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Chapter 1

iSAP Introduction and Installation

1.1 Introduction to iSAP

iSAP is a collection of packages, in IDL and C++, related to sparsity and its appli-
cation in astronomical data analysis (the IDL software (http://www.idl-envi.com) is
analogous to Matlab and is very widely used in astrophysics and in medical imaging).
The C++ routines can be used independently of IDL. The library is available via the web
site:

http://www.cosmostat.org/isap.html

It contains the following packages:

• Sparse2D V1.0: Sparsity for 1D and 2D data set.
IDL and C++ code, allowing sparse decomposition, denoising and deconvolution.

• MSVST V1.0: Multi-Scale Variance Stabilizing Transform (MSVST)
for 1D and 2D data set.
IDL and C++ code for Poisson noise removal.

• MRS V3.2: MultiResolution on the Sphere.
IDL and C++ code for sparse representation on the sphere.

• SparsePOL V1.1: Polarized Spherical Wavelets and Curvelets.
IDL code for sparse representation of polarized data on the sphere.

• MRS-MSVSTS V1.1: Multi-Scale Variance Stabilizing Transform
on the Sphere.
IDL code for Poisson noise removal and deconvolution on mono-channel and multi-
channel spherical data.

• SparseGal V1.0: Sparsity for galaxies survey analysis.
IDL code, with two subpackages:

– ISW V1.0: Integrated Sachs-Wolfe effect detection.

– DarthFader V1.0: Spectroscopic Redshift Estimation using sparsity.
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• SparseCMB V1.0: Sparsity for CMB data analysis.
IDL and C++ code.

1.2 IDL Installation

A set of routines has been developed in IDL. Starting IDL using the script program
isap.pro allows the user to get the sparse IDL astronomical data analysis environment,
and all routines described in the following can be called. An online help facility is also
available by invoking the isaph program under IDL.

Then, installing the iSAP package simply requires adding some lines in your environ-
ment profile:

• define the environment variable ISAP

setenv ISAP /home/user/ISAP

• define the alias isap

alias isap ’idl $ISAP/idl/isap.pro $ISAP/idl/compile_healpixfile’

If the Healpix package is not installed, then replace the previous command with

alias isap ’idl $ISAP/idl/isap.pro’

In this case, packages MRS, MRSP, MRS-MSVST will not be active.

Then the command ”isap” will start the IDL session using the iSAP environment.

1.3 MRS/V3.2 package

The MRS package, included in iSAP, requires IDL (version 6.0 or later) and HEALPix
(version 2.0 or later) to be installed. The HEALPix environment variable HEALPix is
expected to be defined. HEALPix is available at:

http://sourceforge.net/projects/healpix

HEALPix binaries must be in the user path.
MRS/V3.2 contains also C++ programs that can be used from IDL or directly from a

terminal session. It has been tested using gcc-4.4.1. C++ is not necessary, but for some
applications such as inpainting, C++ routines are much faster. To compile C++ routine,
do the following commands:

• go the iSAP directory

cd $ISAP/cxx/mrs/build

• build the makefile



1.3 MRS/V3.2 package 17

./cmake ..

• run the makefile

make

• copy the created binaries to the iSAP binary directory

make install

• set the IDL global variable ISAPCXX equal to 1 in the file $iSAP/isap.pro or on
the user command line after being in the IDL-iSAP environment.

ISAP> ISAPCXX=1

Simular installation procedures must be done for each C++ package available in
$iSAP/cxx.

1.3.1 Input Data

Most of the functions of MRS package are working with spherical maps either as input
or as output variables. The maps could be in two possible kind of formats: the first one
which will be recognized by all functions is the HEALPix format. This format allows two
kind of pixel order in the data array called NESTED and RING. Unless stated, MRS
functions will work only with NESTED maps. Conversions between NESTED and RING
schemes could be done with the function ”REORDER” from HEALPix package.

The second format which is recognized by some functions of MRS package, but not
all, is the GLESP format. In IDL, the variable for an image in GLESP format is an
IDL structure. The MRS package includes the file ”mrs glesp.pro” which contains several
functions for working with GLESP images especially the functions ”healpix2glesp” and
”glesp2healpix” which are used for the conversions between Healpix and GLESP format.
To use the GLESP image format, GLESP library, available at http://www.glesp.nbi.dk,
must be installed, and the environment variable GLESP must be initialized to the correct
path.

1.3.2 Global IDL MRS Variable

Four global MRS variables, defined in the file ”isap.pro”, are available, and can be
changed by the user.

• HealpixCXX: default is 1. By default, MRS uses HEALPix C++ programs to com-
pute the spherical harmonic coefficients. If HealpixCXX is set to 0, MRS will call
the HEALPix Fortran programs. We recommend to keep HealpixCXX equal to 1.
Fortran option will not be supported in the future.

• DEF ALM FAST: default is 1. By default, spherical harmonic coefficients are cal-
culated with floating values. This is faster and requires less memory, but is not as
accurate than using double. Set DEF ALM FAST to zero to make all calculation
with double.
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• DEF ALM NITER: default is 10. This variable is only used when DEF ALM FAST
is equal to zero. DEF ALM NITER is the number of iterations used by HEALPix
to compute the spherical harmonic coefficients. In the fast mode (default mode),
there is no iteration.

• DEF NORM POWSPEC: default is 0. If DEF NORM POWSPEC is set to 1, the
command ”mrs powspec” will return a normalized power spectrum, such that a map
containing a Gaussian noise with variance 1 will have a power spectrum equal to 1.

• ISAPCXX: Default is 0: If the iSAP C++ code has been compiled, it is recom-
mended to set it to 1. When it is equal to 1, then spherical harmonic transform and
recontruction are done using the MRScxx binaries instead of Healpix binaries.

1.4 SparsePOL/V1.1 package

The SparsePOL package, included in iSAP, requires IDL (version 6.0 or later), HEALPix
(version 2.0 or later), and MRS/V3.2 to be installed.



Part I

MRS/V3.2 : MultiResolution on the
Sphere





Chapter 2

Data on the Sphere

2.1 Introduction

In a number of areas of scientific activity, data is gathered which naturally maps to
the sphere. For instance, remote sensing of the Earth’s surface and atmosphere, e.g.
with POLDER1, generates spherical data maps which are crucial for global and local
geophysical studies such as understanding climate change, geodynamics or monitoring
human-environment interactions. More examples can be found in medical imaging or
computer graphics. In astronomy and astrophysics, recent and upcoming ground based
and satellite borne experiments such as WMAP2 or Planck-Surveyor3 for the observation
of the Cosmic Microwave Background radiation field over the whole celestial sphere, pro-
duce full-sky maps in a wide range of wavelengths. These maps are necessarily digitized
and hence distributed as a finite set of pixel values on some grid. The properties of this
grid will affect the subsequent analysis of the data, and a good choice will make stan-
dard computations, such as the spherical harmonics transform, much faster and accurate.
Considerable work has been dedicated to the development of pixelization schemes on the
sphere. In particular, Healpix (Górski et al. 2005) is a sampling scheme which has some
attractive geometrical features profitably used in this spherical data analysis software
package.

