Facing current and future calibration/imaging challenges of the Square Kilometre Array (SKA)

Most slides are stolen from O. Smirnov with his approval

Why Interferometry?

- Aperture size *D* is crucial:
 - \square Resolution ~ λ / D
 - Sensitivity $\sim D^2$
- Very poor resolution in radio due to long wavelengths
- SALT resolution: ~1000 km radio dish?

A Typical Telescope

- A digital camera with delusions of grandeur
- Lens = mirror (metal reflects radio), focuses incoming radiation on a detector
- *D* = aperture size
- Biggest optical scopes today: D~10 m

Wavelength Matters

- Longer wavelength
 poorer resolution
- At 21cm, a radio telescope would need to be miles across to match just a human eye's resolution...
- Biggest we have is 300m (Arecibo), and even that took some "cheating"...

resolution $\sim \lambda/D$

Aperture Synthesis To The Rescue

- Radio wavelengths are very large compared to visible light
 - >1,000,000 times longer
- Therefore, a single radio telescope has very poor angular resolution
 - 25m dish ~ size of the full Moon
 - Single "pixel" feeds (the detectors need to be correspondingly large!)
- 1950-60s: Sir Martin Ryle's group at Cambridge developed the technique of *aperture synthesis interferometry*, which worked around this problem.

Start with a normal reflector telescope....

• Then break it up into sections...

Replace the optical path with electronics

- Move the electronics outside the dish
- ...and add cable delays

- And now replace them with an *array* of proper radio dishes.
- ...and that's all! (?)
- Well almost, what about the other pixels?

How Does Optical Imaging Do It?

How Does Optical Imaging Do It?

How Does Optical Imaging Do It?

Fourier Transforms

The world's fastest computer for doing Fourier transforms

- An optical imaging system implicitly performs two Fourier transforms:
 - 1. Signal over the aperture = FT of the sky
 - 2. Signal over focal plane = inverse FT of the aperture
- A radio interferometer array measures (1)
 - Then we do the second FT in software
 - Hence, "aperture synthesis"

The Fourier (aka uv-) Plane

- The Fourier plane (*uv-plane*) is a mathematically equivalent representation of the *image* plane, we can recover one from the other via Fourier transforms
- One pair of antennas (baseline) samples one point in the uv-plane (one complex visibility)
- An optical system (e.g. your eye) samples the entire plane at once

The Fourier (aka uv-) Plane

- The Fourier plane (*uv-plane*) is a mathematically equivalent representation of the image plane, we can recover one from the other via Fourier transforms
- One pair of antennas (baseline) samples one point in the uv-plane (one complex visibility)
- An optical system (e.g. your eye) samples the entire plane at once

Earth Rotation Aperture Synthesis

- Each baseline samples one uv-point
- An array of N antennas will sample N(N-1)/2 points
- This is usually <u>not</u> enough to recover a good image, but...
- As the Earth rotates, each baseline's uv-point is rotating as well

 $\sim \lambda/B$

- ...while the Universe is (mostly) still
- Over several hours, we can sample most of the *uv*-plane with even a modest number of antennas
- Resolution determined by longest baseline:

Some Real-Life Arrays: WSRT

- WSRT (Westerbork Synthesis Radio Telescope), The Netherlands
- 14x25m dishes on an East-West line
- Max baseline 2.7km
- Completed 1970, upgraded since
- World record dynamic range, still

Some Real-Life Arrays: JVLA

- JVLA (Karl G. Jansky Very Large Array), New Mexico, USA
- 27x25m dishes
- Reconfigurable (via rail tracks) to a longest baseline of 36km

- Completed in 1980 (as simply the "VLA"), recently upgraded and renamed
- The most successful radio telescope in the world, in terms of science produced

Some Real-Life Arrays: LOFAR

- Low Frequency Array (LOFAR)
- 36 stations (not dishes!) across
 The Netherlands
- 8 (and counting) international stations
- Inaugurated 2010

