Relieving tensions related to the lensing of CMB temperature power spectra (astro-ph1510.07600)

F. Couchot, S. Henrot-Versillé, O. Perdereau, S. Plaszczynski, B. Rouillé d'Orfeuil, M. Spinelli and M. Tristram

Laboratoire de l'Accélérateur Linéaire

January 20, 2016

S. Plaszczynski: relieving Planck tensions

1 / 49

Estimating parameters in cosmology

Parameters $\theta = (\Omega, \nu)$

$$one \ \cos mo \ \Omega = (\omega_{\rm b}, \omega_{\rm c}, \theta_s, ...)$$

2 nuisances $\nu = (\text{calibs, beams, foregrounds...})$

Likelihood $\mathscr{L}(\theta) = \mathscr{L}(C_{\ell}(\Omega), \nu)$

Boltzmann solver : $C_{\ell}(\Omega)$ camb (fortran) or class (C)

Statistics

- point estimate: max likelihood solution (or $\min \chi^2 (= -2 \ln \mathscr{L}) =$ 'best-fit'
- individual parameters='intervals'
 - ${\color{black} 0}$ sample $\mathscr{L}(\mathrm{MCMC})+$ histogram (marginalize)=Bayesian
 - **2** focus on \mathscr{L} shape (profile likelihood)=Frequentist

11/

Profile-likelihood

- each point can be computed independently (//) but heavy for all variables
- multi-dim min must be extremely precise (Minuit + increase Boltzmann precision)

Planck Collaboration Int. XVI (2014)

- minimum always coincides with global best-fit
- 2 interval has coverage properties
- 3 invariant on change of variables: $f(\theta) \rightarrow \hat{f} = f(\hat{\theta})$
- ④ OK for non-linear cases
- o priors, no volume effects

Volume effects

 $p(x_1) \propto \int \mathscr{L}(x_1, x_2) dx_2$ $\mathscr{L}(x_1) \propto \max_{x_2} \mathscr{L}(x_1, x_2)$

Statistics does not matter...

..when problem is well constrained:

Planck	high+low	ℓ	likelihoods
--------	----------	--------	-------------

$\Lambda CDM par$	MCMC	$profile-\mathscr{L}$
$\Omega_{ m b}h^2$	0.02222 ± 0.00023	0.02207 ± 0.00023
$\Omega_{ m c} h^2$	0.1197 ± 0.0022	0.1198 ± 0.0022
H_0	67.31 ± 0.96	67.38 ± 0.98
au	0.078 ± 0.019	0.082 ± 0.020
$\ln(10^{10}A_{\rm s})$	3.089 ± 0.036	3.098 ± 0.037
$n_{ m s}$	0.9655 ± 0.0062	0.9663 ± 0.0063

Planck Collaboration XIII (2015)

NB: different Boltzman solvers

Planck likelihoods

 $\mathscr{L}(C_{\ell},\nu)$

• high- $\ell(\ell \gtrsim 30 \rightarrow \text{Gaussian})$ cross-spectra HFI, masks + param foregrounds : Plik , Hillipop, CamSpec, Mspec:

Planck papers

TT, φφ¥, ͳ/ͳ/#/φφ¥

2 low- ℓ : auto-spectrum LFI, low resolution pixel based : lowTEB: TT+pol (constrains τ)

The high- ℓ HiLLiPOP likelihood

- $\bullet~6$ maps: 2x HFI 100 GHz,143 GHz, 217 GHz
- 15 cross-spectra: 100Ax100B,100Ax143A etc..

$$C_{\ell}^{XY} = \frac{1}{2\ell + 1} \sum_{m = -\ell}^{\ell} a_{\ell m}^{X} a_{\ell m}^{*Y}$$

- masking strategy to limit contamination from foregrounds
- parametric models for residuals foregrounds

The high- ℓ HiLLiPOP likelihood

 C_ℓ^{XY} for $\ell > 50 \rightarrow$ Gaussian approx (central limit theorem)

$$-2ln\mathscr{L}(C_{\ell}^{CMB},\nu) = \sum_{modes} \sum_{cross} (C_{\ell}^{data} - C_{\ell}^{model})^{\dagger} \Sigma^{-1} (C_{\ell}^{data} - C_{\ell}^{m$$

