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Introduction

Multiresolution transforms on
the sphere have been very
successful in a number of
applications:

Denoising
Deconvolution
Component separation
Inpainting

Can we extend these transforms
to 3D signals on the Sphere ?
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Introduction

We disitinguish 2 types of 3D signals:

2D-1D: 3rd dimension separable from
the angular domain.
Additional dependency can be in:

Time
Energy

Simulated Gamma-Ray Sky observed by the Fermi
Space Telescope. Credit: NASA

3D: 3rd dimension is the radial
distance.
These are signals on the 3D ball.

2 Micron All-Sky Redshift Survey. Credit: T.
Jarrett (IPAC/Caltech)
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Formulation of the 2D-1D wavelet

The 2D and 1D dimensions do not have the same physical meaning
=⇒ Time or energy scales should not be connected to spatial
scales.

The 2D-1D wavelet function is built by tensor product of a 2D
spherical wavelet and a 1D wavelet:

ψ(θ, ϕ, t) = ψ(θ,φ)(θ, ϕ)ψ(t)(t)

Any choice of wavelets can be used.

Here, we consider only dyadic scales and isotropic angular scales.

We use a 2D Isotropic Undecimated Wavelet Transform on the Sphere
(Starck et al. 2006) and a 1D Starlet transform (Starck et al. 2009).

For both transforms, wavelet coefficients are defined as the difference
of 2 approximations:

wj+1 = cj − cj+1 (1)
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2D-1D spherical undecimated wavelet

We consider a discrete signal D[kθ, kϕ, kt], J1 angular scales and J2

time/energy scales.

Apply 2D spherical wavelet transform on each time frame D[·, ·, kt]:

D[·, ·, kt] = cJ1 [·, ·, kt] +

J1∑
j1=1

wj1 [·, ·, kt]

Apply a 1D wavelet on all 2D wavelet scales wj1 [kθ, kϕ, ·] and
approximation cJ1 [kθ, kϕ, ·]:

wj1 [kθ, kϕ, ·] = wj1,J2 [kθ, kϕ, ·] +

J2∑
j2=1

wj1,j2 [kθ, kϕ, ·]

cJ1 [kθ, kϕ, ·] = cJ1,J2 [kθ, kϕ, ·] +

J2∑
j2=1

wJ1,j2 [kθ, kϕ, ·]
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2D-1D spherical undecimated wavelet

2D-1D spherical undecimated wavelet representation of D:

D[kθ, kϕ, kt] = cJ1,J2 [kθ, kϕ, kt]︸ ︷︷ ︸
2D approximation-1D approximation

+

J1∑
j1=1

wj1,J2 [kθ, kϕ, kt]︸ ︷︷ ︸
2D detail-1D approximation

+

J2∑
j2=1

wJ1,j2 [kθ, kϕ, kt]︸ ︷︷ ︸
2D approximation-1D detail

+

J1∑
j1=1

J2∑
j2=1

wj1,j2 [kθ, kϕ, kt]︸ ︷︷ ︸
2D detail-1D detail

Applications:

Transient source detection.

Poisson denoising.

Multichannel deconvolution.
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Application: Multichannel Deconvolution

LAT instrument on the Fermi Space Telescope

Observes the gamma-ray sky between 20 MeV-300 GeV.

Energy dependent PSF.

Poisson noise from very low fluxes.

Figure : Normalized profile of the PSF
for different energy bands.

Figure : Simulated Fermi data between
220 MeV and 360 MeV.
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Deconvolution technique

Approach developed in J. Schmitt et al. (2012): Multichannel
MS-VSTS + modified Richardson-Lucy algorithm.

Variance stabilization of a filtered signal (Zhang et al. 2008):

Aj(cj) = b(j)sign(cj + τ (j))
√
|cj + τ (j)|

b(j) and τ (j) only depend on the filter, independent of the signal.

Stabilized 2D-1D wavelet coefficients are obtained as the difference
between 2 stabilized approximations.

A multiresolution support M is built from significant stabilized
wavelet coefficients.

Deconvolution using a modified Richardson-Lucy algorithm with an
additional sparsity regularization constraint from the multiresolution
support M.
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Results
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Signals expressed on the 3D ball

Galaxy surveys aim at studying the
matter density field in the universe.
=⇒ 3D field observed in spherical
coordinates (r, θ, ϕ).

The specific physical meaning of the
radial distance must be taken into
account.

Angular and radial domain are no
longer completely separable.

Our approach

3D wavelet on the ball based on the natural harmonic expansion in
spherical coordinates: the Spherical Fourier-Bessel Transform.
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The Spherical Fourier-Bessel Transform

The Spherical Fourier-Bessel Transform of f is its development onto the
following orthogonal basis:

Ψlmk(r, θ, φ) =

√
2

π
jl(kr)Y

m
l (θ, φ)

Spherical Fourier-Bessel Transform

Direct Transform:

f̂lm(k) =

√
2

π

∫
Ω

∫
f(r, θ, φ) r2jl(kr)dr︸ ︷︷ ︸

Spherical Bessel

Y
m
l (θ, φ)dΩ︸ ︷︷ ︸

Spherical Harmonics

Inverse Transform:

f(r, θ, φ) =

√
2

π

∞∑
l=0

l∑
m=−l

∫
f̂lm(k)k2jl(kr)dkY

m
l (θ, φ) (2)
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IUWT in the SFB framework

All we need is to be able to express the convolution of f with a scaling
function as a function of Spherical Fourier Bessel coefficients.

