further investigated.

4. STATISTICAL HIERARCHICAL CLUSTERING

A hierarchical clustering algorithm returns a hierarchy of
clusters built by merging smaller components into bigger
clusters (agglomerative clustering) or by splitting the whole
image into smaller regions (divisive clustering). In order to
do that, a pairwise similarity function is necessary, i.e. the
angular distance, to compare each pair of components. Then,
a linkage function indicates which of any possible pair of
components is merged to (or split from) a bigger cluster.

A common linkage is the Unweighted Pair Group Method
with Arithmetic Mean (UPGMA) method which consists on
averaging all distances between the samples in each node, that
is, the mean distance between elements of each cluster. Given
two nodes A and B, the UPGMA linkage distance between
the nodes, denoted l (A,B) is given by:

l (A,B) =
1

|A| |B|
X

x2A

X

y2B

d (x, y) (5)

where |·| denotes the cardinality of a set and d (x, y) is
any pairwise distance. In this work we propose to use the
Hotelling’s T 2 statistic (4) as the pairwise distance.

The result is a hierarchy of clusters that can be represented
as a dendrogram. A common criterion to stop merging (split-
ting) is to a priori set the number c of clusters one is looking
for.

5. EXPERIMENTS AND RESULTS

5.1. Indian Pines scene

The Indian Pines scene1 was gathered by airborne AVIRIS
sensor over North-western Indiana and consists of 145⇥ 145
pixels and 224 spectral reflectance bands in the wavelength
range 0.4-2.5 µm . We have reduced the number of bands to
200 by removing bands covering the region of water absorp-
tion: [104-108], [150-163], 220. Since the scene is taken in
June some of the crops present, corn, soybeans, are in early
stages of growth with less than 5% coverage. The ground
truth available is designated into sixteen classes with variable
number of samples for each class. We have grouped some
subclasses into three more general classes for a final total of
ten classes (see Fig. 1). The grouped classes are Corn (corn,
corn-notill and corn-mintill), Grass (grass-pasture, grass-
pasture-mowed and grass-trees) and Soybean (soybean-notill,
soybean-mintill and soybean-clean).

1https://engineering.purdue.edu/ biehl/MultiSpec/



Fig. 1. Reduced groundtruth for the Indian Pines scene

5.2. Experimental design and results

We want to compare the use of the classic sample mean and
sample covariance estimator to the Fixed Point estimator for
the clustering of the Indian Pines scene using the Hotelling’s
T 2 statistic (4) and the hierarchical clustering with UPGMA
linkage function (5). For each pixel in the image we calculate
its corresponding sample mean and Fixed Point mean using
a 15 ⇥ 15 sliding window. Those pixels on the borders of
the image for which the window is incomplete are discarded
resulting in a mean matrix of size 131 ⇥ 131. The sample
covariance matrix and Fixed Point covariance matrix are cal-
culated using the whole image.

We have performed two clustering experiments, a first
using the whole data set (17161 samples) and a second us-
ing only those data samples for which there is available
groundtruth (9343 samples). Figure 2 shows the clustering
results for the former and figure 3 does it for the later. In
order to visualize the results we have assigned to each cluster
the RGB color resulting of averaging the groundtruth RGB
color (see Figure 1) of the pixels of each cluster. Thus, a
cluster with a color similar to any groundtruth color represent
that the cluster is almost contained in a single groundtruth
class. Clusters grouping several different groundtruth classes
will present a mixed color.

The obtained results show that the use of the Hotelling’s
T 2 statistic yields to meaningful clusters, specially if we al-
low some overclustering (see figures 2 and 3 e-j). Moreover,
it is not appreciated any significant effect of using the Fixed
Point estimator instead of the sample mean and sample co-
variance estimators. This effect could be due to the Gaus-
sian assumption of the Hotelling’s statistic. The use of robust
Hotelling’s test will be further investigated to deal with the
elliptical distribution assumption and probably the effect of
using a robust estimator, such as the Fixed Point, will be then
more significant.

6. CONCLUSIONS

We have presented an approach to statistically characterize
the hyperspectral samples and then use the Hotelling’s T 2

statistic to define a pairwise similarity between any two sam-
ples. The definition of a pairwise similarity allows to use a
hierarchical clustering algorithm to segment the hyperspec-
tral image. We have show that even when the Hotelling’s
statistic Gaussian assumption differs from the actual ellipti-
cal distribution of hyperspectral data, the clustering results
are meaningful. The use of a robust Fixed Point estimator
seems not to be relevant in this formulation although the use
of a robust Hotelling’s estimator capable of dealing with non-
Gaussian assumption will be further investigated and then, we
hope that the Fixed Point estimator will play a major role.
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(a) Classic, c = 20 (b) Fixed Point, c = 20

(c) Classic, c = 30 (d) Fixed Point, c = 30

(e) Classic, c = 50 (f) Fixed Point, c = 50

(g) Classic, c = 100 (h) Fixed Point, c = 100

(i) Classic, c = 150 (j) Fixed Point, c = 150

Fig. 2. Results of the hierarchical clustering over the full
dataset using the Mahalanobis distance with the classic es-
timator (left column) and the Fixed Point estimator (right col-
umn). Each row identifies with a different value for the num-
ber of clusters, c.

(a) Classic, c = 20 (b) Fixed Point, c = 20

(c) Classic, c = 30 (d) Fixed Point, c = 30

(e) Classic, c = 50 (f) Fixed Point, c = 50

(g) Classic, c = 100 (h) Fixed Point, c = 100

(i) Classic, c = 150 (j) Fixed Point, c = 150

Fig. 3. Results of the hierarchical clustering over the reduced
dataset using the Mahalanobis distance with the classic esti-
mator (left column) and the Fixed Point estimator (right col-
umn). Each row identifies with a different value for the num-
ber of clusters, c.