- $modes \in TT, EE, TE$
- Σ : ℓ -by- ℓ , cross-by-cross, mode-by-mode covariance matrix

•
$$C_{\ell}^{model,XY} = c_x c_y \left(C_{\ell}^{CMB}(\mathbf{\Omega}) + \sum_{\mathrm{fg}} A_{\mathrm{fg}} C_{\ell}^{\mathrm{fg}} \right)$$

- C_{ℓ}^{fg} from Planck templates Planck Collaboration XXII (2015), Planck Collaboration XXX (2014) A_{fg} is a scaling factor
- +calibrations (c_i)

11/

Full covariance matrix

- Monte Carlo validation of approximations (15k sims)
- $\sim \%$ precision
- residual effects from point source masks do not bias the results

Hillipop 2015

Residual foreground modeling

- galactic dust (TT, EE, TE)
- unresolved Point Sources
- background from galaxies (CIB)
- clusters (SZ)

S. Plaszczynski: relieving Planck tensions

Residual foreground modeling

- galactic dust (TT, EE, TE)
- unresolved Point Sources
- background from galaxies (CIB)
- clusters (SZ)

Hillipop nuisances

name	definition	prior (if any)		
instrumental				
c_0	map calibration (100-hm1)	1.000 ± 0.002		
c_1	map calibration (100-hm2)	1.000 ± 0.002		
c_2	map calibration (143-hm1)	fixed to 1.		
c_3	map calibration (143-hm2)	1.0000 ± 0.002		
c_4	map calibration (217-hm1)	1.0025 ± 0.002		
c_5	map calibration (217-hm2)	1.0025 ± 0.002		
A	absolute calibration	1.0000 ± 0.0025		
	foreground modelling			
$A_{PS}^{100 \times 100}$	PS amplitude in TT (100x100 GHz)			
$A_{PS}^{100 \times 143}$	PS amplitude in TT $(100x143 \text{ GHz})$			
$A_{\rm PS}^{100 \times 217}$	PS amplitude in TT $(100x217 \text{ GHz})$			
$A_{PS}^{143 \times 143}$	PS amplitude in TT (143x143 GHz)			
$A_{PS}^{143 \times 217}$	PS amplitude in TT (143x217 GHz)			
$A_{\rm PS}^{217 \times 217}$	PS amplitude in TT $(217x217 \text{ GHz})$			
A_{SZ}	scaling for the tSZ template (TT)			
$A_{\rm CIB}$	scaling for the CIB template (TT)	1.00 ± 0.20		
A_{kSZ}	scaling for the kSZ template (TT)			
A_{SZxCIB}	scaling parameter for the			
	cross correlation between kSZ and CIB			
$A_{\rm dust}^{\rm TT}$	scaling parameter for the dust in TT	1.00 ± 0.20		
$A_{\rm dust}^{\rm EE}$	scaling parameter for the dust in EE	1.00 ± 0.20		
$A_{\rm dust}^{\rm TE}$	scaling parameter for the dust in TE	1.00 ± 0.20		

Differences with Plik

- all cross-spectra used
- more calibration coefficients (map level)
- cleaned point-sources mask →galactic dust parametrized as in Planck Collaboration Int. XXX (2014)
- Planck foreground templates (SZ, CIB...)
- all ℓ values (no binning)
- ...

Any difference on ΛCDM parameters?

ΛCDM par	Plik + lowTEB	Hillipop + lowTEB
$\Omega_{ m b}h^2$	0.02222 ± 0.00023	0.02221 ± 0.00023
$\Omega_{ m c}h^2$	0.1197 ± 0.0022	0.1192 ± 0.0022
H_0	67.31 ± 0.96	67.51 ± 0.97
au	0.078 ± 0.019	0.072 ± 0.020
$\ln(10^{10}A_{\rm s})$	3.089 ± 0.036	3.068 ± 0.038
$n_{ m s}$	0.9655 ± 0.0062	0.9645 ± 0.0071
σ_8	0.829 ± 0.014	0.816 ± 0.015

(MCMC)

- lowTEB in common
- τ , ln(10¹⁰ $A_{\rm s}$) correlated through $C_{\ell} \propto A_{\rm s} e^{-2\tau}$