Processing spherical data maps requires specific tools or somehow adapting traditional
methods used on flat images to the spherical topology, such as multiscale transforms for
image processing. Among these, Wavelets and related representations are by now success-
fully used in all areas of signal and image processing. Their recent inclusion in JPEG 2000
– the new still-picture compression standard – is an illustration of this lasting and sig-
nificant impact. Wavelets are also very popular tools in astronomy (Starck and Murtagh
2002) which have led to very impressive results in denoising and detection applications.
For instance, both the Chandra and the XMM data centers use wavelets for the detection
of extended sources in X-ray images. For denoising and deconvolution, wavelets have also
demonstrated how powerful they are for discriminating signal from noise (Starck et al.
2002b). In cosmology, wavelets have been used in many studies such as for analyzing
the spatial distribution of galaxies (Slezak et al. 1993; Escalera and MacGillivray 1995;

1http://polder.cnes.fr
2http://map.gsfc.nasa.gov
3http://astro.estec.esa.nl/Planck
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Starck et al. 2005; Mart́ınez et al. 2005), determining the topology of the universe (Rocha
et al. 2004), detecting non-Gaussianity in the CMB maps (Aghanim and Forni 1999;
Barreiro et al. 2001; Vielva et al. 2004; Starck et al. 2004a), reconstructing the primor-
dial power spectrum (Mukherjee and Wang 2003), measuring the galaxy power spectrum
(Fang and Feng 2000) or reconstructing weak lensing mass maps (Starck et al. 2006). It
has also been shown that noise is a problem of major concern for N-body simulations
of structure formation in the early Universe and that using wavelets for removing noise
from N-body simulations is equivalent to simulations with two orders of magnitude more
particles (Romeo et al. 2003, 2004).

This technical report includes an overview of multiscale transforms on the sphere
and introduces their uses in several algorithms for signal processing on the sphere. In this
chapter, the Section 2.2 overviews the problem of pixelization on the sphere and introduces
the two solutions used by MRS package: the HEALPix pixelization scheme 2.2.1 and
Gauss-Legendre Sky Pixelization (GLESP) 2.2.2. The Section 2.3 introduces the spherical
harmonics transform which could be considered as an extension of Fourier’s transform to
the sphere. Section 2.4 is a short introduction to multiscale methods on the sphere and
to their applications. These methods are fully presented in Chapter 3 and algorithm on
the sphere bases on them are given in Chapter 4 for data restoration, in Chapter 5 for
sparse component analysis and in Chapter 6 for blind source separation. The Chapter 7
is dedicated to statistics on the sphere which includes the detection of non-gaussianities.
Sections 5.2.3 and 5.3.2 present how these new tools can help us to analyze data in two
real applications, in physics and in cosmology. Finally, a guided numerical experiments
together with a toolbox written in IDL and dedicated to multiscale transforms on the
sphere (MR/S) are described in Chapter 8.

2.2 Pixelization

Various pixelization schemes for data on the sphere exist in the literature. These
include the Equidistant Coordinate Partition (ECP), the Icosahedron method (Tegmark
1996), the Quad Cube (White and Stemwedel 1992), IGLOO (Crittenden 2000), HEALPix
(Górski et al. 2005), Hierarchical Triangular Mesh (HTM) (Kunszt et al. 2001) or Gauss-
Legendre Sky Pixelization (GLESP) (Doroshkevich et al. 2005). Important properties
to decide which one is the best for a given application include the number of pixels
and their size, fast computation of the spherical harmonics transform, equal surface area
for all pixels, pixel shape regularity, separability of variables with respect to latitude and
longitude, availability of efficient software libraries including parallel implementation, etc.
Each of these properties has advantages and drawbacks. In this section, we present the
HEALPix and the GLESP representation which have several useful properties.

2.2.1 HEALPix

The HEALPix representation (Hierarchical Equal Area isoLatitude Pixelization of a
sphere) (Górski et al. 2005)4 is a curvilinear hierarchical partition of the sphere into
quadrilateral pixels of exactly equal area but with varying shape. The base resolution
divides the sphere into 12 quadrilateral faces of equal area placed on three rings around

4http://healpix.jpl.nasa.gov.
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Figure 2.1: The HEALPix sampling grid for four different resolutions.

Figure 2.2: Comparison of pixelization schemes for a low resolution map (880 arcmin) with
Healpix pixelization (on the left) and Glesp pixelization (on the right).

the poles and equator. Each face is subsequently divided into N2
side pixels following a

quadrilateral multiscale tree structure (see Fig. 2.1). The pixel centers are located on
iso-latitude rings, and pixels from the same ring are equispaced in azimuth. This is
critical for computational speed of all operations involving the evaluation of the spherical
harmonics coefficients, including standard operations such as convolution, power spectrum
estimation, and so on. HEALPix is a standard pixelization scheme in astronomy.

2.2.2 Gauss-Legendre Sky Pixelization (GLESP)

The principle of GLESP (Doroshkevich et al. 2005) is to select pixels centers on points
whose latitude is on the zeros of the associated Legendre’s polynomial. In order to fix
the longitude, two solutions have been built. The first one seeks for pixel with surfaces
approximately equal. The equator is split in 2 ∗ l + 1 pixels and other pixels bands are
split in order to have pixel surfaces as closed as possible to those of the equatorial band.
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The second one chooses pixels with an equally spaced longitude. Pixels don’t have the
same surface, but the accuracy on spherical harmonics calculation is better.

Figure 2.2 shows the shape and localization of pixels with both Healpix and GLESP
scheme for a low resolution map. The difference in the shape of the pixels is clearly shown.
There are 16 rings and 192 pixels for the Healpix scheme, and 13 rings and 220 pixels for
the GLESP one.

2.3 Spherical Harmonics

In the following, the ˆ notation will be used to denote the spherical harmonics coef-
ficients of a function. Any function f(θ, ϑ) ∈ L2(S

2) on the sphere S2 in R3 can be
decomposed into spherical harmonics:

f(θ, ϑ) =
+∞∑
l=0

l∑
m=−l

f̂lmYlm(θ, ϑ), (2.1)

where Ylm are the spherical harmonics defined by:

Ylm(θ, ϑ) =

√
2l + 1

4π

(l − |m|)!
(l + |m|)!

Plm(cosϑ)eimθ, (2.2)

Plm are the associated Legendre functions (or polynomials) defined by the following
differential equation:

d

dt

[
(1− t2) d

dt
Plm

]
+
(
l(l + 1)− m2

1− t2
)
Plm = 0. (2.3)

These functions are related to the Legendre polynomials Pl by

Plm(t) = (−1)m(1− t2)m/2 d
m

dtm
Pl(t), (2.4)

where Pl is:

Pl(t) =
1

2ll!

dl

dtl
(t2 − 1)l. (2.5)

Furthermore, an important property of the Legendre polynomials is that they are
orthogonal: ∑

l∈N

∑
|m|6l

Y ∗lm(ω′) Ylm(ω) = δ(ω′ − ω). (2.6)

with ω = (θ, ϑ) et ω′ = (θ′, ϑ′)



2.4 Multiscale methods on the sphere 25

2.4 Multiscale methods on the sphere

2.4.1 Wavelets on the sphere

Many wavelet transforms on the sphere have been proposed in the past years. Using the
lifting scheme (Schröder and Sweldens 1995) developed an orthogonal Haar wavelet trans-
form on any surface, which can be directly applied on the sphere. Its interest is however
relatively limited because of the poor properties of the Haar function and the problems
inherent to orthogonal transforms. More interestingly, many papers have presented new
continuous wavelet transforms (Antoine 1999; Tenorio et al. 1999; Cayón et al. 2001a;
Holschneider 1996). These works have been extended to directional wavelet transforms
(Antoine et al. 2002; McEwen et al. 2005). All these continuous wavelet decompositions
are useful for data analysis, but cannot be used for restoration purposes because of the
lack of an inverse transform. (Freeden and Windheuser 1997) and (Freeden and Schneider
1998) proposed the first redundant wavelet transform, based on the spherical harmonics
transform, which presents an inverse transform. (Starck et al. 2006) proposed an in-
vertible isotropic undecimated wavelet transform (UWT) on the sphere, also based on
spherical harmonics, which has the same property as the isotropic undecimated wavelet
transform, i.e. the sum of the wavelet scales reproduces the original image. A similar
wavelet construction (Marinucci et al. 2008; Faÿ and Guilloux 2008; Faÿ et al. 2008) used
the so-called needlet filters. (Wiaux et al. 2008) also proposed an algorithm which per-
mits to reconstruct an image from its steerable wavelet transform. Since reconstruction
algorithms are available, these new tools can be used for many applications such as de-
noising, deconvolution, component separation (Moudden et al. 2005; Bobin et al. 2008;
Delabrouille et al. 2008) or inpainting (Abrial et al. 2007; Abrial et al. 2008).

