News from The Dark Energy Survey

Aurélien Benoit-Lévy

Institut d'Astrophysique de Paris

Service d'Astrophysique CEA - 28 avril 2016

A quick summary of the current status of cosmology

Dark Energy?

Baryonic & non-baryonic

Source of the acceleration of the expansion

Dark Energy!

Type Ia Supernovae are the main indication for the acceleration of the expansion

What could be Dark Energy?

Pure cosmological constant?, vacuum energy?, quintessence?, Modification of gravity?, ...

Best constraint on DE currently brought by SNIa.

Dark Energy has no direct effect on the CMB anisotropies at recombination. Its effect are mainly geometrical but are degenated with other paramters

Parameter degeneracies

Dark Energy has no direct effect on the CMB anisotropies at recombination. Its effect are mainly geometrical but are degenated with other paramters

Parameter degeneracies

Dark Energy has no direct effect on the CMB anisotropies at recombination. Its effect are mainly geometrical but are degenated with other paramters

Parameters degeneracies

Information from the large-scale structure can break those degeneracies!

Planck 2015

Parameters degeneracies

Information from the large-scale structure can break those degeneracies!

Large-scale structure will provide constraints on cosmology from

<u>Geometry</u>

- The scale of the sound horizon at recombination is imprinted in the matter distribution: Baryonic Acoustic Oscillations
- Distances

Structure growth

- Dark Energy, hence acceleration of the expansion will impede structure formation

So... Let's observe those galaxies!

The DES Collaboration

~300 scientists from 28 institutions from around the world

DARK ENERGY SURVEY

The Dark Energy Survey The Dark Energy Survey

New camera mounted on the 4m Blanco telecope at Cerro-Tololo Inter-American Observatory in Chile

DES is:

- 1" resolution picture of the sky (pixel size 0.26")
- 5000 sq. deg. (1/8th of the sky)
- Five photometric bands (grizY)
- 24th magnitude (galaxies, 10σ)

1-2 mag deeper than SDSS
 25 larger than CFHTlens

DES is:

- 1" resolution picture of the sky (pixel size 0.26")
- 5000 sq. deg. (1/8th of the sky)
- Five photometric bands (grizY)
- 24th magnitude (galaxies,10σ)

Supplemented by:

- 2500 sq. deg. South Pole Telescope
- Vista Hemisphere Survey (JHK)

What is DES ?

DES is:

- 1" resolution picture of the sky (pixel size 0.26")
- 5000 sq. deg. (1/8th of the sky)
- Five photometric bands (grizY)
- 24th magnitude (galaxies,10σ)

Supplemented by:

- 2500 sq. deg. South Pole Telescope
- Vista Hemisphere Survey (JHK)

DECam:

- 570 Mpixels, 62 CCD
- 3 sq. deg. field of view

Galaxy Clusters (distance, structure growth) ten of thousands of clusters up to z~1 synergies with SPT, VHS

$$\frac{d^2N(z)}{dzd\Omega} = \frac{c}{H(z)}D_A^2(1+z)^2\int_0^\infty f(M,z)\frac{dn(z)}{dM}dM,$$

Galaxy Clusters (distance, structure growth) ten of thousands of clusters up to z~1 synergies with SPT, VHS

Weak lensing (distance, structure growth) shape and measurements of 200 millions galaxies

$$C_l^{x_a x_b} = \int dz \frac{H(z)}{D_A^2} W_a(z) W_b(z) P^{s_a s_b}(k = l/D_A; z) ,$$

Galaxy Clusters (distance, structure growth) ten of thousands of clusters up to z~1 synergies with SPT, VHS

Weak lensing (distance, structure growth) shape and measurements of 200 millions galaxies

Baryonic acoustic Oscillations (distance) 300 millions galaxies to z=1 and beyond

$$C_{\text{gal}}^{i}(l) = \int_{0}^{\infty} k^{2} dk \, \frac{2}{\pi} f_{i}^{2}(l,k) P_{\text{gal}}(k),$$