CMB lensing

We do not measure C_{ℓ} but \tilde{C}_{ℓ}

CMB light deflected by matter structures : tiny ($\sigma \simeq 3'$)-parametrized by lensing potential with spectrum Lewis and Challinor (2006):

$$C_{\ell}^{\Phi} = 16\pi \int \frac{dk}{k} P_{\mathcal{R}}(k) \left[\int_{0}^{\chi_{*}} d\chi \ T(k, \eta_{0} - \chi) \left(\frac{\chi - \chi_{*}}{\chi \chi_{*}} \right) \right]^{2}$$

$$P_{\mathcal{R}}(k) = A_{\rm s}(k/k_{0})^{n_{\rm s}} \rightarrow \underbrace{C_{\ell}^{\Phi} \propto A_{\rm s}}_{\text{mostly in linear regime}} : \underbrace{C_{\ell}^{\Phi} \propto \sigma_{8}^{2}}_{\text{Planck Collaboration XV (2015)}}$$

$A_{\rm L}$

Boltzmann code:

$$\begin{array}{l} \bullet \quad \Omega \to (C_{\ell}, C_{\ell}^{\Phi}) \to \tilde{C}_{\ell} \to \mathscr{L} \\ \bullet \quad (\Omega, A_{\mathbf{L}}) \to (C_{\ell}, A_{\mathbf{L}} C_{\ell}^{\Phi}) \to \tilde{C}_{\ell} \to \mathscr{L} \end{array}$$

Interest:

- **TEST1**: $A_{\rm L}$ should be compatible with 1 (otherwise: data problem or modify GR)
- marginalize (or left free in fits): neglect lensing effect (to 1st order) in estimations

$$C^{\Phi}_{\ell} \propto A_{\rm s} A_{\rm L}$$

S. Plaszczynski: relieving Planck tensions

Plik results : $A_{\rm L}$ (TEST1)

 $A_{\rm L} = 1.26^{+0.11}_{-0.10}$ (Plik+lowTEB, class/profile)

 $A_{\rm L} = 1.24 \pm 0.10$ (Plik+lowTEB, class/MCMC) $A_{\rm L} = 1.22 \pm 0.10$ (Plik+lowTEB, camb/MCMC)

Planck Collaboration XIII (2015)

Can we measure τ only with high- ℓ ?

high-
 ℓ only:

- $C_{\ell} = A_{\rm s} e^{-2\tau} \rightarrow (\tau, \ln(10^{10} A_{\rm s}))$ degenerate
- but $\tilde{C}_{\ell}(C^{\Phi}_{\ell} \propto A_{\rm s})$ breaks it!
- \implies one can get a measurement of τ with only a high- ℓ likelihood.

TEST2: compare high- ℓ only likelihood results to low- ℓ .

Plik results : τ (TEST2)

 2.2σ mismatch

A methodology issue?

The $[\tau, A_{\rm s}, A_{\rm L}]$ correlation

TEST1 ($A_{\rm L}$) performed on high- ℓ +low- ℓ . For fixed data:

- low- ℓ : pulls $\tau \searrow$
- high- ℓ : amplitude $C_{\ell} \propto A_{\rm s} e^{-2\tau} \rightarrow A_{\rm s} \searrow$
- high- ℓ : to preserve lensing information $(C_{\ell}^{\Phi} \propto A_{s}A_{L})$: $A_{L} \nearrow$

Hillipop results : τ (TEST2)

<u>
</u>

Plik results : τ (TEST2)

Hillipop results : $A_{\rm L}$ (TEST1)

Plik results : $A_{\rm L}$ (TEST1)

More CMB data: very-high- ℓ (VHL)

ACT+SPT/ essentially constrain foregrounds

Dataset	ℓ range	freq (GHz)	#spectra	#nuisances	ref
ACT south/equat	[1500, 10000]	148, 218	6	12	Das et al. (2014)
SPT_high	[2000, 13000]	95,150,220	6	9	Reichardt et al. (2012)
SPT_low	[650, 3000]	150	1	2	Story et al. (2012)

- each provides window functions + cov matrix
- for SPT_high: prefer Reichardt et al. (2012) over George et al. (2014) since the latter include calibrations based on *Planck* 2013 results: both give similar results.