The MRS package offers an implementation of an isotropic wavelet transform on the
sphere. Its properties are similar to those of the “à trous” algorithm and therefore should
be very useful for data denoising and deconvolution. This algorithm, described in chap-
ter 3, is directly derived from the FFT-based wavelet transform proposed in (Starck et al.
1994) for aperture synthesis image restoration. It is relatively close to the Freeden and
Maier (Freeden and Schneider 1998) method, except that the reconstruction process is as
straightforward as in the “à trous” algorithm (i.e. the sum of the scales reproduces the
original data). This wavelet transform can also be easily extended to a pyramidal wavelet
transform, which may be very important for larger data sets such such as from the Planck
experiment.

2.4.2 Ridgelets and Curvelets on the sphere

In this area, further insight will come from the analysis of full-sky data mapped to
the sphere thus requiring the development of a curvelet transform on the sphere. The
MRS package offers an implementation of ridgelet and curvelet transforms for spherical
maps. Those implementations are derived as extensions of the digital ridgelet and curvelet
transforms described in (Starck et al. 2002a). The implemented undecimated isotropic
wavelet transform on the sphere and the specific geometry of the Healpix sampling grid
are important components of the present implementation of curvelets on the sphere.

Further motivation for developing these multiscale methods on the sphere follows from
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the results obtained in different data processing applications. As described in chapter 4,
the MRS package provides the necessary tools to experiment with these spherical mul-
tiscale transforms in denoising applications, for instance using the Combined Filtering
Method, which allows us to filter data on the sphere using both the Wavelet and the
Curvelet transforms. The analysis of multichannel data mapped to the sphere, a prob-
lem encountered for instance in the processing of WMAP and Planck observations, is
another issue that is shown to benefit from the developed multiscale representations on
the sphere. This is reported in chapter 6 which is dedicated to describing some methods
in multichannel data analysis extended to spherical maps which are implemented in the
MRS package.



Chapter 3

Multiscale Methods on the Sphere

In this chapter, many multiscale decompositions will be built based on the spherical
harmonics and/or the HEALPix representation.

3.1 Orthogonal Haar Wavelets on the Sphere

The Haar wavelet transform on the sphere (Schröder and Sweldens 1995) at each
resolution j and pixel k = (kx, ky) on the sphere is based on a scaling function φj,k
(φj,k(x) = φ (2−j(x− k)), where x is the vector of Cartesian coordinates on the sphere,
and φ is the Haar scaling function) and three Haar wavelet functions ψdj,k (see (3.1)) with
d ∈ {1, 2, 3}. It uses the idea that a given pixel on the sphere at a given resolution j in
the HEALPix representation is directly related to four pixels at the next resolution j− 1.

Noting, k0, the pixel. The scaling function φ and three wavelet functions ψ are defined
by:

φj,k(x) =

{
1 if t ∈ Sj,k
0 otherwise

ψ1,j+1,k =
φj,k0 + φj,k2 − φj,k1 − φj,k3

4

ψ2,j+1,k =
φj,k0 + φj,k1 − φj,k2 − φj,k3

4

ψ3,j+1,k =
φj,k0 + φj,k3 − φj,k1 − φj,k2

4
(3.1)

Denoting k0,k1,k2,k3 the four pixels at scale j, hierarchically related to the pixel k
at scale j+ 1, scaling coefficients cj+1,k at scale j+ 1 are derived from those at scale j by:

cj+1[k] =
1

4

3∑
d=0

cj[kd], (3.2)
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and wavelet coefficients at scale j + 1 from coefficients at scale j by:

w1
j+1[k] =

1

4
(cj[k0] + cj[k2]− cj[k1]− cj[k3])

w2
j+1[k] =

1

4
(cj[k0] + cj[k1]− cj[k2]− cj[k3])

w3
j+1[k] =

1

4
(cj[k0] + cj[k3]− cj[k1]− cj[k2]). (3.3)

The Haar wavelet transform on the sphere is orthogonal and its reconstruction is exact.
The inverse transformation is obtained by:

c0[x] =
∑

k

cJ [k]φJ,k(x) +
J∑
j=1

3∑
d=1

∑
k

wdj [k]ψdj (x). (3.4)

This transform is very fast but its interest is relatively limited. Indeed, it is not
rotation invariant, and more importantly the Haar wavelet shape is not well adapted for
most applications, because of the non-regular shape of the wavelet function.

3.2 Continuous Wavelets on the Sphere

3.2.1 Stereoscopic Projection

Figure 3.1: Inverse stereographic projections of a radial function from plane to the sphere.
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In order to have more choice to design the wavelet function, we may want to use
wavelets defined for regular 2D images to the sphere. This is possible by using inverse
stereographic projections of radial wavelet functions such the Mexican hat (Cayón et al.
2001a). Defining the stereographic projection operator, R : t 7→ ω, with ω = (θ(r), ϑ),
θ(r) = 2 arctan(r/2), the radial wavelets ψplane can be projected on the sphere by a unique
rotation, ω0 = (θ0, ϑ0), respectively around the two axes Oy and Oz. Fig. 3.1 shows the
projection of radial functions from the plane to the sphere.

The convolution on the sphere between a radial wavelet function ψ(θ) and a function
f(ω) is:

(ψ ∗ f)(θ, ϑ) =

∫
S2

ψ∗plane(R
−1ω)f(ω)dω. (3.5)

Such wavelets are axisymmetric by construction. This property can be used to derive
fast transformation algorithms using spherical harmonics. Indeed spherical harmonics
coefficients ψ̂[l,m] of the wavelet function ψ on the sphere are equal to zero when m 6= 0,
and by the Funk-Hecke theorem, the convolution can be written using spherical harmonics
by:

(ψ ∗ f)(θ, ϑ) =
∞∑
l=0

l∑
m=−l

√
2l + 1

4π
f̂ [l,m]ψ̂[l, 0]Ylm(θ, ϑ) . (3.6)

where f̂ [l,m] are the spherical harmonics coefficients of the function f ,

i.e. f =
∑∞

l=0

∑l
m=−l f̂ [l,m]Ylm and similary for ψ̂.

Classical wavelet dilations can also be derived on the sphere using the dilation operator
Da by a factor a > 0 (Wiaux et al. 2007):

Da(f)(ω) = χ1/2
a (a, θ)f(D−1a ω), (3.7)

where Da(θ, ϑ) = (θa(θ), ϑ) with the linear relation tan θa(θ)/2 = a tan θ/2, and Da is the

dilation operator that maps a sphere without its South pole on itself. χ
1/2
a (a, θ) is a norm

preservation term (i.e. Da is unitary):

χ1/2
a (a, θ) = a−1[1 + tan2(θ/2)]/[1 + a−2 tan2(θ/2)] . (3.8)

3.2.2 Mexican Hat Wavelet

The 2D Mexican hat wavelet transform is the second derivative of a Gaussian:

ψ(r) =
1√
2π

1

a

(
2−

(r
a

)2)
e−

r2

2a2 (3.9)

where a is a scale factor parameter and r the distance to the wavelet center.
Using the inverse stereographic projection, it is possible to extend the Mexican hat

wavelet on the sphere (Antoine 1999; Tenorio et al. 1999; Cayón et al. 2001a; Holschneider
1996; Vielva et al. 2004):

ψa(r) =
1√

2πCa

(
1 +

(r
2

)2)2(
2−

(r
a

)2)
e−

r2

2a2 (3.10)
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Figure 3.2: Mexican hat on the sphere for the dilation parameter equal to a = {1, 2, 4, 8}.

where a is a scale factor, Ca is a normalization term Ca = a
(

1 + a2

2
+ a4

4

) 1
2
, and r is the

distance on the tangent plane, which is related to the polar angle θ through r = 2tan θ
2
.

