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ABSTRACT

The Reed-Xiaoli (RX) is considered as the benchmark algo-
rithm in multidimensional anomaly detection (AD). However,
the RX detector performance decreases when the statistical
parameters estimation is poor. This could happen when the
background is non-homogeneous or the noise independence
assumption is not fulfilled. For a better performance, the sta-
tistical parameters are estimated locally using a sliding win-
dow approach. In this approach, called adaptive RX, a win-
dow is centered over the pixel under the test (PUT), so the
background mean and covariance statistics are estimated us-
ing the data samples lying inside the window’s spatial sup-
port, named the secondary data. Sometimes, a smaller guard
window prevents those pixels close to the PUT to be used, in
order to avoid the presence of outliers in the statistical estima-
tion. The size of the window is chosen large enough to ensure
the invertibility of the covariance matrix and small enough
to justify both spatial and spectral homogeneity. We present
here an alternative methodology to select the secondary data
for a PUT by means of a binary partition tree (BPT) represen-
tation of the image. We test the proposed BPT-based adaptive
hyperspectral RX AD algorithm using a real dataset provided
by the Target Detection Blind Test project.

Index Terms— Anomaly detection, RX AD, binary par-
tition trees

1. INTRODUCTION

Target detection (TD) and anomaly detection (AD) of mul-
tidimensional signals have proved to be valuable techniques
in a wide range of applications, including search-and-rescue,
surveillance, rare minerals detection, mine detection, etc [1].
TD aims to discover the presence of a specific signal of in-
terest (the target) among a set of signals. TD is based on the
Neyman-Pearson (NP) criterion, which maximizes the proba-
bility of detection for a given probability of false alarm. AD
is a special case of TD in which no a-priori target is provided.
Hence, the goal of AD is to detect signals that are anomalous
respect to the background [2].

The Reed-Xiaoli (RX) AD algorithm [3] is considered as
the benchmark algorithm in multidimensional AD. However,
the RX detector performance strongly relies on the statistical
parameters estimation. Hence, when the background is non-
homogeneous or the noise independence assumption is not
fulfilled, the detector performance is deteriorated. The sta-
tistical parameters can be estimated globally or locally. The
local version is called adaptive RX, since it adapts to the local
properties of the data. The conventional approach to develop
an adaptive RX algorithm is by using sliding windows. For
a given pixel under test (PUT), a small window with the size
of the expected anomalies maximum size, named the guard
window, is centred on the PUT. A second large window, usu-
ally named outer window, is also centred on the PUT. The
pixels inside the outer window, except those lying inside the
guard window, compose the secondary data used to estimate
the statistical parameters for the given PUT (see Fig. 1).

Fig. 1. Sliding window over the pixel under test (green circle):
(red) 3⇥ 3 guard window and (blue) 15⇥ 15 outer window.

In this work we propose to use a binary partition tree
(BPT)-based approach to define the secondary data. The
BPT is a hierarchical tree representation of the data that ex-
ploits the spatial and spectral information contained on the
image [4]. Analogously to the sliding window-based defi-
nitions of a guard and an outer windows, we define a guard
and an outer nodes based on the BPT representation of the
image that serves as an alternative definition of the secondary



data of a given PUT. This BPT-based definition of secondary
data allows to overcome the limitations of the conventional
sliding window approach. On one hand it helps to define
more homogeneous background regions and on the other
hand it is flexible in order to fit adequately the geometry of
the background.

We assessed the performance of the proposed BPT-based
approach compared to the conventional sliding windows-
based approach on a real hyperspectral dataset provided by
the Target Detection Blind Test project1.

The remainder of the paper is as follows: in Sec. 2 and
Sec. 3 we overwiew the hyperspectral RX AD algorithm and
BPT representation respectively. In Sec. 4 we introduce the
proposed BPT-based approach. In Sec. 5 we provide the ex-
perimental validation and finally, in Sec. 6 we give some con-
clusion remarks.

