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ABSTRACT
This papers deals with supervised ordering on the unit hyper-
sphere, which yields a rich framework for the generalization
of all morphological operators on the sphere. In particular,
supervised openings/closings and supervised hit-or-miss are
introduced. Various strategies on the computation of the su-
pervised ordering are considered and the different alternatives
are studied for the purpose of structured target detection.

Index Terms— mathematical morphology, polarimetric
image processing, supervised ordering

1. INTRODUCTION

Fully polarimetric synthetic aperture radar (PolSAR) pro-
vides data containing the complete scattering information.
Therefore, these data have drawn more attention in recent
years. PolSAR data can be represented as polarization states
on a sphere. We present image processing techniques based
on the analysis of the polarimetric information within its lo-
cation on the sphere.
Mathematical morphology is a well-known nonlinear ap-
proach for image processing. It is based on the computation
of minimum and maximum values of local neighborhoods.
That necessitates the existence of an ordering relationship be-
tween the points to be treated. The lack of a natural ordering
on the sphere presents an inherent problem when defining
morphological operators extended to unit sphere. We analyze
here some proposals to the problem of ordering on the unit
sphere, leading to formulations of morphological operators
suited to the configuration of the data. Supervised orderings
are considered and its associated operators for target recog-
nition issues. The aim is to detect structured targets of size
larger than one pixel. The different methods may ultimately
provide useful tools when searching specific types of targets
in heterogeneous clutter. The key assumption is that a train-
ing set for the target and for each of the different components
of the background are available.

2. POLARIMETRIC STATE ON THE SPHERE

The Stokes vector. Polarization refers to the alignment and
the regularity of the Electric and Magnetic fields in the plane

perpendicular to the propagation direction. The Electric field
is described as the sum of two orthogonal components (hor-
izontal and vertical) with different amplitude and a relative
phase between them. Therefore, the tip of Electric field vec-
tor of a totally polarized wave depicts a regular pattern, in
general cases elliptical. The polarization ellipse can be com-
pletely characterized by its orientation ψ and the shape pa-
rameter χ called ellipticity. Hence the polarization state may
be represented by ψ, χ and a parameter S0 proportional to
the total wave intensity, and it can be written in vector form
according to the Stokes vector:2664

S0

S1

S2

S3

3775 =

2664
|Ev|2 + |Eh|2
|Ev|2 − |Eh|2
2<{EvE

∗
h}

2={EvE
∗
h}

3775 =

2664
S0

S0 cos 2ψ cos 2χ
S0 sin 2ψ cos 2χ

S0 sin 2χ

3775

Polarization state on the sphere S2. For a completely
polarized wave, the polarization state can be described by a
point on the Poincaré sphere, noted by ξi ∈ S2. The ra-
dius of the sphere is S0, the intensity of the wave. The lat-
itude of the point corresponds to 2χ and the longitude to 2ψ.
Then the linear polarizations lie on the equator, with hori-
zontal and vertical polarizations opposite each other. More-
over, left-hand circular and right-hand circular polarizations
are placed on the north and south poles respectively. All other
points represent elliptical polarization with certain χ and ψ.
Opposite points on the sphere, antipodal points, represent po-
larizations that are orthogonal to one another and are called
cross-polarizations. To place the polarization on the sphere,
we represent the last three Stokes parameters as components
in a three-dimensional vector space. Fig. 1 provides a typi-
cal example of polarimetric simulated image which has been
used in this paper.



(a) f(x, y) : Z2 → S2 (b) S2

Fig. 1. (a) Image valued on S2 that exemplifies a complex scenario
with three types of targets of different sizes and three clutters. (b)
Image values on the sphere showing the dispersion (noise) for each
object.