This transform may be useful to analyze the data, but it does not have a reconstruction
operator, and can therefore not be used for restoration applications.

Fig. 3.2 shows the Mexican hat wavelet on the sphere for four different scales.

3.2.3 Directional Wavelets

To study anisotropic structures, the previously described continuous wavelet transform
can be extended to directional wavelets (Antoine et al. 2002; Vielva et al. 2006; McEwen
et al. 2007). Fig. 3.3 shows the projection of an elliptic function from the plane to the
sphere.

Elongated Mexican Hat Wavelet

The elongated Mexican hat wavelet can be written as:

ψax,ay(θ, ϑ) =

√
2

π
C(ax, ay)

(
1 + tan2 θ

2

)(
1− 4 tan2 θ/2

a2x + a2y

(a2y
a2x

cos2 ϑ

+
a2x
a2y

sin2 ϑ
))

e−2 tan
θ
2
(cos2 ϑ/a2x+sin2 ϑ/a2y) (3.11)
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Figure 3.3: Inverse stereographic projections of a directional wavelet on the sphere.

where ax and ay are the dilation factors along the two axes Ox and Oy, C(ax, ay) is a
normalization constant defined as

C(ax, ay) = (a2x + a2y)
(
axay(3a

4
x + 3a4y + 2axay)

)−1/2
(3.12)

Fig. 3.4 shows the wavelet functions for different dilation parameters ax and ay.

Morlet Wavelet

The Morlet wavelet on the sphere, derived from the stereographic projection of the 2D
function on the plane, is:

ψax,ay ,k(θ, ϑ) =

√
2

π
C(k)(1 + tan2 θ

2
)

(
cos

k·R−1x√
2
− e−|k|2/4

)
e−2 tan

2(θ/2) (3.13)

with R−1x = (2 tan(θ/2) cosϑ, 2 tan(θ/2) sinϑ), k = (kx, ky), |k|2 = k2x + k2y, and C(k) =

(1 + 3e−|k|
2/2 − 4e−3|k|

2/8)−1/2. k allows us to control the oscillations of the wavelet func-
tions.

Fig. 3.5 shows the Morlet wavelet for k equal respectively to (2, 0), (4, 0), (6, 6) and (9, 1).
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Figure 3.4: Elongated Mexican hat on the sphere for the dilation parameter equal to ax = 1 and
ay = {0.5, 1., 1.25, 1.5, 2, 4}.

Continuous wavelet transforms have been intensively used in astrophysics, mainly to
analyze the Cosmic Microwave Background (Vielva et al. 2004). Directional wavelets
based on steerable filters were also proposed in (Wiaux et al. 2006; McEwen et al. 2007).
We present in the following a set of multiscale decompositions on the sphere which have
a fast exact inverse transform, and are therefore suitable for many applications such as
restoration.

3.3 Redundant Wavelet Transform on the Sphere with Exact
Reconstruction
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Figure 3.5: Morlet wavelets on the sphere for the parameter k equal to (2,0), (4,0), (6,6) et
(9,1).

3.3.1 Isotropic Undecimated Wavelet Transform on the Sphere

Here an undecimated isotropic transform (UWTS) is described which is similar in
many respects to the undecimated isotropic transform (Starck et al. 2011, 2007a), and
will therefore be a good candidate for restoration applications. Its isotropy is a favorable
property when analyzing isotropic features. This isotropic transform is obtained using a
scaling function φlc(θ, ϑ) with cut-off frequency lc and azimuthal symmetry, meaning that

φlc does not depend on the azimuth ϑ. Hence the spherical harmonics coefficients φ̂lc [l,m]
of φlc vanish when m 6= 0 so that:

φlc(θ, ϑ) = φlc(θ) =
l=lc∑
l=0

φ̂lc [l, 0]Yl0(θ, ϑ). (3.14)

Then, convolving a function f(θ, ϑ) ∈ L2(S
2) with φlc is greatly simplified and the spher-

ical harmonics coefficients of the resulting map c0 are readily given by

ĉ0[l,m] = φ̂lc ∗ f [l,m] =

√
2l + 1

4π
φ̂lc [l, 0]f̂ [l,m]. (3.15)

From One Resolution to the Next
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A sequence of smoother approximations of f on a dyadic resolution scale can be
obtained using the scaling function φlc as follows:

c0 = φlc ∗ f
c1 = φ2−1lc ∗ f
. . .

cj = φ2−j lc ∗ f,

(3.16)

where φ2−j lc is a rescaled version of φlc . The above multiresolution sequence can actually
be obtained recursively.

Define a low pass filter hj for each scale j by:

Ĥj[l,m] =

√
4π

2l + 1
ĥj[l,m]

=


φ̂ lc

2j+1
[l,m]

φ̂ lc
2j

[l,m]
if l < lc

2j+1 and m = 0,

0 otherwise .

(3.17)

It is then easily shown that cj+1 derives from cj by convolution on the sphere with hj:
cj+1 = cj ∗ hj.

The Wavelet Coefficients

Given an axisymmetric wavelet function ψlc , we can derive in the same way a high
pass filter gj on each scale j:

Ĝj[l,m] =

√
4π

2l + 1
ĝj[l,m]

=


ψ̂ lc

2j+1
[l,m]

φ̂ lc
2j

[l,m]
if l < lc

2j+1 and m = 0,

1 if l ≥ lc
2j+1 and m = 0,

0 otherwise .

(3.18)

From this definition, the wavelet coefficients wj+1 at scale j + 1 are obtained from the
previous scaling coefficients cj by a simple convolution on the sphere with gj: wj+1 = cj∗gj.

As in the standard 2D isotropic undecimated transform algorithm, the wavelet coeffi-
cients can be defined as the difference between two consecutive resolutions, wj+1(θ, ϑ) =
cj(θ, ϑ)− cj+1(θ, ϑ). This defines a zonal wavelet function ψlc as:

ψ̂ lc
2j

[l,m] = φ̂ lc
2j−1

[l,m]− φ̂ lc
2j

[l,m]. (3.19)

The high pass filters gj associated with this wavelet are expressed as:

Ĝj[l,m] =

√
4π

2l + 1
ĝj[l,m]

= 1−
√

4π

2l + 1
ĥj[l,m] = 1− Ĥj[l,m].

(3.20)
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Obviously other wavelet functions could be used just as well. For example, we can define
the wavelet function as the difference between the squares of the scaling functions Starck
et al. (1998), i.e. ψ̂2

lc
2j

[l,m] = φ̂2
lc

2j−1

[l,m]− φ̂2
lc
2j

[l,m].
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Choice of the Scaling Function

Figure 3.6: On the left, spherical harmonics coefficients φ̂[l, 0] of the the scaling function φ and,
on the right, those of the wavelet function ψ.

Any function with a cut-off frequency is a possible candidate. The B-spline function
of order 3 (Starck et al. 2011, 2007a) leads to :

φ̂lc [l,m] =
3

2
B3

(
2l

lc

)
(3.21)

where B3(t) is the scaling function:

B3(t) =
1

12
(| t− 2 |3 − 4| t− 1 |3 + 6| t |3 − 4| t+ 1 |3 + | t+ 2 |3) (3.22)

In Fig. 3.6 the spherical harmonics coefficients of the scaling function derived from a
B3-spline, and those of the associated wavelet function (3.19), are plotted as a function of
l. Other functions such as Meyer wavelets or the needlet function (Marinucci et al. 2008)
can be used as well.

