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ABSTRACT
Hyperspectral data have been proved not to be multivariate
normal but long tailed distributed. In order to take into ac-
count these features, the family of elliptical contoured dis-
tributions is proposed to describe noise statistical behavior.
Although non-Gaussian models are assumed for background
modeling and detectors design, the parameters estimation is
still performed using classical Gaussian based estimators; as
for the covariance matrix, generally determined according to
the SCM approach. We discuss here the class of M-estimators
as a robust alternative for background statistical characteriza-
tion and highlight their outcome when used in an adaptive
GLRT-LQ detector.

Index Terms— hypespectral imaging, target detection,
elliptical distributions, M-estimators

1. INTRODUCTION

The basic idea in Hyperspectral imaging (HSI) extends from
the fact that for any given material, the amount of radiation
emitted varies with wavelength. Hyperspectral imaging sen-
sors measure the radiance of the materials within each pixel
area at a very large number of contiguous spectral bands
and provide image data containing both spatial and spectral
information. Hyperspectral target detection and anomaly de-
tection may be used to locate targets that generally cannot
be resolved by spatial resolution [1]. A broad variety of ap-
plications take advantage of these techniques for detection
purposes.
It is often assumed that signals, interferences, noises, back-
ground are Gaussian stochastic processes. Indeed, this as-
sumption makes sense in many applications. In these con-
texts, Gaussian models have been widely investigated in the
framework of Statistical Estimation and Detection Theory.
They have led to appealing and well known algorithms such
as the Matched Filter and its adaptive variants in radar detec-
tion [2, 3]. The mathematical framework for the design and
evaluation of detection algorithms is provided by the binary
hypothesis testing procedure. However, such widespread
techniques are sub-optimal when the noise is a non-Gaussian
stochastic process. Therefore, non-Gaussian noise model-
ing has gained much interest these last decades and presently
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leads to active researches in the literature. It has to be stressed
that the grade on the detector performance relies on the fit of
the background into the assumed statistical model. As stated
in [4] and [5], the empirical distribution usually has heavier
tails compared to the theoretical distribution, and these tails
strongly influence the observed false-alarm rate of the detec-
tor.
One of the most general and investigated models for back-
ground statistics characterization is the family of elliptical
contoured distributions. Indeed, these processes encompass
a large number of non-Gaussian distributions, included of
course multivariate normal distribution.
Generally, the statistical parameters (covariance matrix, mean
vector) are unknown and need to be estimated from the data.
Even when clutter is assumed to be non-Gaussian, the clas-
sical Sample Covariance Matrix (SCM) is used in several
adaptive detection methods. But it does not correspond to the
Maximum Likelihood estimator and results in poor perfor-
mance of the detectors. These problems have been discussed
in [6]. While different proposals for matrix estimates in non-
Gaussian environment can be found in [7, 8].
For data in Rk robust alternatives for the sample covariance
estimate are the M-estimators of multivariate location vec-
tor and scatter matrix. We study in this paper an adaptive
non-Gaussian detector built with these improved estimators.
Constant False Alarm Rate (CFAR) is pursued to allow the
detector independence of nuisance parameters and false alarm
regulation.

2. PROBLEM FORMULATION

In this section, we present the class of elliptically contoured
(EC) distributions. They provide a multivariate location-
scatter family of distributions that primarily serve as long
tailed alternatives to the multivariate normal model. They are
proved to represent a more accurate characterization of HSI
data than models based on the multivariate Gaussian assump-
tion.

2.1. Statistical Framework

The detection problem is typically formulated as a binary hy-
pothesis test with two competing hypotheses: background
only or target and background. We attempt to determine the
occurrence of a target, i.e. the presence of a complex signal
s corrupted by an additive noise c. Symbolically, we aim to
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distinguish between:
(
H0 : y = c yi = ci i = 1, . . . ,K

H1 : y = s+ c yi = ci i = 1, . . . ,K

where y is the cell under test and yi are K signal free indepen-
dent measurements, usually referred as secondary data, used
to estimate the mean and the covariance of the background.
Generally these K secondary data are collected using a spatial
sliding window (mask) centered on the cell under test. The
size of the mask is chosen large enough to ensure the invert-
ibility of the covariance matrix and small enough to justify
both spatial and spectral homogeneity. Under hypothesis H1,
it is assumed that the observed data is composed by a signal
s = ↵p and clutter c, combined in an additive manner; where
p is a complex steering vector (supposed perfectly known),
characterizing the spectral signature of the material intended
to detect and ↵ the signal amplitude.