2. RX ADAPTIVE ANOMALY DETECTION

The RX algorithm was derived from the Generalized Likeli-
hood Ratio Test (GLRT) assuming Gaussian hypothesis [3]:

(
H0 : y = b

H1 : y = s+ b

, (1)

where b represents the background and s denotes the presence
of an anomalous signal. The adaptive detector is obtained by
replacing the unknown parameters by their estimates. For ex-
ample, an estimate may be obtained from the range cells sur-
rounding the cell under test. The size of the cell has to be
chosen large enough to ensure the invertibility of the covari-
ance matrix and small enough to justify both spectral homo-
geneity (stationarity) and spatial homogeneity. The use of a
sliding mask (adaptive RX) provides a more realistic scenario
than when estimating the parameters using all the pixels in the
image. Thus, the mean vector µ and the background covari-
ance matrix ⌃, are estimated from N signal free secondary
data, yi = 1, . . . , N . The resulting GLRT decision rule is the
following:
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note the sample mean vector (SMV) and sample covariance
matrix (SCM) estimators respectively.

For Gaussian distribution, the quadratic form (y � µ)T

⌃

�1
(y � µ) follows a �2 distribution for µ and ⌃ perfectly

known. This quadratic form is usually known as the Ma-
halanobis distance [5]. When the parameters µ and ⌃ are
replaced by their maximum likelihood estimate parameters,
ˆµSMV and ˆ

⌃SCM, the distribution of the quadratic form:
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(3)
1http://dirsapps.cis.rit.edu/blindtest

can be approximated by the non-central F -distribution with
m and N �m+1 degrees of freedom [6]. For high values of
N (i.e. N > 10m), the distribution can be approximated by
the �2 distribution.

3. BINARY PARTITION TREES

In the BPT representation, the leaf nodes correspond to an ini-
tial partition of the image, which can be the individual pixels,
or a coarser segmentation map [4]. From this initial partition,
an iterative bottom-up region merging algorithm is applied
until only one region remains. This last region represents the
whole image and corresponds to the root node. All the nodes
between the leaves and the root result of the merging of two
adjacent children regions. An example of BPT is displayed in
Fig. 2. If the initial partition contains n leaf nodes, the final
BPT contains 2n� 1 nodes.

Fig. 2. Construction of the Binary Partition Tree (BPT).

Two notions are of prime importance when defining a
BPT: i) the region model MR which specifies how a region
R is modeled, and ii) the merging criterion O(MR↵ ,MR� ),
which is a distance measure between the region models of any
two regions R↵ and R� . Each merging iteration involves the
search of the two adjacent regions which achieve the lowest
pair-wise similarity among all the pairs of adjacent regions in
the current segmentation map. Those two regions are conse-
quently merged.

Given a hyperspectral region R, with NR hyperspectral
samples yj 2 Rq, j 2 1 . . . NR, the first-order parametric
model MR is defined by the sample mean vector of the hy-
perspectral samples ˆµR:

MR :

ˆµR =

1

NR

NRX

j=1

yj . (4)

Using the first-order parametric model (4), a merging crite-
rion is defined as the spectral angle distance, dSAM, between
the sample mean vectors of any two adjacent regions [7]:
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The building of a BPT may suffer from small and mean-
ingless regions resulting in a spatially unbalanced tree. To
overcome this limitation, a priority term is included in the
merging criterion that forces those regions smaller than a
given percentage of the average region size to be merged
first [8].

4. BPT-BASED ADAPTIVE RX

Given a BPT representation of a hyperspectral image as it is
explained in Sec. 3. Let a branch of a PUT, x, denoted as
B (x), define the sequence of nodes ascending on the BPT
representation from the leaf containing the PUT up to the root
node. For instance, given the BPT representation depicted in
Fig. 2, the branch of a PUT in the leaf number 5 is: B (x) =

{5 ! 7 ! 9}. This branch definition is a sorted list of nodes
starting in the leaf node and ending in the root node. Then,
the guard and outer nodes as defined as follows:

• The guard node of a PUT, G (x), is the first node in the
PUT’s branch, B (x), containing the PUT and at least,
a given number of guard pixels.