Meyer and needlet wavelet functions have both a much better frequency localization
than the wavelet function derived from the B3-spline, and, as nothing is perfect, the price
to pay is more oscillations in the direct space. To illustrate this, we show in Fig. 3.7
different wavelet functions. Top left and right shows the respectively the spline and
the needet wavelet function at a given scale. Fig. 3.7 middle left shows a cut of the
healpix face with contains the previous functions. Middle right is the same functions, but
we have plotted the absolute value in order to better visualize their respective ringing.
As it can be seen, for wavelet functions with the same main lob, the needlet wavelet
oscillate much more than the spline wavelet. Fig. 3.7 bottom left and right compares
Meyer and needlet functions. They are relatively close and share the same property of
good frequency localization, but with more oscillations than the spline wavelet function.
Hence, the best wavelet choice certainly depends on the final applications. For statistical
analysis, detection or restoration applications, we may prefer to use a wavelet which does
not oscillate too much and with a smaller support, and the spline wavelet is clearly the
correct choice. For spectral or bispectral analysis, where the frequency localization is
fundamental, then Meyer or needlet shoud be preferred to the spline wavelet.
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Figure 3.7: Comparaison between spline, needlet, and Meyer wavelet functions on the sphere.

The steps of the UWT on the sphere of a discrete image X sampled from f are
summarized in Algorithm 1. If the wavelet function corresponds to the choice (3.19),
Step 3 in this UWTS algorithm reduces to wj+1 = cj − cj+1.

Fig. 3.8 shows the Mars topographic map (top left) 1 and its wavelet transform, using
five scales (four wavelet scales + coarse scale). The sum of the five scales reproduces
exactly the original image.

Inverse Transform

1The Mars Orbiter Laser Altimeter (MOLA) generated altimetry profiles used to create global topographic
maps. The MOLA instrument stopped acquiring altimetry data on June 30, 2001, and after that operated in
passive radiometry mode until the end of the Mars Global Surveyor mission. MOLA data sets are produced by
the MOLA Science Team and archived by the PDS Geosciences Node.
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Figure 3.8: Mars topographic map and its UWTS (four wavelet detail scales and the scaling
(smooth) band).

If the wavelet is the difference between two resolutions, a straightforward reconstruc-
tion of an image from its wavelet coefficients W = {w1, . . . , wJ , cJ} is:

c0(θ, ϑ) = cJ(θ, ϑ) +
J∑
j=1

wj(θ, ϑ). (3.23)

This reconstruction formula is the same as with the 2D undecimated isotropic wavelet
algorithm (i.e. with à trous agorithm).

But since the transform is redundant there is actually no unique way to reconstruct
an image from its coefficients see (Starck et al. 2007a). Indeed, using the relations:

ĉj+1[l,m] = Ĥj[l,m]ĉj[l,m]

ŵj+1[l,m] = Ĝj[l,m]ĉj[l,m]
(3.24)
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Algorithm 1 The Undecimated Wavelet Transform on the Sphere.

Task: Compute the UWTS of a discrete X.
Parameters: Data samples X and number of of wavelet scales J .
Initialization:

• c0 = X.

• Compute the B3-spline scaling function and derive ψ̂, Ĥ and Ĝ numerically.

• Compute the corresponding spherical harmonics transform of c0.

for j = 0 to J − 1 do

1. Compute the spherical harmonics transform of the scaling coefficients: ĉj+1 = ĉjĤj .

2. Compute the inverse spherical harmonics transform of ĉj+1 to get cj+1.

3. Compute the spherical harmonics transform of the wavelet coefficients: ŵj+1 = ĉjĜj .

4. Compute the inverse spherical harmonics transform of ŵj+1 to get wj+1.

Output: W = {w1, w2, . . . , wJ , cJ} the UWTS of X.

a least-squares estimate of cj from cj+1 and wj+1 gives:

ĉj = ĉj+1
̂̃Hj + ŵj+1

̂̃Gj , (3.25)

where the dual filters h̃ and g̃ satisfy:

̂̃Hj =

√
4π

2l + 1
ˆ̃hj = Ĥ∗j /

(∣∣Ĥj

∣∣2 +
∣∣Ĝj

∣∣2)
̂̃Gj =

√
4π

2l + 1
ˆ̃gj = Ĝ∗j/

(∣∣Ĥj

∣∣2 +
∣∣Ĝj

∣∣2) . (3.26)

For the scaling function which is a B3-spline function and a wavelet taken as the difference

between two resolutions, the corresponding conjugate low pass and high pass filters ̂̃H

Figure 3.9: On the left, the filter
ˆ̃
h, and on the right the filter ˆ̃g.
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and ̂̃G are plotted in Fig. 3.9. The reconstruction algorithm is given in Algorithm 2.

Algorithm 2 Inverse UWT on the sphere.

Task: Reconstruct an image from its UWTS coefficients.
Parameters: UWTS coefficients W = {w1, w2, . . . , wJ , cJ}.
Initialization:

• Compute the B3-spline scaling function and derive ψ̂, Ĥ, Ĝ, ̂̃H and ̂̃G numerically.

• Compute the spherical harmonics transform of cJ to get ĉJ .

for j = J − 1 to 0, with step = −1 do

1. Compute the spherical harmonics transform of the wavelet coefficients wj+1 to get ŵj+1.

2. Multiply ĉj+1 by ̂̃Hj .

3. Multiply ŵj+1 by ̂̃Gj .
4. Get the spherical harmonics of ĉj = ĉj+1 + ŵj+1.

Compute The inverse Spherical Harmonics transform of ĉ0.
Output: c0 is the inverse UWT on the sphere.

Fig. 3.10 shows the reconstruction by setting all wavelet coefficients but one at different
scales and positions. Depending on the position and scale of the non-zero coefficient, the
reconstructed map shows an isotropic feature at different scales and positions.

3.3.2 Isotropic Pyramidal Wavelet Transform on the Sphere

Forward Transform

In the previous algorithm, no down-sampling is performed and each scale of the wavelet
decomposition has the same number of pixels as the original data set. Therefore the num-
ber of pixels in the decomposition is equal to the number of pixels in the data multiplied
by the number of scales. For some applications, we may prefer to introduce a decimation
in the decomposition so as to reduce the required memory size and the computation time.
This can be done easily by using a specific property of the chosen scaling function. In-
deed, since we are considering here a scaling function with an initial cut-off lc in spherical
harmonic multipole number l, and since the actual cut-off is reduced by a factor of two
at each step, the number of significant spherical harmonics coefficients is then reduced
by a factor of four after each convolution with the low pass filter h. Therefore, we need
less pixels in the direct space when we compute the inverse spherical harmonics trans-
form. Using the HEALPix pixelization scheme (Górski et al. 2005), this can be done
easily by dividing by 2 the Nside parameter when calling the inverse spherical harmonics
transform routine. The pyramidal wavelet transform on the sphere algorithm is given in
Algorithm 3.

Fig. 3.11 shows an Earth image and its pyramidal wavelet transform (PWTS) using
five scales. As the scale number increases (i.e. the resolution decreases), the pixel size
becomes larger. The data are land and sea-floor elevations obtained from the ETOPO5
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Figure 3.10: Reconstruction from a single wavelet coefficient at different scales. Each map is
obtained by setting all wavelet coefficients to zero but one, and by applying an inverse UWTS.
Depending on the position and scale of the non-zero coefficient, the reconstructed map shows
an isotropic feature at different scales and positions.

5-minute gridded elevation data set. A thorough explanation of the data set is provided
at www.ngdc.noaa.gov 2.

