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Abstract—Classical target detection schemes are usually ob-

tained deriving the likelihood ratio under Gaussian hypothesis

and replacing the unknown background parameters by their

estimates. In this paper, the adaptive versions of the classical

Matched Filter and the Normalized Matched Filter are analyzed

for the case when the mean vector of the background is unknown

and has to be estimated jointly with the covariance matrix, as it

is the case in hyperspectral imaging. More precisely, theoretical

closed form expressions for false-alarm regulation are derived

and these results are extended to non-Gaussian cases using

robust estimation procedures. Finally, simulations validate the

theoretical contribution.

I. INTRODUCTION

Target detection tasks arise in many different military and
civilian applications and have been widely investigated in
several signal processing domains such as radar, sonar, com-
munications, etc. In many applications, signals are assumed to
be Gaussian with zero mean or with a known mean vector that
can be removed. In such context, Statistical Detection Theory
[1] has led to several well-known algorithms, for instance
the Matched Filter (MF) and its adaptive versions, the Kelly
Detector [2] or the Adaptive Normalized Matched Filter [3].

This paper addresses the problem of target detection in
Hyperspectral Imaging (HSI). HSI extends from the fact that
for any given material, the amount of radiation emitted varies
with wavelength. HSI sensors measure the radiance of the
materials within each pixel area at a very large number of
contiguous spectral bands and provide image data containing
both spatial and spectral informations. Hyperspectral target
detection and anomaly detection may be used to locate targets
that generally cannot be detected using only spatial resolution
[4]. In this case, data represent reflectance values, and hence,
both covariance matrix and mean vector have to be estimated
to model the background in the detection process.

This work deals with the classical Adaptive Matched Filter
(AMF) and the Adaptive Normalized Matched Filter (ANMF).
Both detectors have been derived under Gaussian assumptions
and benefit from great popularity in HSI target detection
literature, see e.g. [5], [6]. To evaluate the detector perfor-
mance, the classical process, according to the Neyman-Pearson
criterion is first to regulate the false-alarm, by setting is
a detection threshold for a given probability of false-alarm

(PFA). Then, the probability of detection is evaluated for
different Signal-to-Noise Ratios (SNR). Therefore, keeping the
false-alarm rate constant (CFAR) is essential to set a proper
detection threshold. The aim is to build a CFAR detector which
provides detection thresholds that are relatively immune to
noise and background variation, and allow target detection
with a constant false-alarm rate. The theoretical analysis of
CFAR methods for adaptive detectors is a challenging problem
since in adaptive schemes, the statistical distribution of the
detectors is not always available in a closed-form expression.
The main contribution of this article is the exact derivation of
the distribution of the proposed detection schemes under null
hypothesis where the mean of the background is unknown an
has to be estimated. Through Gaussian assumption, closed-
form expressions for the false-alarm regulation are obtained,
i.e. they allow to theoretically set the detection threshold for
a given PFA.

Since Gaussian assumption is not always valid for real
hyperspectral data, alternative robust estimation techniques are
proposed in this work. They can be used jointly with the
ANMF detection test to obtain good detection performance.
Due to the lack of space, only the Fixed Point (FP) estimators
(also called Tyler’s estimators [7]) are used as an alternative
to the Sample Covariance Matrix (SCM) and the Sample
Mean Vector (SMV). The resulting detection performance are
analyzed and are shown to be similar than those obtained
with the SCM-SMV under Gaussian assumptions while they
overcome under non-Gaussian contexts.

This paper is organized as follows. Section II introduces
the required background on classical detection techniques,
while Section III provides the main contribution by deriving
the exact ”PFA-threshold” relationship for both the AMF and
the ANMF under Gaussian assumption. Then, in Section IV,
simulations validate the theoretical analysis while conclusions
and perspectives are given in Section V.

II. BACKGROUND

A. Complex Normal distributions

A m-dimensional vector x = u+ jv has a complex normal
distribution with mean µ and covariance matrix ⌃ = E[(x�
µ)(x � µ)H ], denoted CN (µ,⌃), if z = (u

T ,vY
)

T 2 R2m



has a normal distribution [8]. If rank(⌃) = m, the probability
density function exists and is of the form

f
x

(x) = ⇡�m|⌃|�1
exp{�(x� µ)H⌃

�1
(x� µ)}.

