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Introduction

A few words about sparsity:

• Some data is said to be sparse in some dictionary when it can be
represented by a small number of coefficients in this dictionary.

• Once the sparse hypothesis is verified you have access to extremely
powerful tools to treat your data.

• Example of applications: Denoising, Detection, Component
Separation, Linear Problem Inversions, Data Compression...

=⇒ But it all rely on having appropriate dictionaries for the data.
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Introduction

• In recent years all sky survey have prompted the development of new
multiresolution transforms on the sphere.

• Building blocks of powerful sparsity based tools but limited to the
sphere.

• 3D multiresolution transforms readily expressed in spherical
coordinates are key to extend the tools on the sphere to the 3D
space.

Aim of this work

Generalize a wavelet transform defined on the sphere to Spherical 3D using
the Spherical Fourier-Bessel framework.
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Isotropic Undecimated Wavelet Transform

Starck et al. (2006) introduced an invertible isotropic wavelet transform
on the sphere using spherical harmonics.

IUWT features

• Exact reconstruction formula.

• Fast implementation thanks to
the HEALpix package.

• Dictionary adapted to
isotropic features.

• Well behaved in the direct space
(limited oscillations).

• Proved to be very efficient for
restoration purposes.
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Isotropic Undecimated Wavelet Transform
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Example of application: Poisson denoising on the
sphere

Using the IUWT, Poisson denoising of isotropic sources on the Sphere was
addressed in Schmidt et al. (2010) for Fermi data.

MS-VSTS

Multi-Scale Variance Stabilization
Transform on the Sphere.
Combines a square root variance
stabilization transform the IUWT.

Can also be combined with:

• Inpainting

• Source detection

• Multi-Channel Deconvolution
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Example of application: Inpainting
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Why the Spherical Fourier-Bessel Transform ?

Interest of the SFB transform

• Naturally arises when dealing with 3D data in spherical coordinates.

• Basis functions are eigenfunctions of the Laplacian operator.

• Redshift space distortions are readily expressible in the SFB basis.

• Different probes can be expressed in this basis (BAOs, WL, ISW).
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The Spherical Fourier-Bessel Transform

The Spherical Fourier-Bessel Transform of f is its development onto the
following orthogonal basis:

Ψlmk(r , θ, φ) =

√
2

π
jl (kr)Y

m
l (θ, φ) (1)

Spherical Fourier-Bessel Transform

Direct Transform:
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√
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π

∫
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∫
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IUWT in the SFB framework

All we need is to be able to express the convolution of f with a scaling
function as a function of Spherical Fourier Bessel coefficients.

Isotropic Low-Pass filtering in SFB

Scaling function φkc (r , θr , φr ) with cut-off kc and spherical symmetry:

• φ̂kc
lm(k) = 0 as soon as (l ,m) 6= (0, 0)

φ̂kc
00(k) = 0 for all k ≥ kc

• (̂f ∗ φ)lm(k) =
√

2πφ̂00(k)f̂lm(k)

=⇒ Applying a 3D isotropic low-pass filter is equivalent to multiplying
the SFB coefficients by a function of k only.
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IUWT in the SFB framework

• c j (r , θr , φr ) are a sequence of smooth approximations of f (r , θr , φr )

• c j are expressed as the convolution of f (r , θr , φr ) with φ2−jkc :

c0 = Φkc ∗ f
c1 = Φ2−1kc ∗ f
· · ·

c j = Φ2−jkc ∗ f (4)

• Based on the ”a trou” algorithm, wavelet coefficients are the
difference between two successive smoothed approximations:

w j+1(r , θr , φr ) = c j (r , θ, φ)− c j+1(r , θ, φ) (5)
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IUWT in the SFB framework

Recursive definition of the wavelet decomposition

If ĉ0lm(k) = f̂lm(k) then:

ĉ j+1
lm (k) = ĥj00(k)ĉ

j
lm(k) (6)

ŵ j+1
lm (k) = ĝ j

00(k)ĉ
j
lm(k) (7)

Spherical Fourier-Bessel coefficients of the Wavelet decomposition:{
ŵ1, ŵ2, . . . , ŵJ−1, ĉJ

}

with ĥj00(k) =
Φ̂2−(j+1)kc

00 (k)

Φ̂2−(j)kc
00 (k)

and ĥj00(k) = 1− Φ̂2−(j+1)kc
00 (k)

Φ̂2−jkc
00 (k)
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IUWT in the SFB framework

Recursive definition of the filtered wavelet reconstruction

Given
{
ŵ1, ŵ2, . . . , ŵJ−1, ĉJ

}
:

ĉ jlm(k) = ĉ j+1
lm (k) ˆ̃hjlm(k) + ŵ j+1

lm
ˆ̃g j
lm(k) (8)

which yields ĉ0lm(k) = f̂lm(k).

where ˆ̃hj and ˆ̃g j sont définis par:

ˆ̃hjlm(k) =
ĥj lm(k)

|ĥjlm(k)|2 + |ĝ
j
lm(k)|2

(9)

ˆ̃g j
lm(k) =

ĝ j
lm(k)

|ĥjlm(k)|2 + |ĝ
j
lm(k)|2

(10)
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IUWT in the SFB framework

Choice of the scaling function

Any scaling function verifying the spherical symmetry and cutoff frequency
will do.
As with the transform on the sphere, we use a 3rd order B-Spline for it’s
good behavior in direct space.