Some Real-Life Arrays: EVN & VLBA

- [not only] European VLBI (Very Long Baseline Interferometry) Network
- Connects radio telescopes around the world into an ad hoc interferometer
- Baselines of thousands of kilometres
- US analogue: VLBA (Very Long Baseline Array)
- African VLBI project will fill in the North-South gaps

Future Arrays: MeerKAT (2016)

- 64x13.5m dishes, 8km longest baseline
- Now under construction in the Karoo

SKA (2024)

- Dish component: ~3000x15m dishes (= 1 km²)
 - Half of them within a 5km "core" in the Karoo
- Longest baselines to 3000 km
- 2020: Phase One (SKA1) with 250 dishes (incorporates MeerKAT)

What Is The SKA?

- The Square Kilometre Array will be the biggest radio telescope in the world, and one of the biggest and most challenging projects in science
 - The SKA Organization: Australia, Canada, China, Germany, Italy, Netherlands, New Zealand, South Africa, Sweden, UK
- Cost R20+ billion
- On 25 May 2012, the SKA Organisation announced that the SKA would be jointly sited in South Africa and Australia, with ~70% coming to South Africa

Why SKA?

- Aperture synthesis has nailed the *resolution* problem
 - VLBI (and Space VLBI) routinely achieves higher res than optical astronomy
- Sensitivity still limited by collecting area D^2

SKA Components

- SKA is actually three instruments in one, for three frequency ranges
 - SKA-Low: sparse aperture arrays, 70-500 MHz, Australia
 - SKA-Mid: dense aperture arrays, 500-800 MHz, South Africa
 - SKA-Dishes: 500 MHz 10 GHz, South Africa
- SKA-Low is about 30% of the instrument

SKA numbers

FoV	1°x1° @ 21 cn

- Ang. Res. <0.1" @ 21 cm
- Data flow ~1 TB / min
- Ang. Res. <0.1" @ 21 cm
 - Freq 50 MHz to 14 GHz
 - λ 6 m to 2.1 cm

SKA1 LOW - the SKA's low-frequency instrument

The Square Kilometre Array (SKA) will be the world's largest radio telescope, revolutionising our understanding of the Universe. The SKA will be built in two phases - SKA1 and SKA2 starting in 2018, with SKA1 representing a fraction of the full SKA. SKA1 will include two instruments - SKA1 MID and SKA1 LOW - observing the Universe at different frequencies.

PSKA Decen

uane Kilometre Arris

SQUARE KILOMETRE ARRA

SKA1 MID - the SKA's mid-frequency instrument

The Square Kilometre Arrey (SKA) will be the world's largest radio telescope, revolutionising our understanding of the Universe. The SKA will be built in two phases - SKA1 and SKA2 starting in 2018, with SKA1 representing a fraction of the full SKA. SKA1 will include two instruments - SKA1 MID and SKA1 LDW - observing the Universe at different frequencies.

mmmmm Frequency range: 350 MHz to ~200 dishes 14 GHz Location: South Africa Total collecting area: 33,000m² or Maximum distance 126 between dishes: tennis 150km courts $\mathbf{Q}\mathbf{Q}$ Total raw data output: \mathbf{C} 2 terabytes per second 62 exabytes per year SKA1 MID \mathbf{Q} Enough to fill x340.000 0,000 average laptops with content every day Compared to the JVLA, the current best similar instrument in the world **4**x 60x 5x the more the survey solution sensitive speed

v skatelesope org 📑 Square Kilometre Arrey 🔽 ØSKA telescope. 🔛 🖬 ன The Square Kilometre Array

SKA Headline Science

- Probing the Dark Ages
- Galaxy evolution, cosmology and dark energy
- Cosmic magnetism
- Strong field tests of gravity ("Was Einstein Right?")
- The Cradle Of Life

Probing The Dark Ages

 Direct imaging of HI at extremely high redshift (i.e. at <200 MHz – down from 1420!) will open a window on the Epoch of Reionization (EoR)

Galaxy Evolution, Cosmology, Dark Energy

HI is the main ingredient of galaxies, and can be observed unobscured. "Cosmic census": how do galaxies form and evolve?