The resulting Maximum Likelihood Estimates (MLE) are the
well-known SCM and SMV defined as:

ˆµSMV =

1

N

NX

i=1

xi
ˆ

⌃SCM =

1

N

NX

i=1

(xi � ˆµ)(xi � ˆµ)H

where the xi are independent and identically distributed (IID)
CN (µ,⌃).

B. Target Detection Schemes
The problem of the detecting a known signal s corrupted

by an additive noise b in a m-dimensional complex vector x

can be stated as a the following binary hypothesis test:
(
H0 : x = b xi = bi , i = 1, . . . , N

H1 : x = s+ b xi = bi , i = 1, . . . , N,

where the xi are the so-called secondary data (signal-free)
used to estimate the noise parameters.

1) Adaptive Matched Filter: the MF detector is the optimal
linear filter for maximizing the SNR in the presence of additive
Gaussian noise with known parameters [1] and takes the form:

⇤MF =

|pH
⌃

�1
(x� µ)|2

(p

H
⌃

�1
p)

H1

?
H0

� .

Note that it differs from the classical MF by the term µ, the
background mean, but without any consequence since x �
µ ⇠ CN (0,⌃). Moreover, the ”PFA-threshold” relationship
is given by:

PFAMF = exp (��).

The AMF, denoted ⇤

(N)
AMF

⌃̂

to underline the dependency with
N , is usually built replacing the covariance matrix ⌃ by its
estimate ˆ

⌃ obtained from the N secondary data. The mean
vector is generally supposed to be known. Thus, the adaptive
version becomes:

⇤

(N)
AMF

⌃̂

=

|pH
ˆ

⌃

�1
(x� µ)|2

(p

H
ˆ
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�1
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H1
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� .

Then, the theoretical ”PFA-threshold” relationship is given by
[9]:

PFAAMF
⌃̂

= 2F1

✓
N �m+ 1, N �m+ 2; N + 1; � �

N

◆
,

(1)
where 2F1(·) is the hypergeometric function [10].

2) Adaptive Normalized Matched Filter: The Normalized
Matched Filter (NMF) is obtained when considering that the
covariance matrix is different under the two hypotheses. That
is to say that the clutter has the same covariance structure
but different variance. Therefore, a canonical detector, relying
on a generalized likelihood ratio design approach, is the one
implementing the following test [11] :

⇤NMF =

|pH
⌃

�1
(x� µ)|2

(p

H
⌃

�1
p)

�
(x� µ)H ⌃

�1
(x� µ)

�
H1

?
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�,

for which one has [11] :

PFANMF = (1� �)(m�1) .

The ANMF is generally obtained when the unknown noise
covariance matrix is replaced by an estimate [12]:

⇤

(N)
ANMF
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And the PFA follows [12]

PFAANMF
⌃̂

= (1� �)a�1
2F1(a, a� 1; b� 1;�) , (2)

where a = N �m+ 2 and b = N + 2.

III. MAIN RESULTS

Let us now assume that the mean parameter is unknown as
it is the case in HSI.

A. Preliminary results: Wishart distribution

Let x1, ...,xN be an IID N -sample, where xi ⇠ CN (µ,⌃).
Let us define ˆµ =

ˆµSMV and ˆ

W = N ˆ

⌃SCM referred to as
a Wishart matrix. Thus one has (see [13] for the real case):

• ˆµ and ˆ

W are independently distributed;
• ˆµ ⇠ CN (µ, 1

N⌃);
• ˆ

W ⇠ CW(N � 1,⌃) is Whishart distributed with N � 1

degrees of freedom

B. Adaptive Matched Filter Detector

When both covariance matrix and mean vector are unknown
and have to be estimated from the secondary data, the AMF
detector takes the following form:

⇤

(N)
AMF

⌃̂,µ̂ =

|pH
ˆ

⌃

�1
(x� ˆµ)|2

(p

H
ˆ

⌃

�1
p)
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?
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�

Proposition III.1 The theoretical relationship between the
PFA and the threshold is given by

PFAAMF
⌃̂,µ̂ = 2F1
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N � 1

◆
,

(3)
where �0

=

(N�1)2

N2 �

Before turning into the proof, let us comment on this result.
Interestingly, this detector also holds the CFAR property in
the sense that its false-alarm expression depends only on the
dimension m and on the number of secondary data N , but not
on the noise parameters µ and ⌃. Note that the only effect of
estimating the mean is the loss of one degree of freedom and
the modification of the threshold compared to eq. (1).

