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ABSTRACT

The lack of a natural ordering on the sphere presents an inher-
ent problem when defining morphological operators extended
to unit sphere. We analyze here the notion of averaging over
the unit sphere to obtain a local origin which can used to for-
mulate ordering based operators. The notion of local supre-
mum and infimum is introduced, which allows to define the
dilation and erosion for images valued on the sphere. The
algorithms are illustrated using polarimetric images.

Index Terms— mathematical morphology, supremum on
sphere, polarimetric image processing

1. INTRODUCTION

Mathematical morphology is a well-known nonlinear ap-
proach for image processing [8]. It is based on the calcu-
lation of minimum and maximum values of local neighbor-
hoods [10] . Computation of the supremum and infimum
of a set of points requires defining an ordering relationship
between them. It is obvious that there is no natural ordering
on the unit (hyper-)sphere. In fact, the sphere is probably one
of the more complex geometrical objects for the notion of
ordering and consequently for the computation of rank values
such as the supremum/infimum. Mathematical morphology
operators were extended to the unit circle [5], however the
generalization of such results to the unit (hyper-)sphere is not
straightforward. By the way, averaging data on the sphere is
also an active research [1, 3].

The values on the unit sphere may represent different
kinds of physical information. In imaging applications, the
most classical case is the orientation images. In modern med-
ical imaging, High Angular Resolution Imaging (HARDI)
produces also images with values on the sphere. Nevertheless
the application domain studied is the polarimetric radar data
defined on spatial support.

The notion of supremum in vector spaces is usually as-
sociated to a marginal computation of maximum coordinates,
which involves also a value which has maximal Euclidean dis-
tance to the origin [9, 11]. The latter considered as the small-
est element of the space. A possible solution to deal with S2
will consist just in defining a local origin on the sphere and

try after projecting on the tangent space, compute a vector-
like supremum.

This is the idea which is introduced in this article. The
approach induces a partial ordering “adapted” to a particular
set of values on the sphere, and it is related to the definition
of a barycenter, which allows defining a local Euclidean co-
ordinate system.

2. FRÉCHET - KARCHER BARYCENTER ON S2

The Fréchet mean is defined as the value minimizing the sum
of squared distances along geodesics on Riemannian mani-
folds [4, 6], i.e., for a given set of points R = {⇠i}Ni=1 on the
sphere, we have

µ

�
(R) = argmin

⇠2S2

N
X

i=1

d(⇠i, ⇠k)
2 (1)

The problem of computation of the Fréchet mean on the
sphere µ

� is usually solved using a gradient descent method
as proposed by Karcher [6]. Some of the properties of unicity
were particulary studied in [1]. The method to estimate the
Fréchet mean on a sphere consists first projecting the points
⇠i 2 S2 onto a tangent plane TytS2 at an initial point yt 2 S2
by an inverse projection
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where ~⌫i 2 R3. Then, an expectation E[·] is calculated on the
tangent plane TytS2 and projected back onto S2 by a projec-
tion expyt

, i.e.,
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For the unit sphere S2 , with the Riemannian metric in-
duced by the Euclidian metric on R3, the inverse exponential
map (or logarithmic map) is given by [2]

exp

�1
y (⇠) = [1� (y · ⇠)2]�1/2

(⇠ � (y · ⇠)y)) arccos(y · ⇠)
(4)

where y, ⇠ 2 S2. The explicit expression for the exponential
map is [2]

expy(~⌫) = cos(k~⌫k)y + sin(k~⌫k) ~⌫

k~⌫k (5)
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where ~⌫ 2 TyS2 and ~⌫ 6= (0, 0, 0).
Using t as an iteration index, Eq. (2) and (3) leads to a

gradient descent iterative algorithm Choosing an appropriate
starting point y0 the algorithm converges within a few itera-
tions to the Fréchet mean: yT = µ

�
(R) such that yT+1 =

yT .

3. SUPREMUM AND INFIMUM ON S2

Algorithms to determine supremum and infimum values for
a set of points lying on S2 are introduced in this section.
They are applied to the corresponding sup and inf operators
found in the definitions of dilation and erosion, which lead to
pseudo-dilation and pseudo-erosion for image valued on S2.