2.2. Elliptical distribution

A m-dimensional random complex vector y is said to have a
complex elliptical distribution if its probability density func-
tion (PDF) has the form

fy(y) = |⌃|�1hy((y � µ)H⌃�1(y � µ)), (1)

where H denotes the conjugate transpose operator and
hy : [0,1) ! [0,1) is a positive, monotonically de-
creasing function, µ is the mean vector and ⌃ is the scatter
matrix. The function hy,usually called density generator, is
assumed to be only approximately known. Note that it pro-
duces density contours corresponding to elliptical surfaces.
If the second moments exist, then ⌃ reflects the structure of
the covariance matrix of the elliptically distributed random
vector y, i.e. the covariance matrix equates the scatter ma-
trix up to a scaling constant. We shall denote this complex
elliptical distribution by EC(µ,⌃, h). It is worth pointing
that the EC class includes an infinity of distributions, notably
the Gaussian one, multivariate t distribution or multivariate
Cauchy.

3. M- ESTIMATORS

Let (c1, . . . , cK) be a K-sample of m-dimensional complex
independent vectors with ci ⇠ EC(µ,⌃, h), i = 1, . . . ,K.
The complex M-estimators of location and scatter are defined
as the joint solutions to the estimating equations:

bµ =

KX

n=1

u1(tn)cn

KX

n=1

u1(tn)

M̂ = 1
K

KX

n=1

u2(t
2
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where tn =
�
(cn � bµ)HM̂�1(cn � bµ)

�1/2 and u1, u2 are
two weighting functions on the quadratic form tn. Note t2n is
in fact, the widely used Mahalanobis distance. M-estimators
have first been studied in the real case, defined as solution of
(2) with real samples. Existence and uniqueness have been
proved in the real case, provided functions u1, u2 satisfy a
set of general assumptions stated by Maronna [9] . Olilla has
shown in [10] that these conditions hold also in the complex
case. M-estimators are particularly suited for estimating the
mean vector and the scatter matrix of an elliptical population.
When dealing with heavy tailed clutter models, as in HSI, the
use of robust estimates decreases the impact of highly impul-
sive samples and possible outliers.
Remark that if u1 and u2 are chosen to be constant and equal
to one, the arising estimators correspond to the Sample Mean
Vector and Sample Covariance Matrix respectively. They are
indeed the the Maximum Likelihood estimators when Gaus-
sian distributions are considered.

3.1. The Fixed Point estimates

According to the Fixed point approach, the joint estimation of
M and µ leads to [11]:
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m
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Obtained when choosing u1(s) = s�1 and u2(s) =
ms�1. For the matrix estimate, existence and uniqueness
have been established in [12]. Although the proof for si-
multaneous scatter and location estimates is still an open
question, they have been found to be useful and reliable for
elliptical contours estimation parameters because of its easy
implementation. They are specified by implicit equations and
can be easily computed using a recursive algorithm. We refer
to [13] for a detailed performance analysis of the Fixed Point
covariance matrix estimate. The main results of the statistical
properties of the M̂FP are summarized: M̂FP is a consistent
and unbiased estimate of M; its asymptotic distribution is
Gaussian and its covariance matrix is fully characterized in
[14]; its asymptotic distribution is the same as the asymptotic
distribution of a Wishart matrix with mN/(m + 1) degrees
of freedom.