Isotropic Low-Pass filtering in SFB

Scaling function φkc(r, θr, φr) with cut-off kc and spherical symmetry:

φ̂kclm(k) = 0 as soon as (l,m) 6= (0, 0)

φ̂kc00(k) = 0 for all k ≥ kc

(̂f ∗ φ)lm(k) =
√

2πφ̂00(k)f̂lm(k)

=⇒ Applying a 3D isotropic low-pass filter is equivalent to multiplying
the SFB coefficients by a function of k only.
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IUWT in the SFB framework

cj(r, θr, φr) are a sequence of smooth approximations of f(r, θr, φr)

cj are expressed as the convolution of f(r, θr, φr) with φ2−jkc :

c0 = Φkc ∗ f
c1 = Φ2−1kc ∗ f
· · ·

cj = Φ2−jkc ∗ f

Wavelet coefficients are the difference between two successive
smoothed approximations:

wj+1(r, θr, φr) = cj(r, θ, φ)− cj+1(r, θ, φ)
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IUWT in the SFB framework

Recursive definition of the wavelet decomposition

If ĉ0
lm(k) = f̂lm(k) then:

ĉj+1
lm (k) = ĥj00(k)ĉjlm(k)

ŵj+1
lm (k) = ĝj00(k)ĉjlm(k)

Spherical Fourier-Bessel coefficients of the Wavelet decomposition:{
ŵ1, ŵ2, . . . , ŵJ−1, ĉJ

}
with ĥj00(k) =

Φ̂2−(j+1)kc
00 (k)

Φ̂2−(j)kc
00 (k)

and ĥj00(k) = 1− Φ̂2−(j+1)kc
00 (k)

Φ̂2−jkc
00 (k)
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IUWT in the SFB framework

Recursive definition of the filtered wavelet reconstruction

Given
{
ŵ1, ŵ2, . . . , ŵJ−1, ĉJ

}
:

ĉjlm(k) = ĉj+1
lm (k)

ˆ̃
hjlm(k) + ŵj+1

lm
ˆ̃gjlm(k)

which yields ĉ0
lm(k) = f̂lm(k).

where ˆ̃
hj and ˆ̃gj are defined as:

ˆ̃
hjlm(k) =

ĥj lm(k)

|ĥjlm(k)|2 + |ĝjlm(k)|2

ˆ̃gjlm(k) =
ĝj lm(k)

|ĥjlm(k)|2 + |ĝjlm(k)|2

François Lanusse (CEA Saclay) 3D sparse representations on the sphere August 27, 2013 17 / 26



IUWT in the SFB framework

Choice of the scaling function

Any scaling function verifying the spherical symmetry and cutoff frequency
will do.
We use a 3rd order B-Spline for its good behavior in direct space.

(a) Scaling function Φ̂2−jkc
00 (k) for

j = 0, 1, 2
(b) Wavelet function Ψ̂2−jkc

00 (k) for
j = 0, 1, 2
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Spherical 3D Isotropic Undecimated Wavelet

(c) Input density field (d) First wavelet scale
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Spherical 3D Isotropic Undecimated Wavelet

(e) Second wavelet scale (f) Third wavelet scale
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Spherical 3D Isotropic Undecimated Wavelet

(g) Fourth wavelet scale (h) Smoothed density
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Practical implementation

Practical difficulties

This only gives a continuous definition of the wavelet transform.

A lot of algorithms are iterative and require back and forth wavelet
transforms.

=⇒ In practice you need a discrete sampling scheme of (r, θ, φ) AND
(l,m, k) which allows for back and forth SFB transform.
However there is no exact quadrature formula for the radial Spherical
Bessel transform.

Luckily 2 things happen:

HEALPix angular discretization scheme allowing for fast SHT
transform in the SFB transform as demonstrated in Leistedt et al.
(2012)

When assuming boundary conditions on the field, the Spherical
Bessel Transform can be approximated by discrete transform.
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The Discrete Spherical Fourier Bessel Transform

The 2 ingredients of the DSFBT:

Angular transform : HEALpix grid

Radial transform : Discrete Spherical
Bessel grid in k and r

Approximated transform

The transform is not exact BUT can be
evaluated at any desired accuracy by
increasing the number of points in the radial
sampling.

Figure : Spherical 3D grid

f(rl0n, θpix, φpix)⇐⇒ f̂(l,m, kln)
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Toy Experiment: Denoising by hard thresholding

We extracted a density field from an Nbody simulation, added gaussian
noise and expanded the field in Spherical Fourier-Bessel Coefficients.

(a) Reference field (b) Noisy field

Figure : Slice in the reconstruction of the test density field from the original and
noisy Spherical Fourier-Bessel coefficients
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Toy Experiment: Denoising by hard thresholding

Hard thresholding on the wavelet coefficients is done by setting to zero on
each wavelet scale the coefficients below a given σT = kσN .

(a) Noisy field (b) De-noised field

Figure : Slice in the reconstruction of the noisy and de-noised Spherical
Fourier-Bessel coefficients
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Conclusion

We have presented 2 kinds of sparse representations on the sphere

2D-1D representations which can extend existing transforms on the
sphere to 3D signals

3D isotropic wavelets on the ball

Such sparse representations can be used in many data restoration
applications.

Codes for the 2D-1D transform: http://jstarck.free.fr/isap.html

All the codes for computing 3D wavelets is contained in a parallelized
C++ package with an IDL interface: http://jstarck.free.fr/mrs3d.html

3DEX: Fast Spherical Fourier-Bessel decomposition of 3D surveys, Leistedt
et al. (2012): https://github.com/ixkael/3DEX
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