On very large scales, galaxies tend to form in sheets and filaments of a "cosmic web".

Can be observed in HI, with redshifts giving a 3D view!

Cosmic Magnetism

- Magnetic fields are vital ingredients of many astrophysical phenomena
- ... yet the origin, evolution and structure of cosmic magnetism is still unclear
- At SKA sensitivities, can be probed with very accurate radio polarization measurements

The Cradle Of Life

- The SKA will be able to image dust-obscured protoplanetary disks, thus directly observing the process of planet formation
- Astrobiology: detection of complex molecules, study of prebiotic chemical evolution in interstellar clouds
 - Sensitive enough to detect airport radar up to ~50 light years away

Gravitational Waves & Strong Field Tests

 A "timing array" of pulsars should allow for direct observation of gravitational waves

 Double pulsars and pulsars near black holes probe extreme gravitational regimes – if Einstein was wrong, this is where we find out.

Challenges Of The SKA

- Engineering: dishes, arrays, optical fibre, electric power...
- Computational
 - Data rate: 10-100 times today's <u>worldwide</u> internet traffic
 - Will require a future-world-class supercomputer
 - Only feasible if both Moore's Law holds out, and we make regular algorithmic advances...
- Mathematical
 - ...those very advances. Need better methods and better math!

Why Is It Difficult?

- Gaps in the *uv*-plane:
 - At the end of the day, we're still trying to fill a huge "virtual aperture" with small dishes
 - Gaps in the *uv*-plane sampling are unavoidable
 - Fundamentally missing information
 - Can never recover the image fully
- Every measurement is distorted by the instrument response, needs to be calibrated.
 - And some measurements affected by man-made radio interference (RFI)
 - The "Fourier scramble": one bad point in the Fourier plane affects all points in the image plane

Gaps ⇒ Point Spread Function

PSF of the WSRT. The regular rings are due to the regular spacing of its antennas in the East-West direction.

- Response to a point source: Point Spread Function (PSF)
- Observed "dirty image" is *convolved* with the PSF
- Structure in the PSF = uncertainty in the flux distribution (corresponding to missing data in the *uv*-plane)

PSF of MeerKAT

PSF of the Hubble Space Telescope before & after servicing mission

Deconvolution: from dirty to clean images

Real-life WSRT "dirty" image

- Dirty image dominated by PSF sidelobes from the strongest sources
- *Deconvolution* required to get at the faint stuff underneath.

- A whole continuum of skies fits the dirty image (pick any value for the missing *uv*-components)
- Deconvolution picks one = interpolates the missing info from extra assumptions (e.g.: "sources are point-like").

Distorted Measurements

Incoming signal is subject to distortions (refraction, delay, amplitude loss)

atmospheric and electronic

Ionospheric

Distorted Measurements

- One point-like source, but observed with complex phase errors
 - Ionosphere, troposphere, electronics
- In the *uv*-plane, phase encodes information about <u>location</u>
- Phase errors tends to spread the flux around
- Calibration of complex gains required before we can see anything at all!

Distorted Measurements

- Complex gain error: signal multiplied by a amplitude and phase delay term
- Delay errors correspond to differences in arrival time, i.e. random shifts of antennas towards and away from the source
- Amplitude errors = different sensitivities

Optical equivalent

Stone-Age Calibration (First-Generation, or 1GC)

- Calibrate gains using a known calibrator source
- Move antennas to target, cross your fingers, and hope that everything stays stable enough to get an image

1980: The Selfcal Revolution (2GC)

• A very simple realization: per-baseline gains are actually products of per-antenna complex gains!

$$V_{pq} = g_p g_q M_{pq}$$

- N(N-1)/2 visibilities >> N gains
 - Start with simple M
 - Solve for g's
 - Improve *M*, rinse & repeat

dynamic range > 10^{6} :1

Huge body of experience suggests that this works rather well, **BUT** there's no formal proof (!!!) Current practice is a collection of *ad hoc* methods, dark art and lore passed down the generations in what is virtually an oral tradition.