Supremum. Let R = {⇠i}Ni=1 be a set of points lying on
the sphere surface. First, the Fréchet mean of the set is com-
puted, as explained in Section 2: ¯

⇠ = µ

�
(R). Considering

this center as the origin of R, we use it to carry out a rotation
on S2 of each point belonging to the set R. The barycenter is
moved to the “north pole”, N = (0, 0, 1), and this translation
completely describes the axis and the angle needed to deter-
mine the rotation matrix MN(

¯

⇠), which is then applied to all
the points for the points of R:

⇠i 7! ˜

⇠i = MN(

¯

⇠) · ⇠Ti 8⇠i 2 R (6)

where T is the transpose operator and ˜ indicates the loca-
tion coordinates once rotated. Therefore, all ˜

⇠i 2 ˜

R and
˜

¯

⇠ = (0, 0, 1), the previously computed Fréchet mean, are
placed around N, preserving the same configuration they had,
see Fig. 2.

Next step, all ˜⇠i 2 ˜

R will be projected to the space tangent
at N, denoted TNS2, using the expression referred in Eq. (4).
Let us denote by ~⌫i = (⌫1,i, ⌫2,i, ⌫3,i) are the projected points
on TNS2:

~⌫i = exp

�1
˜̄⇠
(

˜

⇠i) (7)

Thus, having N = (0, 0, 1) as the projection point leads to
a tangent plane contained in R2, i.e., TNS2 ⇢ R2 such that
⌫3,j = 0, 8j. The smallest box that may contain these points
in TNS2 is defined by its four corners, obtained as the mini-
mum and maximum values of each of the coordinates for both
axes, and the combinations between them, i.e., _⌫1,i, ^⌫1,i
and _⌫2,i, ^⌫2,i, see Fig. 1. We consider these four points as
the four candidates to calculate the supremum:

~⌫sup 2 {~⌫⇤
1 = (_⌫1,i,_⌫2,i),~⌫⇤

2 = (^⌫1,i,^⌫2,i),

~⌫

⇤
3 = (_⌫1,i,^⌫2,i),~⌫⇤

4 = (^⌫1,i,_⌫2,i)}

Then, we select as supremum the one furthest from ˜

¯

⇠. As ˜

¯

⇠

in tangent space TNS2 corresponds to the origin (0, 0), it is
equivalent to say that ~⌫sup is the corner of the box having the
largest norm, i.e.,

~⌫sup = argmax

j=1,··· ,4
k~⌫⇤j k (8)
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Fig. 1. Tangent plane TNS2, with all the projected points ~⌫i. We
note that ˜̄⇠, in green, is found at the origin. The red dots are the four
candidates ~⌫⇤

j , j = 1, · · · , 4, and the yellow one is the furthest from
the origin ~⌫sup.

Now, ~⌫sup is projected back to the sphere, according to
Eq. (5):

˜

⇠sup = exp ˜̄⇠
(~⌫sup) (9)

and finally moved to its corresponding location by reversing
the rotation:

�
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T · ˜⇠Tsup (10)

An example of the complete algorithm is given in Fig. 2.

Fig. 2. Original set R of points (in blue), and its Fréchet mean in
green. The result of the rotation of the set to N and how ~⌫sup is
projected back to the sphere and the rotation is reversed, in yellow
the value of the supremum.

Infimum. The method proposed to calculate the infimum
is similar to the one presented for the supremum. In fact, we



will introduce a duality in TNS2 which is associated to the
inversion of coordinates.

We start by the same steps as for the supremum: after
computing the Fréchet mean Eq.(3), and performing the ro-
tation of the set Eq.(6), all ˜⇠i 2 ˜

R are projected to the plane
tangent at N using Eq.(7).

Now, the coordinates of each ~⌫i lying on TNS2 are in-
verted to obtain a set of point given by

~
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Computing the maximum and minimum for inverted coordi-
nates ✓1,i and ✓2,i, i = 1 · · ·N , it is obtained, as for the supre-
mum, the four candidates to the infimum:
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and the one furthest from the Fréchet mean is chosen:

~
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j=1,··· ,4
k~✓⇤j k (12)

The coordinates of the point ~✓inf are reinverted to obtain
the infimum in original tangent space TNS2:

~⌫inf =

✓
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,
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, 0
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and then, ~⌫inf on TNS2 is projected back onto the sphere:

˜

⇠inf = exp ˜̄⇠
(~⌫inf ) (13)

In the last step, the infimum for R is obtained once the rota-
tion is undone:
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It may be mentioned that when including all the points in
a rectangular box, an extension of 2D Euclidean balls is con-
ducted. The corresponding boxes conform the minimum solid
angle including all the points for the supremum and the max-
imum solid angle including just the Fréchet mean for the in-
fimum. Although the physical meaning is unclear, it is worth
indicating the geometric consistency with classical topology
definitions.