(a) Scaling function Φ̂2−jkc
00 (k) for j =

0, 1, 2
(b) Wavelet function Ψ̂2−jkc

00 (k) for
j = 0, 1, 2
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Spherical 3D Isotropic Undecimated Wavelet

(c) Reconstructed density cube from
almn

(d) First wavelet scale
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Spherical 3D Isotropic Undecimated Wavelet

(e) Second wavelet scale (f) Third wavelet scale
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Spherical 3D Isotropic Undecimated Wavelet

(g) Fourth wavelet scale (h) Smoothed density
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Well that’s nice but...

This thing is unpractical !

2 main problems:

• This only gives a continuous definition of the wavelet transform.

• A lot of algorithms are iterative and require back and forth wavelet
transforms.

=⇒ In practice you need a discrete sampling scheme of (r , θ, φ) AND
(l ,m, k) which allows for back and forth SFB transform.

Luckily 2 magical things happen:

• HEALPix angular discretization scheme allowing for fast SHT
transform in the SFB transform as demonstrated in Leistedt et al.
(2012)

• When assuming boundary conditions on the field, the k dimension
in the Spherical Bessel Transform can be discretized.
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The Discrete Spherical Bessel Transform

For the radial part of the transform, using boundary conditions on
f (r) and f̂ (k) we showed that, to a good approximation, the Spherical
Bessel Transform can be expressed as discrete sums:

f̂ln = K−3
N

∑
p=1

flp

√
2π

j2l+1(qlp)
jl

(
qlpqln
qlN

)
(11)

fln = R−3
N

∑
p=1

f̂lp

√
2π

j2l+1(qlp)
jl

(
qlpqln
qlN

)
(12)

where qln is the nth zero of the spherical bessel function of order j and
qlN = KR

=⇒ This defines a matrix transformation between f (r) and f̂ (k) sampled

on discrete grids rln =
qln
K

and kln =
qln
R
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The Discrete Spherical Fourier Bessel Transform

The 2 ingredients of the DSFBT:

• Angular transform : HEALpix grid and
SHT transform

• Radial transform : Discrete Spherical
Bessel grid in k and r and transform

f̂l1
f̂l2
...

f̂lN

 =
1

K 3
T l


fl1
fl2
...
flN


Figure: Spherical 3D grid

f (rl0n, θpix , φpix )⇐⇒ f̂ (l ,m, kln)
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Toy Experiment: Denoising by hard thresholding

We extracted a density field from an Nbody simulation, added gaussian
noise and expanded the field in Spherical Fourier-Bessel Coefficients.

(a) Reference field (b) Noisy field

Figure: Slice in the reconstruction of the test density field from the original and
noisy Spherical Fourier-Bessel coefficients
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Toy Experiment: Denoising by hard thresholding

Hard thresholding on the wavelet coefficients is done by setting to zero on
each wavelet scale the coefficients below a given σT = kσN .

(a) Noisy field (b) De-noised field

Figure: Slice in the reconstruction of the noisy and de-noised Spherical
Fourier-Bessel coefficients
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Toy Experiment: Denoising by hard thresholding

Figure: Difference between noisy and
de-noised fields

• (Almost) No discernable
features in the residuals.

• The Wavelet Transform has
successfully been able to capture
the information.
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Let’s sum up

• The IUWT on the sphere has successfully been extended to the 3D
space in spherical coordinates.

• The SFB formalism is very appropriate to the study of wide galaxy
surveys.

• This particular wavelet could be very useful when dealing with roughly
isotropic feature in the galaxy field.

• A Discrete Spherical Fourier-Bessel Transform has been introduced
with a 3D grid compatible with the SFB.

• Other very useful transforms on the sphere could be extended in 3D
(Curvelets and Ridgelets) using a similar approach.

All the codes for computing wavelets is contained in a parallelized C++
package with an IDL interface: http://jstarck.free.fr/mrs3d.html

3DEX: Fast Spherical Fourier-Bessel decomposition of 3D surveys, Leistedt
et al. (2012): https://github.com/ixkael/3DEX
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One final thought
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Isotropic Undecimated Wavelet Transform

Transform using the ”a trou” algorithm:

• Smoothed approximations are obtained by applying an axisymetric
low pass filter to the SHT coefficients.

• The Wavelet coefficients are extracted by taking the difference
between 2 consecutive smoothed approximations.
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How to extend these wavelets to third dimension ?

2D-1D transform

The idea: Peforming an IUWT in
the angular domain followed by a 1D
wavelet transform in the 3rd
dimension.
Third dimension may be for instance
Time or Energy.

This approach is not well suited for 3D spherical fields

For 3D fields, you want to handle the radial dimension in a coherent way
with the angular domain.

=⇒ We adopt a true 3D transform using the Spherical Fourier Bessel
Transform
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Development of Surveys into almns

The redshift survey gives us θ, φ, z . We are using Boris’ method
parallelized on the cluster, computes almns for lmax=512, mmax=512,
nmax=512 and Nside=512 in 45min for a survey of 43477 galaxies.

1 We convert the redshifts to comoving distance assuming a given
cosmology

2 Assuming an Healpix discretization scheme for (θ, φ) we compute in
each angular direction the Spherical Bessel Transform

f (kn, θ, φ) =

√
2

π

∫
f (r , θ, φ)jl (knr)r

2dr (13)

3 We compute the Spherical Harmonics Transform using Healpix

alm(kn) =
∫

f (kn, θ, φ)Y lm(θ, φ)dΩ (14)
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Development of Surveys into almns

Figure: 2MRS survey reconstrcuted from its almns
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