4 probes of Dark Energy

Galaxy Clusters (distance, structure growth) ten of thousands of clusters up to z~1 synergies with SPT, VHS

Weak lensing (distance, structure growth) shape and measurements of 200 millions galaxies

Baryonic acoustic Oscillations (distance) 300 millions galaxies to z=1 and beyond

Type la supernovae (distance) 30 sq. deg. SN fields 3500 SNIa to z~1

4 probes of Dark Energy

Galaxy Clusters (distance, structure growth) ten of thousands of clusters up to z~1 synergies with SPT, VHS

Weak lensing (distance, structure growth) shape and measurements of 200 millions galaxies

Baryonic acoustic Oscillations (distance) 300 millions galaxies to z=1 and beyond

Type la supernovae (distance) 30 sq. deg. SN fields 3500 SNIa to z~1

DES Timeline

DARK ENERGY SURVEY

> 2003 Project start 2004-8 R&D 2008-11 **DECam** construction 2012 [Sept] Installation and first light 2012 [Sept-Oct] Commissioning Nov 2012 - Feb 2013 Science Verification Aug 31 2013 - 9 Feb 2014 First Season (Y1) Aug 15 2014 - Feb 2015 Second Season (Y2) 2015-2018 Third-Fifth Seasons

Observing strategy

DES + Euclid footprints overlaid

Nov. 2012 - Feb. 2013: Science Verification campaign

All the results presented in this talk are based on these pre-survey data

Science Verification papers (as of 07/15)

	Gerdes et al.	Observation of Two New L4 Neptune Trojans in the Dark Energy Survey Supernova Fields	arXiv:1507.05177
	Park et al.	Joint Analysis of Galaxy-Galaxy Lensing and Galaxy Clustering: Methodology and Forecasts for DES	arXiv:1507.05353
	Rozo et al.	redMaGiC: Selecting Luminous Red Galaxies from the DES Science Verification Data	arXiv:1507.05460
	Giannantonio et al.	CMB lensing tomography with the DES Science Verification galaxies	arXiv:1507.05551
	Crocce et al.	Galaxy Clustering, Photometric Redshifts and Diagnosis of Systematics in the Dark Energy Survey Science Verification data	arXiv:1507.05360
	Jarvis et al.	The Dark Energy Survey Science Verification Shear Catalog	arXiv:1507.05603
	Bonnett et al.	Photometric redshifts for weak lensing in the DES Science Verification data	arXiv:1507.05909
	Becker et al.	Cosmic Shear 2 point Measurements with DES Science Verification Data	arXiv:1507.05598
	Leistedt et al.	Mapping and simulating systematics due to spatially-varying observing conditions in DES Science Verification data	arXiv:1507.05647
	Gruen et al.	Weak lensing by galaxy troughs in DES Science Verification data	arXiv:1507.05090
	Abbott et al.	Cosmology from Cosmic Shear with DES Science Verification Data	arXiv:1507.05552
	Kessler et al.	The Difference Imaging Pipeline for the Transient Search in the Dark Energy Survey	arXiv:1507.05137
•	Saro et al. 💼	Constraints on the Richness-Mass Relation and the Optical-SZE Positional Offset Distribution for SZE-Selected Clusters	arXiv:1506.07814
	Chang et al.	Wide-Field Lensing Mass Maps from DES Science Verification Data	arXiv:1505.01871
	Reed et al.	DES J0454-4448: Discovery of the First Luminous $z \ge 6$ Quasar from the Dark Energy Survey	arXiv:1504.03264
	Yuan et al.	OzDES multi-fibre spectroscopy for the Dark Energy Survey: first-year operation and results	arXiv:1504.03039
	Vikram et al.	Wide-Field Lensing Mass Maps from DES Science Verification Data: Methodology and Detailed Analysis	arXiv:1504.03002
	Zhang et al.	Galaxies in X-ray Selected Clusters and Groups in Dark Energy Survey Data: Stellar Mass Growth of Bright Central Galaxies Since z~1.2	arXiv:1504.02983
	Poci et al.	DESAlert: Enabling Real-Time Transient Follow-Up with Dark Energy Survey Data	arXiv:1504.02996
	Goldstein et al.	Automated Transient Identification in the Dark Energy Survey	arXiv:1504.02936
	Flaugher et al.	The Dark Energy Camera	arXiv:1504.02900
N	Simon et al.	Stellar Kinematics and Metallicities in the Ultra-Faint Dwarf Galaxy Reticulum II	arXiv:1504.02889
2	Bruderer et al.	Calibrated Ultra Fast Image Simulations for the Dark Energy Survey	arXiv:1504.02778
•	Fermi LAT + DES	Search for Gamma-Ray Emission from DES Dwarf Spheroidal Galaxy Candidates with Fermi-LAT Data	arXiv:1503.02632
	Bechtol et al.	Eight New Milky Way Companions Discovered in First-Year Dark Energy Survey Data	arXiv:1503.02584
	Balbinot et al.	The LMC geometry and outer stellar populations from early DES data	1NRAS 449 (2015) 112
	Papadopoulos et al.	DES13S2cmm:The First Superluminous Supernova from the Dark Energy Survey	1NRAS 449 (2015) 121
	Banerji et al.	Combining Dark Energy Survey Science Verification Data with Near Infrared Data from the ESO VISTA Hemisphere Survey	1NRAS 446 (2015) 252
	Sanchez et al. 💼	Photometric redshift analysis in the Dark Energy Survey Science Verification data	1NRAS 445 (2014) 148
	Melchior et al.	Mass and galaxy distributions of four massive galaxy clusters from Dark Energy Survey Science Verification data	1NRAS 449 (2015) 221