... When Direction Dependent Effects (DDE) become a problem : Ionosphere

The Fundamental Limit of 2GC...

 The calibration equation assumes the unknown gains are direction-independent

$$V_{pq} = g_p g_p g_p M_{pq} M_{pq}$$

- ...when they are at best only approximately so
- But incorporating directional dependence is devilishly tricky due to the nature of the Fourier transform
- Example: ionosphere
 - Introduces phase errors which appear to "shift" the sources
 - 2GC can calibrate the overall shift, but not the differential shifts

The Fundamental Limit of 2GC...

 The calibration equation assumes the unknown gains are direction-independent

$$V_{pq} = g_p g_p g_p M_{pq} M_{pq}$$

- ...when they are at best only approximately so
- But incorporating directional dependence is devilishly tricky due to the nature of the Fourier transform
- Example: ionosphere
 - Introduces phase errors which appear to "shift" the sources
 - 2GC can calibrate the overall shift, but not the differential shifts

Why Is This a Problem Now?

- Older telescopes are also prone to directiondependent effects
 - but if your sensitivity is not high enough to even see the distortions, then who cares?
- The SKA will have record sensitivity
 - Which means it will also be sensitive to far more subtle errors
- Also, it will be built from "cheap junk"....

... When Direction Dependent Effects (DDE) become a problem : Beam

LOFAR stations are phased arrays

- Beam is variable in frequency and time
- Projection of the dipoles in the sky is non trivial
- Beam can be station-dependent
- Individual clock effects

--> Strong effects on polarisation

Radio Interferometry 101

One station (i.e. dish or aperture array) measures two complex voltages $\vec{v} = \begin{pmatrix} v_x \\ v_y \end{pmatrix}$

A correlator computes the complex visibility for each pair of stations p,q:

$$V_{pq} = \langle \vec{v}_p \vec{v}_q^H \rangle = \langle \begin{pmatrix} v_{px} v_{qx}^* & v_{px} v_{qy}^* \\ v_{py} v_{qx}^* & v_{py} v_{qy}^* \end{pmatrix} \rangle$$

31/01/2013

Radio Interferometry 102

- Complex visibility = Fourier component
- Thus, each pair of stations p,q measures one point in the Fourier plane (the *uv*-plane), corresponding to the separation between the stations (baseline vector) \vec{u}_{max}
- with N stations, N(N-1)/2 baselines can be measured instantaneously
 - WSRT, 14 stations: 91 baselines
 - LOFAR, 44 stations: 946 baselines
 - SKA, 2500 stations: >3 million baselines

Convolutional Gridding & Imaging

- uv-points are measured along elliptical tracks
- Traditional imaging performs a gridding step to resample these onto a regular grid (for the FFT): $V_{\text{grid}} = V \circ G$

If we know the DDE distribution $E_p(I,m)$, then we can correct for it via some extra convolutions:

$$V_{\text{grid}} = F_{\rho} \circ V \circ F_{q}^{H} \circ G \qquad (F_{\rho} \leftarrow F^{T} \rightarrow E_{\rho}^{-1})$$

Point Spread Functions

PSF of the WSRT. The regular rings are due to the regular spacing of its antennas in the East-West direction.