Consistency with *Planck* @150GHz

ring Planck tensions

<u>
</u>

ACT

SPT_high

SPT_low

(m) SPT_low $150 \times 150 ~\rm{GHz}$

$$\chi^2/ndof = 58/47$$

More consistency tests

build a \mathscr{L}^{VHL} (Gaussian with cov matrix+window functions from expts)

Is VHL cosmology consistent with *Planck*? sample *independently* $\mathscr{L}^{Hillipop}$ (full) and \mathscr{L}^{VHL} (dashed)

Combined likelihood

put $A_{SZ}, A_{CIB}, A_{kSZ}, A_{SZ \times CIB}$ in common in $\mathscr{L}^{Hillipop}$ and \mathscr{L}^{VHL}

Hillipop w/o VHL (full/dashed):

 $A_{CIB}, A_{kSZ}, A_{SZ \times CIB}, A_{dust}^{TT}$ are scalings $\rightarrow 1$

τ Hillipop

τ Hillipop+VHL

$A_{\rm L}$ Hillipop

$A_{\rm L}$ Hillipop+VHL

Various VHLs

Hillipop+lowTEB+	$A_{\rm L}$
-	1.22 ± 0.11
SPT_low	1.16 ± 0.10
SPT_high	1.12 ± 0.10
ACT	1.19 ± 0.10
SPT_low+SPT_high	1.02 ± 0.08
SPT_low+ACT	1.09 ± 0.09
SPT_high+ACT	1.12 ± 0.09
SPT_low+SPT_high+ACT	1.03 ± 0.08
SPT_low+SPT_high2014 +ACT	1.04 ± 0.08

many combinations OK

S. Plaszczynski: relieving Planck tensions

More checks on SPT_high

to improve on SPT_high 220×220 increase dust level

- $A_{\rm L} = 1.12 \pm 0.10$ (Hillipop+lowTEB+SPT_high)
 - = 1.13 \pm 0.10 (Hillipop+low TEB+SPT_high, $A_{\rm dust}^{\rm SPT}{\times}3)$

 $A_{\rm L} = 1.03 \pm 0.08 \text{ (Hillipop+lowTEB+VHL)}$ $= 1.04 \pm 0.08 \text{ (Hillipop+lowTEB+VHL, } A_{\rm dust}^{\rm SPT} \times 3)$

ΛCDM revisited

all now OK \rightarrow fix $A_{\rm L} = 1$

Hillipop+lowTEB+VHL : full Plik+lowTEB+cor(SZ): dashed

ΛCDM parameters revisited (Hillipop)

Parameter	Hillipop + lowTEB	Hillipop + lowTEB	Hillipop + lowTEB
		+VHL	+VHL + BAO + SN
$\Omega_{ m b}h^2$	0.02221 ± 0.00023	0.02200 ± 0.00019	0.02207 ± 0.00018
$\Omega_{ m c} h^2$	0.1192 ± 0.0022	0.1200 ± 0.0020	0.1187 ± 0.0012
$100\theta_{\rm s}$	1.04175 ± 0.00044	1.04200 ± 0.00040	1.04188 ± 0.00036
au	0.072 ± 0.020	0.059 ± 0.017	0.063 ± 0.017
$n_{\rm s}$	0.9645 ± 0.0071	0.9630 ± 0.0054	0.9663 ± 0.0040
$\ln(10^{10}A_{\rm s})$	3.068 ± 0.038	3.045 ± 0.032	3.050 ± 0.032
Ω_m	0.311 ± 0.013	0.315 ± 0.012	0.308 ± 0.007
H_0	67.51 ± 0.97	67.19 ± 0.88	67.72 ± 0.53
σ_8	0.816 ± 0.015	0.811 ± 0.013	0.810 ± 0.013

- \bullet stable
- reionization depth is low
- $\sigma_8 \simeq 0.81$ not so in tension with local measurements (WL, SZ cluster counts..)