Proof: First, let us denote, for xi ⇠ CN (µ,⌃)

ˆ

WN�1 =

NX

i=1

(xi � ˆµ)(xi � ˆµ)H ⇠ CW(N � 1,⌃),

Since ˆµ ⇠ CN (µ, 1
N⌃), one has x � ˆµ ⇠ CN (0, N+1

N ⌃).
This can be equivalently rewritten as

p
N/(N + 1)(x� ˆµ) ⇠ CN (0,⌃).



Now, let us set y =

q
N

N+1 (x� ˆµ) with y ⇠ CN (0,⌃).
When computing the SCM, one has

ˆ

⌃SCM =

1

N

NX

i=1

(xi � ˆµ)(xi � ˆµ)H =

1

N
ˆ

WN�1.

As we jointly estimate the mean and the covariance matrix,
we lose a degree of freedom compared with the only covari-
ance matrix estimation problem.

Let us now consider the classical AMF test (i.e. µ known)
built from N�1 secondary data, rewritten with ˆ

WN�1 instead
of the SCM estimate:

⇤

(N�1)
AMF

⌃̂

= (N � 1)

|pH
ˆ

W

�1
N�1 y|2

(p

H
ˆ

W

�1
N�1 p)

,

where y ⇠ CN (0,⌃) and whose ”PFA-threshold” relationship
is given by eq. (1) where N is replaced by N � 1.

For the joint estimation problem, the AMF can be rewritten
as:

⇤

(N)
AMF

⌃̂,µ̂ = N
|pH

ˆ

W

�1
N�1 (x� ˆµ)|2

(p

H
ˆ

W

�1
N�1 p)

= N
N + 1

N

|pH
ˆ

W

�1
N�1 y|2

(p

H
ˆ

W

�1
N�1 p)

=

(N + 1)

(N � 1)

⇤

(N�1)
AMF

⌃̂

where (x� ˆµ) has been replaced by
p
N + 1/N y with y ⇠

CN (0,⌃), as previously.
Hence, one can determine the false-alarm relationship:

PFAAMF
⌃̂,µ̂ = P

⇣
⇤

(N)
AMF

⌃̂,µ̂ > �|H0

⌘

= P
 
(N + 1)

(N � 1)

⇤

(N�1)
AMF

⌃̂

> �|H0

!

= P(⇤(N�1)
AMF

⌃̂

> �0|H0)

where �0
=

(N�1)
(N+1)�, which leads to the conclusion.

C. Adaptive Normalized Matched Filter

Similarly, the ANMF for both mean vector and covariance
matrix estimation becomes:

⇤ANMF
⌃̂,µ̂ =

|pH
ˆ

⌃

�1
(x� ˆµ)|2

(p

H
ˆ

⌃

�1
p)

⇣
(x� ˆµ)H ˆ

⌃

�1
(x� ˆµ)

⌘
H1

?
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Proposition III.2 The theoretical relationship between the
PFA and the threshold is given by

PFAANMF
⌃̂,µ̂ = (1� �)a�1

2F1 (a, a� 1; b� 1;�) , (4)

where a = (N � 1)�m+ 2 and b = (N � 1) + 2

Proof: The proof is similar to the proof of Proposition
III.1. The main difference is due to the normalization term
(x � ˆµ)H ˆ

⌃

�1
(x � ˆµ). Indeed, the correction factor (N +

1)/N appears both at the numerator and at the denominator,
and consequently, it disappears. The same argument is also

true for the factor N that arises from the covariance matrix
estimates, i.e. since the detector is homogeneous in terms of
covariance matrix estimates, this scalar also disappears. Thus,
the distribution of the ANMF with an estimate of the mean is
exactly the same as in eq. (2) where N is replaced by N � 1.