Eight New Milky Way Companions Discovered in First-Year Dark Energy Survey Data 1503.02584

K. Bechtol^{1,†}, A. Drlica-Wagner^{2,†}, E. Balbinot^{3,4}, A. Pieres^{5,4}, J. D. Simon⁶, B. Yanny²,

Milky way

Search for Gamma-Ray Emission from DES Dwarf Spheroidal Galaxy Candidates with Fermi-LAT Data 1503.02632

A. Drlica-Wagner,^{1,2,*} A. Albert,^{3,†} K. Bechtol,^{1,4,‡} M. Wood,^{3,§} L. Strigari,^{5,¶} M. Sánchez-Conde,^{6,7}

The DES SV galaxy catalog

Galaxy clustering, photometric redshifts and diagnosis of systematics in the DES Science Verification data

Crocce et al., 1507.05360

Systematics maps

 θ [deg]

Galaxy clustering, photometric redshifts and diagnosis of systematics in the DES Science Verification data

Crocce et al., 1507.05360

DES Weak lensing

The Forward Process.

Galaxies: Intrinsic galaxy shapes to measured image:

Intrinsic galaxy (shape unknown)

Gravitational lensing causes a shear (g)

Atmosphere and telescope cause a convolution

Detectors measure a pixelated image

Image also contains noise

Stars: Point sources to star images:

Intrinsic star (point source)

Atmosphere and telescope cause a convolution

Detectors measure a pixelated image

Image also contains noise

HANDBOOK FOR THE GREAT08 CHALLENGE: AN IMAGE ANALYSIS COMPETITION FOR COSMOLOGICAL LENSING

Shape measurements from single-epoch images Two pipelines: ngmix (3.44m) and im3shape (2.12m) over ~140 sq.deg.

35

From measurements to mass maps

Wide-Field Lensing Mass Maps from DES Science Verification Data

C. Chang et al., 1505.01871; V. Vikram et al., 1504.03002

Convergence maps reconstructed from

Weak lensing: cosmology results

1.0

0.7

Photons from last scattering surface deflected by gravitational potential of large-scale structure

Introduction

Introduction

Introduction

- Typical deflections: ~2.5 arcmin
- Coherent on the degree scale
- CMB lensing induces temperature-gradient correlations

$$\Theta[\hat{\mathbf{n}}] = \tilde{\Theta}[\hat{\mathbf{n}} + \nabla\phi(\hat{\mathbf{n}})] \approx \tilde{\Theta}[\hat{\mathbf{n}}] + \nabla\phi[\hat{\mathbf{n}}] \nabla\tilde{\Theta}[\hat{\mathbf{n}}] + \cdots$$