• The outer node of a PUT, O (x), is the first node in
the PUT’s branch, B (x), containing the PUT, the guard
pixels and at least, a given number of secondary pixels.

Thus, in order to define the guard and outer nodes it is neces-
sary to set the number of guard and secondary pixels, which
work in a similar fashion to the guard and outer windows size
respectively. The secondary data of a PUT, S (x), is then de-
fined by the pixels contained in the outer node once the pixels
in the guard node has been removed:

S (x) = O (x) \G (x) , (6)

where A\B denotes the complement operation between sets
A and B.

5. EXPERIMENTAL METHODOLOGY AND
RESULTS

5.1. Methodology

In order to test the proposed approach, we used a hyper-
spectral dataset provided by the Target Detection Blind Test
project. The dataset includes a high-resolution hyperspec-
tral image, spectral libraries of targets in the scene, and the
location of targets in the scene. The hyperspectral imagery
was collected by the HyMap sensor operated by HyVista2.
The georegistered HyMap imagery has approximately 3 me-
ter ground resolution and it is available both in calibrated
spectral radiance as well as in spectral reflectance after at-
mospheric compensation [9]. Fig. 3 depicts a false color
image of the dataset. Three civilian vehicles and four small
(1m � 3m) fabric panels were used as targets, for a total of
129 target pixels in the image. Fig. 4 shows the location of
the targets in the map.

Fig. 3. Hyperspectral dataset provided by the Target Detec-
tion Blind Test project.

Fig. 4. Location of the targets on the image.

The output of the RX adaptive detector, either using the
sliding window or the BPT-based approaches, has been calcu-
lated using equation (3). For the sliding window approach, the
guard window is of size 3⇥ 3 and the outer window is of size
21⇥ 21. For the BPT-based approach, the guard node should
have at least 9 pixels while the outer node should have at least
400 pixels. For each of the two approaches, the probability
of detection (PD) has been calculated for different values of
the probability of false alarm (PFA), using as ground-truth the
location of the 129 target pixels given by the dataset provider.

5.2. Results

Fig. 5 shows the PFA-PD plot (ROC curves) comparing the
window-based and the BPT-based RX adaptive hyperspec-
tral anomaly detectors over the dataset. The plot shows that

2http://www.hyvista.com/
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Fig. 5. PFA - PD plot comparing the sliding window-based and
the BPT-based RX adaptive hyperspectral anomaly detectors
over the Target Detection Blind Test project’s hyperspectral
dataset.



(a)

(b)

Fig. 6. Detections of the adaptive RX algo-
rithm (PFA = 0.05): a) conventional windowing approach
and, b) proposed BPT approach.

the BPT-based approach outperforms the window-based ap-
proach in almost all the probability of false alarm range. This
improvement is due to the selection of more homogeneous re-
gions to perform the estimation stage. These preliminary re-
sults support the use of BPT-representations for an improved
estimation of the statistical parameters need in RX adaptive
hyperspectral anomaly detection.

Figs. 6 and 7 show the detections obtained by the adaptive
hyperspectral RX algorithm over the test dataset for proba-
bilities of false alarm set to 0.05 and 0.10 respectively, us-
ing the conventional windowing approach and the proposed
BPT-based approach. It is possible to notice that the detected
anomalies are more homogeneous and less noisy on the pro-
posed BPT approach, what it suggests that this general ap-
proach to identify the secondary data could successfully be
extended to other anomaly and target detection techniques.

6. CONCLUSIONS

The proposed BPT-based approach to estimate the statistical
parameters need for the RX adaptive hyperspectral AD show
an improvement over the results obtained by the conventional
sliding window-based approach on the Target Detection Blind
Test’s hyperspectral dataset. These preliminary results en-
courage the authors to extend this approach to other adaptive
anomaly and target detector algorithms. Further experiments
will introduce robustness of the proposed approach in terms
of the CFAR property of the detection algorithms.
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