3. H−SUPERVISED ORDERING ON S2

For nonlinear image processing on the sphere S2, it is neces-
sary to define a bijective mapping h that establishes a com-
plete lattice structure on set L, i.e., h : S2 → L where, typi-
cally, L can be identified as the real values set. Once an order-
ing is determined for a set R ⊂ S2, morphological processing
can be directly performed. The notion of h-supervised order-
ing was recently introduced in [8]. Let us particularize this
approach to the case of S2 in the context of radar polarimetric
imaging, which involves the notions of target and clutter.
From a nonempty set S of values on S2 (the training set),
which is composed of the subsets T and C, such that S =
T∪C and T∩C = ∅, a h-supervised ordering from S satisfies
the conditions: h(t) = > if t ∈ T , and h(c) = ⊥ if c ∈ C.
where > denotes the maximum element in L, whilst ⊥ refers
to the minimum element of L. Therefore, taking into account
the information contained in the data, we identify: T as the
target training set T ≡ V> = {ti}I

i=1, which is related to
the distribution of values of the image structures we intend to
detect; and C as the clutter training set C ≡ V⊥ = {cj}J

j=1,
which sorts the corresponding background of the scenario to
analyze.

Now, for any subset of values R = {ξk}N
k=1, ξk ∈ S2 we

define the supervised ordering mapping

h(ξk) = K(ξk, T )−K(ξk, C) (1)

where the kernel K(·, ·) : S2 ×
{
S2

}
→ R+ is a function

based on distances between a point ξk and a set of points
(training sets target or clutter). We notice that in that case
h : S2 → R. A first single way consists in characterizing
sets of training T and C by their first order statistics µ◦ (av-
erage on the sphere, we have considered the Fréchet-Karcher
barycenter, detailed in [1, 2]): t = µ◦(T ) and c = µ◦(T ).

Then, an useful value of the target/clutter kernels is obtained
by

K(ξk, T ) = e−
d(ξk,t)

α ; K(ξk, C) = e−
d(ξk,c)

α (2)

where d(ξk, ξ) is the geodesic distance of S2 and α is a nor-
malization parameter. Note that a position on the sphere ξk
has a high value in the ordering function h(ξk) when is lo-
cated close to the target set and far from the set clutter. When
dealing with multimodal clutter, the information from the var-
ious clutters has to be included. Thus, in K(ξk, C) the contri-
butions of all the different clutters should be combined. The
mapping has to be balanced, i.e., for monomodal target train-
ing set, its weight has to be as significant as the combination
of the clutters. Otherwise, points belonging to T are drawn
to the clutter and its values in the ordering function are erro-
neously decreased. Let us assume P different clutters, char-
acterized by their corresponding Fréchet means on the sphere:
C1 = V1

⊥ = {cj}J1
j=1 → c1 = µ◦(C1); C2 = V2

⊥ = {cj}J2
j=1

→ c2 = µ◦(C2); · · · CP = VP
⊥ = {cj}JP

j=1 → cP = µ◦(CP ).
The proposed formulations for computing the kernels are de-
tailed below.

Combination by addition. Having identified all clutter
training sets and characterized them by their Fréchet mean
ci = µ◦(Ci). The kernel for each set is computed individu-
ally, then, for the whole clutter, the values from all the kernels
are added up, i.e.,

K(ξk, C) =
P∑

p=1

K(ξk, Cp) =
P∑

p=1

e−
d(ξk,ci)

α (3)

In order to keep the balance for the target training set, its
corresponding kernel is weighted according to the number of
clutter, i.e.,

K(ξk, T ) = P ·K(ξk,VT ) = P · e−
d(ξk,t)

α (4)

Combination by distance. For a given ξk, we compute
the kernels for each training set Ci and we select the kernel
with the largest value to describe the whole clutter set, i.e.,
such that K(ξk, Cp) > K(ξk, Cp), ∀q 6= p. For the position
ξk, the chosen clutter is the more restrictive and representa-
tive. Due to the fact that the clutter Cp is the closest set to
ξk, i.e. at minimum distance. The kernel referred in Eq. (2) is
used for the training target set.

Combination by grouping. We define a global clutter
set which is the result of lumping together all Ci: C = {C1 ∪
C2 ∪ · · · ∪ CP } = {cj}M

j=1, where M =
∑P

p=1 Jp. The
Fréchet mean of the global set C has no geometrical sense
anymore: as it is located at the barycenter of C, most of the
points belonging to the different original clutter sets would be
far from it, and so, it would not be significant. The distances



accumulated to each element of the set C and of the set T are
computed instead as

K(ξk, C) =
M∑

j=1

1
1 + d(ξk, cj)

;K(ξk, T ) =
I∑

i=1

1
1 + d(ξk, ti)

(5)
Remark that it is necessary that M = I for a balanced map-
ping function. When target is multimodal instead, the same
considerations need to be done, as for both multimodal target
and clutter.