CMB lensing potential

CMB lensing potential is an unbiased tracer of all the matter distribution up to z~1100

$$\phi(\hat{\boldsymbol{n}}) = -2 \int_0^{\chi_*} d\chi \frac{f_K(\chi_* - \chi)}{f_K(\chi_*) f_K(\chi)} \Psi(\chi \hat{\boldsymbol{n}}; \eta_0 - \chi).$$

DES will enable CMB lensing tomography

CMB lensing from South Pole Telescope and Planck

Same structure seen by different techniques

CMB lensing tomography

CMB lensing tomography

$$\begin{split} C_{\ell}^{gg} &= \frac{2}{\pi} \int_{0}^{\infty} dk \, k^{2} \, P(k) \, W_{\ell}^{g}(k) \, W_{\ell}^{g}(k) \\ C_{\ell}^{\kappa g} &= \frac{2}{\pi} \int_{0}^{\infty} dk \, k^{2} \, P(k) \, W_{\ell}^{\kappa}(k) \, W_{\ell}^{g}(k) \,, \end{split}$$

$$W_{\ell}^{g}(k) = \int_{0}^{\infty} dz \, b(z) \frac{dn}{dz}(z) \, D(z) \, j_{\ell}[k\chi(z)]$$
$$W_{\ell}^{\kappa}(k) = \frac{3\Omega_{m}H_{0}^{2}}{2} \int_{0}^{\infty} dz \, \frac{\chi_{*} - \chi}{\chi_{*}\chi}(z) \, D(z) \, j_{\ell}[k\chi(z)],$$

 $C_\ell^{gg}(z) \propto b^2(z) D^2(z) , \qquad C_\ell^{\kappa g}(z) \propto b(z) D^2(z) ,$

$$C_{\rm GWL,CMBWL}(\ell) = \int_0^{\chi_{\rm hor}} \frac{d\chi}{\chi(z)^2} W_{\rm GWL} \left[\chi(z)\right] W_{\rm CMBWL} \left[\chi(z)\right] P_{\delta\delta} \left(\frac{\ell}{\chi(z)}, z\right),$$

 $W_{\rm GWL}\left[\chi(z)\right] = \frac{3H_0^2 \Omega_{\rm m}}{2c^2} \frac{\chi}{a(\chi)} \int_{\chi}^{\chi_{\rm hor}} d\chi' n(\chi') \frac{\chi' - \chi}{\chi'}, \qquad W_{\rm CMBWL}\left[\chi(z)\right] = \frac{3H_0^2 \Omega_{\rm m}}{2c^2} \frac{\chi}{a(\chi)} \frac{\chi_* - \chi}{\chi_*},$ 47

Cross-correlation of gravitational lensing from DES Science Verification with SPT and Planck lensing

D. Kirk¹,* Y. Omori²,† A. Benoit-Lévy¹, R. Cawthon^{3,4}, C. Chang⁵, P. Larsen⁶, G. Holder²,

Consider galaxy ellipticities (γ_1, γ_2) as a spin-2 field, like CMB polarization

Redshift Range	0.3 < z < 1.3	
$\kappa_{ m CMB}\gamma_{ m E}$	A	$\chi^2/d.o.f.$
$\begin{array}{l} \texttt{ngmix} \times \text{SPT} \\ \texttt{ngmix} \times \textit{Planck} \end{array}$	$\begin{array}{c} 0.88\substack{+0.30\\-0.30}\\ 0.86\substack{+0.39\\-0.39}\end{array}$	$0.93 \\ 1.52$

Euclid will improve these measurements even further!

SV analysis is finished, now public: <u>http://des.ncsa.illinois.edu/releases/sva1</u> Collaboration is working on Y1 data (>1500 sq.deg.)

Y2-3 data is being produced. Stay tuned!