Remark that the derived relationships given by eqs. (3)
and (4) are quite similar to those for which the mean is
known. However, as illustrated in Fig. 1, there is an important
difference for small values of N .

D. ANMF built with Robust Estimates

If the background do not fulfill the Gaussian hypotheses,
the detector performance can be deteriorated increasing the
false-alarm rate. To take into account the heterogeneity and
non-Gaussianity for background modeling, a possible way is
to use of the ANMF test built with robust estimates.

The Fixed Point (FP) estimators [7] satisfy the following
implicit equations:

ˆµFP =

NX

i=1

xi

d
1/2
i

NX

i=1

1

d
1/2
i

, ˆ

⌃FP =

m

N

NX

i=1

(xi � ˆµFP ) (xi � ˆµFP )
H

di

where di = (xi � ˆµFP )
H
ˆ

⌃

�1

FP (xi � ˆµFP ).
The FP estimators have been widely investigated in statistics

and signal processing literature. We refer to [14] for a detailed
performance analysis. It can be shown that the ˆ

⌃FP asymp-
totically behaves as the ˆ

⌃SCM when the mean is unknown,
i.e. for N sufficiently large, ˆ

⌃FP behaves as a Wishart matrix
with m

m+1 N degrees of freedom. Due to the lack of space, the
proof of this result is postponed to a futher paper.
Thus, for N sufficiently large the ”PFA-threshold” relationship
is given by:

PFAANMF�FP = (1� �)a�1
2F1(a, a� 1; b� 1;�) , (5)

with a =

m
m+1 (N � 1)�m+ 2 and b = m

m+1 (N � 1) + 2.

IV. SIMULATIONS

In this section, we validate the theoretical analysis on
simulated data. The experiments were conducted on m = 5

dimensional Gaussian vectors, for N secondary data and the
computations have been made through 10

6 Monte-Carlo trials.
Fig. 1 shows the false-alarm regulation for the MF, the AMF

when only covariance matrix is unknown and the AMF for
both covariance matrix and mean vector unknown. The perfect
agreement of the green and yellow curves illustrates the results
of Proposition III.1. Moreover, remark that when N increases
both AMF get closer to each other, and they approach the
known parameters case MF.

Fig. 2 presents the FA regulation for the ANMF under
Gaussian assumption, for both the FP estimates and the
SCM-SMV. This validates results of Proposition III.2 for the
SCM-SMV while it shows that the correcting factor used for
FP estimates (eq. (5)) allows to perfectly regulate the FA,
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Fig. 1: PFA versus threshold for the AMF when
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(2) only µ is known (gray and blue curves)
(3) Proposition III.1: both µ and ⌃ are unknown (yellow and
green curves)
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Fig. 2: PFA versus threshold for the ANMF under a Gaussian
distribution for m = 10 and N = 50 when
(1) Proposition III.2: the SCM-SMV are used
(2) the FP estimates are used (yellow and green curves)

even in Gaussian context. Under a K-distribution, as shown
on fig. 3, the theoretical ”PFA-threshold” relationship is in
perfect agreement with the Monte-Carlo simulations for the
FP estimates while for the SCM-SMV, the regulation is not
valid anymore (since the Gaussian assumption is not respected
anymore). Notice that on both Gaussian and K-distribution
contexts, the FA regulation for the FP estimates leads to the
same results.

V. CONCLUSION

Two adaptive detection schemes, the AMF and the ANMF,
have been analyzed in the case where both the covariance
matrix and the mean are unknown and need to be estimated.
In this context, theoretical closed-form expressions for false-
alarm regulation have been derived user Gaussian assumptions
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Fig. 3: PFA versus threshold for the ANMF under a K-
distribution for m = 10 and N = 50 when
(1) the SCM-SMV are used (red and black curves)
(2) the FP estimates are used (yellow and green curves)

for the SCM-SMV estimates. Then, these results have been
extended to the non-Gaussian case through the FP estimates.
Finally, the theoretical analysis has been validated through
simulations.
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