Inverse Transform

This reconstruction is not as straightforward as in the undecimated case, since the
different scales do not have the same resolution. For each resolution level, we have to
up-sample the scaling band before co-adding it to the wavelet coefficients. Algorithm 4
describes this.

The wavelet transform on the sphere and its pyramidal version have both a recon-
struction operator, so they are very well designed for any restoration application when
the data contains isotropic features. In the following, we present other transforms on the
sphere more adapted to the analysis of anisotropic features.

2The ETOPO5 data are credited to “Data Announcement 88-MGG-02, Digital relief of the Surface of the
Earth. NOAA, National Geophysical Data Center, Boulder, Colorado, 1988”. The HEALPix image is available
at http://astro.ic.ac.uk/∼pdineen/earth/index.html#earthmap.
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Algorithm 3 Pyramidal wavelet transform on the sphere.

Task: Compute the pyramidal WT on the sphere of a discrete image X.
Parameters: Data X and number of of wavelet scales J .
Initialization:

• c0 = X.

• Compute the B3-spline scaling function and derive ψ̂, Ĥ and Ĝ numerically.

• Compute the corresponding spherical harmonics transform of c0.

for j = 0 to J − 1 do

1. Compute the spherical harmonics transform of the scaling coefficients: ĉj+1 = ĉjĤj .

2. Compute the inverse spherical harmonics transform of ĉj+1 to get cj+1.

3. Down-sample cj+1, since its support in the spherical harmonic domain has been divided by
two.

4. Compute the spherical harmonics transform of the wavelet coefficients: ŵj+1 = ĉjĜj .

5. Compute the inverse spherical harmonics transform of ŵj+1 to get wj+1.

Output: W = {w1, w2, . . . , wJ , cJ} the Pyramidal WT on sphere of X.

3.4 Ridgelet and Curvelet Transform on the Sphere (CTS)

3.4.1 Introduction.

The 2D curvelet transform, proposed in (Donoho and Duncan 2000; Starck et al. 2002a,
2003a), enables the directional analysis of an image in different scales. The fundamental
property of the curvelet transform is to analyze the data with functions of length about
2−j/2 for the jth sub-band [2j, 2j+1] of the two dimensional wavelet transform. Following
the implementation described in (Starck et al. 2002a, 2003a), the data first undergoes
an Isotropic Undecimated Wavelet Transform (i.e. “à trous” algorithm). Each scale j
is then decomposed into smoothly overlapping blocks of side-length Bj pixels in such a
way that the overlap between two vertically adjacent blocks is a rectangular array of size
Bj ×Bj/2. And finally, the ridgelet transform (Candès and Donoho 1999b) is applied on
each individual block. Recall that the ridgelet transform precisely amounts to applying
a 1-dimensional wavelet transform to the slices of the Radon transform. More details
on the implementation of the digital curvelet transform can be found in (Starck et al.
2002a, 2003a). It has been shown that the curvelet transform could be very useful for
the detection and the discrimination of non-Gaussianity in CMB (Starck et al. 2003b).
The curvelet transform is also redundant, with a redundancy factor of 16J + 1 whenever
J scales are employed. Its complexity scales like that of the ridgelet transform that
is as O(n2 log2 n). The curvelet transform was shown to sparsely represent anisotropic
structures and smooth curves and edges of different lengths.
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Figure 3.11: Pyramidal wavelet transform on the sphere.
.

3.4.2 Ridgelets and Curvelets on the Sphere.

The Curvelet transform on the sphere (CTS) can be similar to the 2D digital curvelet
transform, but replacing the “à trous” algorithm by the Isotropic Wavelet Transform on
the Sphere previously described. The CTS algorithm consists in the following three steps
which we describe in more details next.

• Isotropic Wavelet Transform on the Sphere.

• Partitioning. Each scale is decomposed into blocks of an appropriate scale (of side-
length ∼ 2−s),using the HEALPix pixelization.

• Ridgelet Analysis. Each square is analyzed via the discrete ridgelet transform.

We now describe these three steps.
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Algorithm 4 Inverse Pyramidal Wavelet Transform on the sphere.

Task: Reconstruct an image from its pyramidal WT on the sphere.
Parameters: Pyramidal WT coefficients W = {w1, w2, . . . , wJ , cJ}.
Initialization:

• Compute the B3-spline scaling function and derive ψ̂, Ĥ, Ĝ, ̂̃H and ̂̃G numerically.

• Compute the spherical harmonics transform of cJ to get ĉJ .

for j = J − 1 to 0 do

1. Upsample cj+1 to the resolution of cj .

2. Compute the spherical harmonics transform of the wavelet coefficients wj+1 to get ŵj+1.

3. Multiply ĉj+1 by ̂̃Hj .

4. Multiply ŵj+1 by ̂̃Gj .
5. Get the spherical harmonics of ĉj = ĉj+1 + ŵj+1.

Compute The inverse spherical harmonics transform of ĉ0.
Output: c0 is the inverse pyramidal WT on the sphere.

Partitioning Using the HEALPix Representation

The HEALPix representation is a curvilinear hierarchical partition of the sphere into
quadrilateral pixels of exactly equal area but with varying shape. The base resolution
divides the sphere into 12 quadrilateral faces of equal area placed on three rings around
the poles and equator. Each face is subsequently divided into N2

side pixels following a
quadrilateral multiscale tree structure (see Fig. 2.1). The pixel centers are located on iso-
latitude rings, and pixels from the same ring are equispaced in azimuth. This is critical
for computational speed of all operations involving the evaluation of spherical harmonics
transforms, including standard numerical analysis operations such as convolution, and
power spectrum estimation.

An important geometrical feature of the HEALPix sampling grid is the hierarchical
quadrilateral tree structure. This defines a natural one-to-one mapping of the sphere
sampled according to the HEALPix grid, into twelve flat images, on all scales. It is then
easy to partition a spherical map using HEALPix into quadrilateral blocks of a specified
size. One first extracts the twelve base-resolution faces, and each face is then decomposed
into overlapping blocks of the specified size. This decomposition into blocks is an essential
step of the traditional flat 2D curvelet transform. Based on the reversible warping of the
sphere into a set of flat images made possible by the HEALPix sampling grid, the ridgelet
and curvelet transforms can be extended to the sphere.

With the decomposition into blocks described above, there is no overlap between neigh-
boring blocks belonging to different base-resolution faces. This may result for instance
in blocking effects in denoising experiments via nonlinear filtering. It is possible to over-
come this difficulty in some sense by working simultaneously with various rotations of the
data with respect to the sampling grid. This will average out undesirable effects at edges
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Figure 3.12: Flowgraph of the ridgelet transform on the sphere.

between base resolution faces.

Ridgelet transform

Once the partitioning is performed, the standard 2D ridgelet transform described in
(Starck et al. 2003a) is applied in each individual block :

1. Compute the 2D Fourier transform.

2. Extract lines going through the origin in the frequency plane.

3. Compute the 1D inverse Fourier transform of each line. We get the Radon transform.

4. Compute the 1D wavelet transform of the lines of the Radon transform.

The first three steps correspond to a Radon transform method called the linogram. Other
implementations of the Radon transform, such as the Slant Stack Radon Transform
(Donoho and Flesia 2002), can be used as well, as long as they offer an exact recon-
struction.

Fig. 3.12 shows the flowgraph of the ridgelet transform on the sphere and Fig. 3.13
shows the reconstruction from a single ridgelet coefficient at different scales and orienta-
tions.

3.4.3 Curvelet Transform Algorithm

The curvelet transform algorithm on the sphere is described in Algorithm 5.
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Figure 3.13: Ridgelet atoms on the sphere obtained by reconstruction from a few ridgelet coef-
ficient at different scales and orientations.