3.2. The Huber’s M-estimates

Using the well-known Huber’s  function [15] defined as,

 k(s) = min(s, k) (5)
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with k > 0. One can obtain Huber’s M-estimator by taking
u1(s) =  k(s)/s and u2(s) =  k2/s. We remark that the
Huber function can be seen as a mix between the Fixed Point
estimate and the conventional SCM estimate. Extreme val-
ues of t2n outside [0, k2] are strongly attenuated by the 1/s
decreasing function (as for the Fixed Point) while normal val-
ues below k2 are uniformly kept (SCM behavior).

4. THE ANMF BUILT WITH THE M-ESTIMATORS

Different types of adaptive non-Gaussian detectors may be
derived for target enhancement purposes. We focus here on
the study of the GLRT-Linear Quadratic [16], also known
as Adaptive Cosine Estimate built with the differents M-
estimators presented above,

⇤(M̂, bµ) = |pHM̂�1(y � bµ)|2

(pHM̂�1p)((y � bµ)HM̂�1(y � bµ))

H1

?
H0

�

(6)
where p is the spectral steering vector, y the cell under test
and � the decision threshold.Note that the mean µ̂ is generally
omitted in radar detection (and therefore not estimated) as the
noise is always zero mean. So, in hyperspectral imaging, as
the data represent intensity values and are positive, we need to
estimate it, jointly with the covariance matrix M. Used with
the Fixed Point estimate, this detector is particularly interest-
ing because of its CFAR matrix properties. Hence, the detec-
tor GLRT ⇤(M̂FP, µ̂) behaves according to the same distri-
bution for different covariance matrices.

4.1. Detector performance

The performance analysis has been realized over the data set
provided by DSO National Laboratories, the normalized hy-
percube is shown in figure 1. The resulting ROC curves (Re-
ceiver Operating Characteristic) compare the output of the
detector built with the Fixed Point estimates, the Huber M-
estimators and the classical SCM. The test conducted con-
sists in placing an artificial target with a fixed SNR through
each pixel of the image. For all the possible threshold values,
both probability of false alarm and probability of detection
are computed. The outcome is illustrated in figure 2.
These preliminary results show the improvement in perfor-
mance introduced by the use of M-estimators regarding the
conventional SCM. The desired robustness properties previ-
ously mentioned lead to a higher Pd for small values of the
Pfa.

4.2. False Alarm Regulation

A theoretical relationship between the detection threshold �
and the Probability of False Alarm Pfa = P(⇤ > �|H0) has
been established in [17]:

Pfa = (1� �)a�1
2F1(a, a� 1; b� 1;�) (7)

Fig. 1. Normalized data set.

Fig. 2. ROC curves depicting the performance of the detector
built with the SCM (in red), the Fixed Point (in blue) and the
Huber type (in black) estimates. Probabilities are given in
log10 scale.

where a = m
m+1K �m + 2, b = m

m+1K + 2 and 2F1 is the
Hypergeometric function. This expression holds when µ is
completely known and can be removed from the data. Fig-
ure 3 exhibits the regulation of the false alarm for the detector
built with the classical SCM and figure 4 the corresponding
results obtained with the Fixed Point estimates. The gap ev-
idenced in the figure for the Fixed Point, is due to the joint
estimation of M and µ, since ⇤(M̂FP, µ̂) is no longer unaf-
fected by the distribution of µ̂.
Note that the previous Pfa-threshold has been derived assum-
ing radar data being complex and is not valid for real data. As
the hyperspectral data are real and positive, they have been
passed through an Hilbert filter to render them complex.

5. CONCLUSIONS

Using elliptical distributions for background modeling allows
for heterogeneity consideration in non-Gaussian environ-
ment. We have proposed different estimators for statistical
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Fig. 3. Pfa-threshold. Adaptive Normalized Matched Filter
built with the SCM
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Fig. 4. Pfa-threshold. ACE detector built with Fixed Point
Estimates

characterization of the clutter. In particular, the class of M-
estimators, which are specially appropriate to the addressed
problem. We have recalled Fixed Point estimates and intro-
duced the Huber type M-estimators emphasizing their statis-
tical properties. When building the ACE detector with these
newfangled estimates, its capacity for a more accurate false
alarm regulation is pointed, as well as a better performance in
probability detection terms.
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