4. MORPHOLOGICAL DETECTORS

We extend here, some of the morphological transforma-
tions using the h-orderings above developed. Let f(x, y) ∈
F(E,S2) be an image valued on the sphere. Given the par-
tial ordering induced by h, denoted by ≤h, the supervised
dilation on the sphere and supervised erosion on the sphere
of an image f(x, y) ∈ F(E,L) are obtained replacing the
operators sup and inf for ∨h and ∧h according to ≤h, i.e.,

δh,B(f)(x, y) = {∨h [f(u, v)] , (u, v) ∈ B(x, y)} (6)
εh,B(f)(x, y) = {∧h [f(u, v)] , (u, v) ∈ B̌(x, y)} (7)

The supervised erosion εh,B(f) typically contracts the struc-
tures of image f with a value on the sphere close to the
training set T of foreground (usually associated to target to
be detected). It also expands the regions close to the training
set C of background (or clutter zones). Dually, the dila-
tion performs an enlargement of the structures located near
foreground and dwarfs the corresponding pre-defined back-
ground.
All the other morphological operators, defined as products
of dilations and erosions are generalized to the supervised
framework of S2.

4.1. Supervised hit-or-miss transformation in S2

In mathematical morphology, hit-or-miss transform (HMT)
is an operation that detects a given configuration or pattern
in a binary image, using the morphological erosion operator
and a pair of disjoint structuring elements. The result of the
hit-or-miss transform is the set of positions, where the first
structuring element has to match in the foreground, while the
second structuring element has to match the background. Let
us denote S1 ⊂ E, S2 ⊂ E the pair of SEs, where S1 ∩ S2 =
0. Then we look for all the positions where S1 fits within a
binary image I and S2 within its complement image Ic. That
can be formulated in terms of the morphological erosion, i.e.,

HMT (I;S1, S2) = εS1(I) ∩ εS2(I
c).

Let us generalize the hit-or-miss transformation to images
valued on the sphere. It can be used to point out and to ex-
tract those structures on an image f(x, y) ∈ F(E,S2) with

a prior known shape and placed on a specific location on the
sphere surface. For the HMT, the first structuring element has
to match in the foreground. Once we have established the
h-supervised ordering for the pair of sets {T,C}, the super-
vised erosion associated to S1 is directly computed. Whereas
matching the background, we induce an inverse ordering by
interchanging the sets V> by V⊥, i.e., {T,C} is treated as
{C, T}. The hit-or-miss transform on the sphere can be writ-
ten as

HMT (f ;S1, S2)(x, y) = εh1,S1(f)(x, y) ∧ εh2,S2(f)(x, y)
(8)

where
h1 = h{T,C}|h(b) = ⊥, h(t) = >}

h2 = h{C, T}|h(b) = >, h(t) = ⊥}

Each structuring element Si has a training set associated
{S1, T}, {S2, C}. Thus, the formulation given in (8) can be
generalized based on the sets of couples {Si, Bi}i=1,··· ,I ,
with all the SEs Si disjoint where the Bi represent the sets
of values on the sphere associated. This approach is widely
explained in [9]. However, we limit here our developments on
the sphere to the HMT formulation for a single pair {T,C}
and a single pair of structuring elements for the target S1 and
for the clutter S2. In the multimodal cases, the different sets
are rather combined while defining the function h of ordering.
We can also include a threshold ε to allow a degree of noise in
the detection. This parameter needs to take the same value for
both erosions, meaning the mapping that defines the ordering
is balanced. More precisely, it is defined by

HMTε(f ;S1, S2)(x, y) = (9)
(εh1,S1(f)(x, y) ∧ εh2,S2(f)(x, y)) < ε

Fig. 2 depicts various examples of HMTε for different types
of targets to be detected over different clutters.