The sidelength of the localizing windows is doubled at every other dyadic subband,
hence maintaining the fundamental property of the curvelet transform which says that
elements of length about 2−j/2 serve for the analysis and synthesis of the jth subband
[2j, 2j+1]. We used the default value Bmin = 16 pixels in our implementation. Fig. 3.14
gives an overview of the organization of the algorithm.

Fig. 3.15 shows the backprojection of curvelet coefficients at different scales and ori-
entations.

3.4.4 Pyramidal Curvelet Transform on the Sphere (PCTS)

The CTS is very redundant, which may be a problem for handling huge data sets
such as Planck data (see Section 5.3.2 below). The redundancy can be reduced by sub-
stituting, in the curvelet transform algorithm, the pyramidal wavelet transform with the
undecimated wavelet transform. The second step which consists of applying the ridgelet
transform on the wavelet scale is unchanged. The pyramidal curvelet transform (PCTS)
algorithm is summarized in Algorithm 6.
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Algorithm 5 Curvelet Transform on the sphere.

Task: Compute the curvelet transform on the sphere of a discrete image X.
Parameters: Image X and number of scales J .
Initialization:

• B1 = Bmin.

• Compute the isotropic UWTS of X with J scales, get {w1, . . . , wJ , cJ}.

for j = 0 to J − 2 do

1. Partition the wavelet subband wj with a block size Bj .

2. Apply the digital ridgelet transform to each block; get the curvelet coefficients at scale j.

if j modulo 2 = 1 then Bj+1 = 2Bj , else Bj+1 = Bj .

Output: The curvelet transform on the sphere of X.

Algorithm 6 Pyramidal Curvelet Transform on the sphere.

Task: Compute the pyramidal curvelet transform on the sphere of a discrete image X.
Parameters: Image X and number of scales J .
Initialization:

• B1 = Bmin.

• Compute the pyramidal wavelet transform of X with J scales, get {w1, . . . , wJ , cJ}.

for j = 0 to J − 2 do

1. Partition the wavelet subband wj with a block size Bj .

2. Apply the digital ridgelet transform to each block; get the curvelet coefficients at scale j.

if j modulo 2 = 1 then Bj+1 = 2Bj , else Bj+1 = Bj .

Output: The pyramidal curvelet transform on the sphere of X.
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Figure 3.14: Flowgraph of the curvelet transform on the sphere.
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Figure 3.15: Reconstruction from a single curvelet coefficient at different scales and orientations.
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Chapter 4

Data Restoration on the Sphere

4.1 Introduction

Wavelets and Curvelets have been used successfully for image denoising via non-linear
filtering or thresholding methods (Starck and Murtagh 2006; Starck et al. 2010). Hard
thresholding, for instance, consists in setting all insignificant coefficients (i.e. coefficients
with an absolute value below a given threshold) to zero. In practice, we need to estimate
the noise standard deviation σj in each band j and a wavelet (or curvelet) coefficient wj is
significant if | wj |> kσj, where k is a user-defined parameter, typically chosen between 3
and 5. The σj estimation in band j can be derived from simulations (Starck and Murtagh

2006). Denoting D the noisy data and δ the thresholding operator, the filtered data D̃
are obtained by :

D̃ = Rδ(T D) (4.1)

where T is the wavelet (resp. curvelet) transform operator and R is the wavelet (resp.
curvelet) reconstruction operator.

4.2 Significant Wavelet Coefficients

4.2.1 Definition

In most applications, it is necessary to know if a wavelet coefficient is due to signal
(i.e. it is significant) or to noise.

The wavelet (resp. curvelet) transform yields a set of resolution-related views of the
input image. A wavelet (resp. curvelet) band at level j has coefficients given by wj,k.
If we obtain the distribution of the coefficient wj,k for each band of the decomposition,
based on the noise, we can introduce a statistical significance test for this coefficient.
This procedure is the classical significance-testing one. Let H0 be the hypothesis that
the image is locally constant at scale j. Rejection of hypothesis H0 depends (for positive
coefficient values) on:

P = Prob(| wj,k | < τ | H0) (4.2)

The detection threshold, τ , is defined for each scale. Given an estimation threshold, ε, if
P = P (τ) > ε the null hypothesis is not excluded. Although non-null, the value of the
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coefficient could be due to noise. On the other hand, if P < ε, the coefficient value cannot
be due to the noise alone, and so the null hypothesis is rejected. In this case, a significant
coefficient has been detected.

4.2.2 Noise Modeling

If the distribution of wj,l is Gaussian, with zero mean and standard deviation σj, we
have the probability density

p(wj,l) =
1√

2πσj
e−w

2
j,l/2σ

2
j (4.3)

Rejection of hypothesis H0 depends (for a positive coefficient value) on:

P = Prob(wj,l > W ) =
1√

2πσj

+∞∫
wj,l

e−W
2/2σ2

j dW (4.4)

and if the coefficient value is negative, it depends on

P = Prob(wj,l < W ) =
1√

2πσj

wj,l∫
−∞

e−W
2/2σ2

j dW (4.5)

Given stationary Gaussian noise, it suffices to compare wj,l to kσj. Often k is chosen
as 3, which corresponds approximately to ε = 0.002. If wj,l is small, it is not significant
and could be due to noise. If wj,l is large, it is significant:

if | wj,l | ≥ kσj then wj,l is significant
if | wj,l | < kσj then wj,l is not significant

(4.6)

So we need to estimate, in the case of Gaussian noise models, the noise standard
deviation at each scale. These standard deviations can be determined analytically, but
the calculations can become complicated.

The appropriate value of σj in the succession of wavelet planes is assessed from the
standard deviation of the noise σN in the original data D, and from study of the noise in
the wavelet space. This study consists of simulating a data set containing Gaussian noise
with a standard deviation equal to 1, and taking the wavelet transform of this data set.
Then we compute the standard deviation σej at each scale. We get a curve σej as a function
of j, giving the behavior of the noise in the wavelet space (Note that if we had used an
orthogonal wavelet transform, this curve would be linear). Due to the properties of the
wavelet (resp. curvelet) transform, we have σj = σNσ

e
j . The noise standard deviation at

scale j of the data is equal to the noise standard deviation σN multiplied by the noise
standard deviation at scale j of the simulated data.
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4.2.3 False Discovery Rate

The individual binary hypothesis testing discussed above can face serious problems
because of the large numbers of coefficients (hypotheses) being tested simultaneously. In
other words, if the type 1 error is controlled at an individual level, the chance of keeping
erroneously a coefficient is extremely high as the number of false detections increases with
the number of hypotheses being tested simultaneously.

Therefore, if one desires to have control over global statistical error rates, multiple hy-
pothesis testing should be corrected for. For example, the Bonferroni correction consists
of comparing the p-value of each coefficient to α/(total number of tested coefficients at
subband (j, `)). The Bonferroni correction controls the probability of erroneously reject-
ing even one of the true null hypotheses, i.e., the Family-Wise Error Rate (FWER). It is
however too over-conservative entailing a dissipation of detection power. To mitigate this
limitation, it is better to use the (Benjamini and Hochberg 1995) procedure to control
the False Discovery Rate (FDR), i.e., the average fraction of false detections over the
total number of detections. The control of FDR has the following advantages over that of
FWER: (i) it usually has greater detection power; and (ii) it can easily handle correlated
data (Benjamini and Yekutieli 2001). The latter point allows FDR control when the noise
is not independent (e.g. when ε is additive white Gaussian and the transform is redun-
dant). Minimaxity of FDR has also been studied in various settings: see (Abramovich
et al. 2006) and (Donoho and Jin 2006).