Definition of sup/inf-based operators. Given an image
valued on the sphere f(x, y) 2 F(E, S2), we introduce the
flat pseudo-dilation on the sphere as the operator defined by
8
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where B defines the shape of the structuring element and W

is the window used for computing the Fréchet mean ¯

⇠. Simi-
larly, the flat pseudo-erosion on the sphere is defined by
8
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(16)
They are referred as “pseudo-dilation” (resp. “pseudo-
erosion”) because, although its behavior is intuitively co-
herent with the classical dilation (resp. erosion), they are
not fully equivalent. More precisely, the distributivity and
associativity properties are not satisfied for the operators (15)
and (16) described above. These limitations are well known
for the “locally adaptive” operators [7]; we note that here the
adaptavility appears in the computation of the local origin.

4. APPLICATION OF MORPHOLOGICAL
PROCESSING ON S2

Using the pseudo-dilation and pseudo-erosion on the sphere
as basic bricks, other derived morphological operators can
be extended to images valued on the sphere. Using the pro-
posed formulations on the sphere for pseudo-dilation (15) and
pseudo-erosion (16), we define the morphological gradient on
the sphere of image f 2 F(E, S2) as their difference image:
g
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W,B(f)(x, y) = d

�

�

�
W,B(f)(x, y), "

�
W,B(f)(x, y)

�

, where
d(⇠i, ⇠j) is the Riemannian distance on S2. In mathematical
morphology, opening and closing are two key transforma-
tions for filtering purposes, both derived from erosion and
dilation by their direct products. Now, using the correspond-
ing expressions detailed on the sphere, we shall define the flat
pseudo-opening on the sphere of an image f 2 F(E, S2)
as the flat pseudo-dilation (15) applied on the resulting
pseudo-erosion (16) of the original image f , i.e., ��

W,B(f) =

�

�
W,B

�

"

�
W,B(f)

�

. Similarly, the flat pseudo-closing on the
sphere is defined as '

�
W,B(f) = "

�
W,B

�

�

�
W,B(f)

�

. The in-
terpretation of these operators is exactly the same as for
the opening/closing of grey-level images: opening removes
objects from the foreground smaller than the structuring ele-
ment and closing eliminates small holes in the background.
Once the pseudo-opening and pseudo-closing on the sphere
have been well-defined, we can also generalize the corre-
sponding residue-based operators. Indeed the white top-
hat on the sphere is the residue between the original image
and its pseudo-opening transformation: ⇢

+,�
W,B(f)(x, y) =

d

�

f(x, y), �

�
W,B(f)(x, y)

�

. Similarly, the black top-hat on
the sphere is the residue between the original image and its
pseudo-closing. As for the grey-level case, the white (resp.
black) top-hat allows extracting the image structures which
have been removed by the opening (resp. the closing).

For the examples given in Fig. 3, each pixel denotes a po-
larization state (ie., a point lying on the sphere surface) or
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Fig. 3. Top, examples of pseudo-dilation (b), and pseudo-erosion
(c), of image f(x, y) 2 S2, given in (a), and its derived morpholog-
ical operators. Bottom, zoomed-in part of images. The structuring
element Bn is a square of 5⇥5 pixels and W is a square of 55⇥55.
Note that for the gradient and the top-hat images, the result is the
given scalar image.

more generally an ellipsoid describing the distribution of gra-
dient directions. We point out that the performance of the de-
scribed operators remains consistent with the definitions for a
grey-level image.

5. CONCLUSIONS AND PERSPECTIVES

We have explored a novel approach to the computation of
supremum and infimum of a set of points on S2, which is
based on the notion of local origin to obtain the best tan-
gent space where the supremum and infimum are computed
as a vector notion. This methodology seems interesting from
a practical viewpoint since the obtained morphological fil-
ters produce useful results. There are some questions which
should be explored in detail in subsequent studies. On the

one hand, it should be proved that this local approach is more
appropriate than a global one, typically computing the supre-
mum and infimum in the space associated to the stereographic
projection. On the other hand, there are some limited invari-
ance properties of the supremum and infimum which are due
to the computation in a rectangular box. It seems more in-
teresting to consider a Euclidean ball (i.e., the supremum can
be the point of the minimum enclosing ball which have the
largest norm). A deeper study on the mathematical properties
of the proposed pseudo-dilation and pseudo-erosion is also
required.
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