(a) f(x, y) (b) HMT (f ; S1, S2)(x, y) (c) HMT (f ; S′
1, S′

2)(x, y)

Fig. 2. (a) Original image, (b) monomodal target and multimodal
clutter and (c) multimodal target and monomodal clutter.

4.2. Restricted supervised top-hat in S2

A natural extension for the supervised opening on the sphere
is defined as a supervised erosion followed by a supervised



dilation:

γh,B(f)(x, y) = δh,B (εh,B(f)(x, y)) (10)

Its corresponding supervised positive top-hat on the sphere
is the residue between the original image and its supervised
opening:

ρ+
h,B(f)(x, y) = d(f(x, y), γh,B(f)(x, y)) (11)

with d(ξi, ξj) the Riemannian distance on S2. Abrupt changes
in the clutter and targets, smaller than the structuring element
B and different from the ilk intended to detect, are removed
when computing the opening and consequently appears in the
top-hat. They introduce false positive detections, as illus-
trated in Fig. 3(b). A different methodology based on the de-
composition of the sets in h-supervised ordering is proposed.
Let Ti, i = 1, · · · , I the target sets found in the image and
Cj , j = 1, · · · , J the corresponding clutter sets. Moreover,
the type of target expected to be detected conforms the partic-
ular set Tm.
Fixing Tm, marginal orderings can be defined for each pair
{Tm, Cj}, ∀j and {Tm, Ti} ∀i 6= m. According to the anal-
ysis given in Section 3, we can formulate the ordering map-
pings:

hi(ξk) = K(ξk, Tm)−K(ξk, Ti) = e−
d(ξk,tm)

α − e−
d(ξk,ti)

α

hj(ξk) = K(ξk, Tm)−K(ξk, Cj) = e−
d(ξk,tm)

α − e−
d(ξk,cj)

α

with i = 1, · · · , I but i 6= m and j = 1, · · · , J . Hence,
we construct every supervised opening γhl,B(f) according to
every marginal ordering hl, l = 1, · · · , L (with L = I +
J − 1). The difference between the original image and the
supervised openings form the ensemble of marginal top-hats,
ρ+

hl,B
(f)(x, y) = d(f(x, y), γhl,B(x, y)). Now, we can de-

fine the restricted supervised top-hat on the sphere with re-
spect to target Tm as the pixelwise minimum of all the super-
vised top-hats {ρ+

hl,B
}L

l=1:

ρ+
Tm,B(f)(x, y) = min

l=1,··· ,L
{ρ+

hl,B
(f)(x, y)} (12)

False positive detections can appear in some of the
marginal supervised top-hats, its value may be even higher
than the value required for a target. For a structure to be hold
in the restricted supervised top-hat, it has to be present in
all the marginal top-hats ρ+

hl,B
, ∀l with a significant value.

By choosing the minimum, the target expected takes the
lower value found, and detection resolution is deteriorated.
On the other hand, undesired targets and clutter changes are
dismissed as they are not present in all ρ+

hl,B
, ∀l. Fig. 3(c)

illustrates an example of the performance of restricted super-
vised top-hat, in comparison with the marginal ones.

5. CONCLUSIONS AND PERSPECTIVES

Supervised ordering methods proposed in this paper allow an
extension formally correct of the mathematical morphology

(a) f(x, y) (b) ρ+
h,B(f)(x, y) (c) ρ+

Tm,B(f)(x, y)

Fig. 3. (a) Original image, (b) positive top-hat with the h-supervised
ordering and (c) restricted supervised top-hat. Abrupt changes in the
clutter are enhanced and cross form object on the bottom right sight
of the image does not correspond to the set desired targets Tm.

on images valued on S2. A prior knowledge about the kinds
of values in the image is required. If this training set is avail-
able, the associated operators may be extremely accurate in
the target detection.
Since in many practical applications prior information is
limited, strategies capable to automatically determine tar-
gets/clutters in the image should be considered, for example
clustering algorithms on the sphere (e.g. k-means) or statisti-
cal modeling of distributions (e.g. E-M algorithm).
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