- Response to a point source: Point Spread Function (PSF)
- Observed "dirty image" is convolved with the PSF
- Structure in the PSF = uncertainty in the flux distribution (corresponding to missing data in the *uv*-plane)
 - Strong near-in PSF sidelobes;
 far sidelobes that <u>do not go</u>
 <u>to 0</u> with distance

PSF of MeerKAT

The Problem With Sidelobes

- "Dirty image" dominated by PSF sidelobes of the brightest sources
- Deconvolution is fundamentally ill-posed
 - But sky is sparse
- CLEAN, MEM, etc.

Promising new methods are being proposed

The Problem With Sidelobes

- "Dirty image" dominated by PSF sidelobes of the brightest sources
- Deconvolution is fundamentally ill-posed
 - But sky is sparse
- CLEAN, MEM, etc.

Promising new methods are being proposed Bayesianally sparse (BS) techniques

Apparent Skies

"Classic" interferometry:

 \square sky B(l,m) ←^{FT}→ visibilities V(u,v)

Interferometry in the presence of DDEs:

- sky B(l,m) + per-station effect $E_p(l,m)$
- each station pair sees an "apparent sky"

 $B_{pq}(l,m) = E_p(l,m) B(l,m) E_q^H(l,m) \leftarrow^{FT} V_{pq}(u,v)$

each visibility point sampled from a different "apparent uv-plane"

Apparent Skies

"Classic" interferometry:

 \square sky B(l,m) ←^{FT}→ visibilities V(u,v)

Interferometry in the presence of DDEs:

- sky B(l,m) + per-station effect $E_p(l,m)$
- each station pair sees an "apparent sky"

 $B_{pq}(l,m) = E_p(l,m) B(l,m) E_q^H(l,m) \leftarrow^{FT} V_{pq}(u,v)$

each visibility point sampled from a different "apparent uv-plane"

(The Devil In)

E-Jones

AW-Projection

- Application of DDEs via convolutional gridding forms the basis of the AW-projection algorithm
 - Initially formulated as w-projection for correcting the w-term
 - Current state-of-the-art
- Problems:
 - Need to know the DDE (calibration!)
 - If support of F_p is extended, convolution is expensive

Primary Beam

Primary Beams

- Field of view of an interferometer is determined by the main lobe of the primary beam (PB) pattern
- PB sidelobes are unavoidable, pick up unwanted signal

- Interferometer measures the sky multiplied by the square of the PB
 - ...assuming stable and identical beams!

Primary Beam Problems

PB's stable and identical only to first order

- Pointing errors
- Mechanical deformations
- Beamformer gain drifts (for AAs/PAFs)
- PB variations = change in apparent source phase and amplitude, per uv-point
- FT translates this into spatial artefacts

Can be attenuated via calibration

Plus, PB sidelobes pick up unwanted junk

Primary beam rotation with time

Primary beam rotation with time

anim-beam.avi

Example differential gain solutions for JVLA (2014 image) Dominated by primary beam rotation

22.82 Jy peak 4.5 uJy noise 5 million DR confusion limited

Primary beam scaling with frequency

Freq /^

Primary beam scaling with frequency

Freq /^

anim-5-28-LL.avi

JVLA beam holography

O. Smirnov - SKA1-MID Calibration Workshop - HDR

MuellerMatrixAnimation.avi

~640 MHz bandwidth

Algorithmic Advances

- Better deconvolution (CS and its ilk)
- Artefact discrimination
- COHJONES (aka DD-Stefcal) much faster DD solutions
 - Extending this to beam parameters
- KAFCA (C. Tasse) even faster DD solutions via a Kalman-type filter
 - Can contemplate G- and dE-calibation in an online regime, then average the data down
- DD faceting (C. Tasse) faceted imager with onthe-fly BDA – x10-x100 gridding savings

=> Convex optimization + sparsity for calibration & imaging

Case Study: KAT-7 vs. MeerKAT

MeerKAT: offset Gregorian dishes KAT-7 (MeerKAT precursor): prime focus dishes

KAT-7 vs. MeerKAT Beams Prime focus vs. offset Gregorian