Conclusions

- to first order *Planck* data are OK (for Λ CDM)
- but some 2σ tensions: low vs hi-ell τ , $A_{\rm L}$ (hi+low)
- another *Planck* high- ℓ likelihood (Hillipop) is less in tension $[\tau, A_{\rm s}, A_{\rm L}, \sigma_8]$ lower
- using more CMB data seems to cure all those tensions (no need to modify GR!)
- cosmology is now dominated by systematics: CMB is a *clean* probe!
- should be the main focuss in the next decade (in particular for $\sum m_{\nu}, N_{\text{eff}}...$)

References

- Planck Collaboration Int. XVI. Planck intermediate results. XVI. Profile likelihoods for cosmological parameters. <u>A&A</u>, 566:A54, 2014.
- Planck Collaboration XIII. Planck 2015 results. XIII. Cosmological parameters. <u>ArXiv</u> <u>e-prints</u>, 2015.
- Planck Collaboration XXII. Planck 2015 results. XXII. A map of the thermal Sunyaev-Zeldovich effect. ArXiv e-prints, 2015.
- Planck Collaboration XXX. Planck 2013 results. XXX. Cosmic infrared background measurements and implications for star formation. A&A, 571:A30, 2014.
- Planck Collaboration Int. XXX. Planck intermediate results. XXX. The angular power spectrum of polarized dust emission at intermediate and high Galactic latitudes. <u>A&A, in</u> press, 2014.
- A. Lewis and A. Challinor. Weak gravitational lensing of the CMB. <u>Phys. Rep.</u>, 429:1–65, 2006. doi:10.1016/j.physrep.2006.03.002.

Planck Collaboration XV. Planck 2015 results. XV. Gravitational lensing. ArXiv e-prints, 2015.

- S. Das, T. Louis, M. R. Nolta et al. The Atacama Cosmology Telescope: temperature and gravitational lensing power spectrum measurements from three seasons of data. J. Cosmology Astropart. Phys., 4:014, 2014. doi:10.1088/1475-7516/2014/04/014.
- C. L. Reichardt, L. Shaw, O. Zahn et al. A Measurement of Secondary Cosmic Microwave Background Anisotropies with Two Years of South Pole Telescope Observations. <u>ApJ</u>, 755:70, 2012. doi:10.1088/0004-637X/755/1/70.
- K. T. Story, C. L. Reichardt, Z. Hou et al. A Measurement of the Cosmic Microwave Background Damping Tail from the 2500-square-degree SPT-SZ survey. <u>ArXiv e-prints</u>, 2012.
- E. M. George, C. L. Reichardt, K. A. Aird et al. A measurement of secondary cosmic microwave background anisotropies from the 2500-square-degree SPT-SZ survey. <u>ArXiv e-prints</u>, 2014.

class v.s camb

Planck uses camb we use class. compare both on same cosmo:

• below %

not that satisfactory but sufficient for our studies (see next)

t/k SZ correlation

Planck states VHL $\simeq cor(Asz)$. Not for Hillipop:

 $\rightarrow A_{\rm L} = 1.26^{+0.12}_{-0.10}$ (Hillipop+lowTEB+SZ-cor)

Improvement comes from the whole cov. matrix

$A_{\rm L}$ vs. $\sum m_{\nu}$ effect on TT spectra

Plik+VHL?

Plik:

$$au=0.17\pm0.03$$
 (Plik)
 $A_{\rm L}=1.26\pm0.10$ (Plik+lowTEB)

Adding VHL (but keep Plik templates since hard-coded)

$$\begin{aligned} \tau &= 0.08 \pm 0.02 \quad \text{(Plik+VHL)} \\ A_{\rm L} &= 1.14 \pm 0.08 \quad \text{(Plik+lowTEB+VHL)} \end{aligned}$$

Addison et al. (2015)

- use Plik+lowTEB and cut at 1000: above 1000 only Plik.
- use same $\tau = 0.07 \pm 0.02$ prior, but we saw Plik only consistent with $\simeq 0.17...$

Cosmological Analysis with Minuit Exploration of the Likelihood

 $\bullet\,$ pure C/C++ OO project

- Boltzmann = class (J.Lesgourgues etal), pure C.
- Likelihoods: all recent measurements implemented (CMB, JLA, BAO2D)
- stat:
 - minimization (bestfit): Minuit
 - adaptive MCMC
 - profile likelihoods

debugged and heavily used (at ccin2p3) for papers.

11/