4.2.4 Automatic Estimation of Gaussian Noise

k-sigma clipping

The Gaussian noise σN can be estimated automatically in a data setD. This estimation
is particularly important, because all the noise standard deviations σj in the scales j are
derived from σN . Thus an error associated with σN will introduce an error on all σj.
Noise is therefore more usefully estimated in the high frequencies, where it dominates
the signal. The resulting method consists first of filtering the data D with an average
filter or the median filter and subtracting from D the filtered signal F : S = D − F . In
our case, we replace S by the first scale of the wavelet transform (S = w1), which is
more convenient from the computation time point of view. The histogram of S shows a
Gaussian peak around 0. A k-sigma clipping is then used to reject pixels where the signal
is significantly large. We denote S(1) the subset of S which contains only the pixels such
that | Sl | < kσS, where σS is the standard deviation of S, and k is a constant generally

chosen equal to 3. By iterating, we obtain the subset S(n+1) verifying | S(n)
l | < kσS(n) ,

where σS(n) is the noise standard deviation of S(n). Robust estimation of the noise σ1 in w1

(as S = w1) is now obtained by calculation of the standard deviation of S(n) (σ1 = σS(n)).
In practice, three iterations are enough, and accuracy is generally better than 5%. σN is
finally calculated by:

σN =
σ1
σe1

=
σS(n)

σe1
(4.7)
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4.2.5 Correlated Noise

In this case, the data can be treated as for the Gaussian case, but the noise standard
deviation σj at scale j is calculated independently at each scale. Two methods can be
used:

1. σj can be derived from a k-sigma clipping method applied at scale j.

2. The median absolute deviation, MAD, can be used as an estimator of the noise
standard deviation:

σj = median(| wj |)/0.6745 (4.8)

4.3 Denoising

Many filtering methods have been proposed in the last ten years. Hard thresholding
consists of setting to 0 all wavelet coefficients which have an absolute value lower than a
threshold Tj (non-significant wavelet coefficient):

w̃j,k =

{
wj,k if | wj,k |≥ Tj
0 otherwise

where wj,k is a wavelet coefficient at scale j and at spatial position k.
Soft thresholding consists of replacing each wavelet coefficient by the value w̃ where

w̃j,k =

{
sgn(wj,k)(| wj,k | −Tj) if | wj,k |≥ Tj
0 otherwise

This operation is generally written as:

w̃j,k = soft(wj,k) = sgn(wj,k)(| wj,k | −Tj)+ (4.9)

where (x)+ = MAX(0, x).
When the discrete orthogonal wavelet transform is used instead of the “à trous” algo-

rithm, it is interesting to note that the hard and soft thresholded estimators are solutions
of the following minimization problems:

w̃ = argw min
1

2
‖ D −W−1w ‖2l2 +λ ‖ w ‖2l0 hard threshold

w̃ = argw min
1

2
‖ D −W−1w ‖2l2 +λ ‖ w ‖2l1 soft threshold

where D is the input data, W the wavelet transform operator, and l0 indicates the limit
of lδ when δ → 0. This counts in fact the number of non-zero elements in the sequence.

As described before, in the case of Gaussian noise, Tj = Kσj, where j is the scale
of the wavelet coefficient, σj is the noise standard deviation at the scale j, and K is a
constant generally chosen equal to 3.
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Other threshold methods have been proposed, like the universal threshold (Donoho
and Johnstone 1994; Donoho 1993), or the SURE (Stein Unbiased Risk Estimate) method
(Coifman and Donoho 1995), but they generally do not yield as good results as the hard
thresholding method based on the significant coefficients. For astronomical data, soft
thresholding should never be used because it leads to a photometry loss associated with
all objects, which can easily be verified by looking at the residual map (i.e. data − filtered
data). Concerning the threshold level, the universal threshold corresponds to a minimum
risk. The larger the number of pixels, the larger is the risk, and it is normal that the
threshold T depends on the number of pixels (T = σj

√
2 log n, n being the number of

pixels). The Kσ threshold corresponds to a false detection probability, the probability to
detect a coefficient as significant when it is due to the noise. The 3σ value corresponds
to 0.27 % false detection.

Figure 4.1: Denoising. Upper left and right: simulated synchrotron image and same image
with additive Gaussian noise (i.e. simulated data). Middle: undecimated wavelet filtering and
residual. Bottom: pyramidal curvelet filtering and residual.
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Fig. 4.1 describes the setting and the results of a simulated denoising experiment:
upper left, the original simulated map of the astrophysical synchrotron emission; upper
right, the same image plus additive Gaussian noise (σ = 5). Since the synchrotron image
has a standard deviation (after renormalization) equal to 16.26, the SNR is around 3.25.
The middle panels in this figure show the UWTS denoised image and the residuals. The
bottom panels show the pyramidal curvelet transform filtered image and the residuals.
On such data, exhibiting very anisotropic features, the curvelets produce better results
than wavelets.

Although the results obtained by simply thresholding the curvelet expansion are en-
couraging, there is of course ample room for further improvement. A quick inspection
of the residual images for both the wavelet and curvelet transforms shown in Figure 4.1
reveals the existence of very different features. For instance, wavelets do not restore long
features with high fidelity while curvelets are seriously challenged by isotropic or small
features. Each transform has its own area of expertise and this complementarity is of
great potential. The Combined Filtering Method (CFM) (Starck et al. 2001) allows us to
benefit from the advantages of both transforms. This iterative method detects the signifi-
cant coefficients in both the wavelet domain and the curvelet domain and guarantees that
the reconstructed map will take into account any pattern which is detected as significant
by either of the transforms.

4.4 The Combined Filtering Method on the Sphere

In general, suppose that we are given K linear transforms T1, . . . , TK and let αk be
the coefficient sequence of an object x after applying the transform Tk, i.e. αk = Tkx. We
will assume that for each transform Tk we have available a reconstruction rule that we
will denote by T−1k although this is clearly an abuse of notation. Finally, T will denote
the block diagonal matrix with the Tk’s as building blocks and α the amalgamation of the
αk’s.

A hard thresholding rule associated with the transform Tk synthesizes an estimate s̃k
via the formula

s̃k = T−1k δ(αk) (4.10)

where δ is a rule that sets to zero all the coordinates of αk whose absolute value falls
below a given sequence of thresholds (such coordinates are said to be non-significant).

Given data y of the form y = s + σz, where s is the image we wish to recover and z
is standard white noise, we propose solving the following optimization problem (Starck
et al. 2001):

min ‖T s̃‖`1 , subject to s ∈ C, (4.11)

where C is the set of vectors s̃ which obey the linear constraints{
s̃ ≥ 0,
|T s̃− Ty| ≤ e;

(4.12)

here, the second inequality constraint only concerns the set of significant coefficients, i.e.
those indices µ such that αµ = (Ty)µ exceeds (in absolute value) a threshold tµ. Given a
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vector of tolerance (eµ), we seek a solution whose coefficients (T s̃)µ are within eµ of the
noisy empirical αµ’s. Think of αµ as being given by

y = 〈y, ϕµ〉,

so that αµ is normally distributed with mean 〈f, ϕµ〉 and variance σ2
µ = σ2‖ϕµ‖22. In

practice, the threshold values range typically between three and four times the noise level
σµ and in our experiments we will put eµ = σµ/2. In short, our constraints guarantee
that the reconstruction will take into account any pattern which is detected as significant
by any of the K transforms.

4.4.1 The Minimization Method

We propose solving (4.11) using the method of hybrid steepest descent (HSD) (Yamada
2001). HSD consists of building the sequence

sn+1 = P (sn)− λn+1∇J(P (sn)); (4.13)

Here, P is the `2 projection operator onto the feasible set C, ∇J is the gradient of
equation (4.11), and (λn)n≥1 is a sequence obeying (λn)n≥1 ∈ [0, 1] and limn→+∞ λn = 0.

Algorothm 7 gives the resulting combined filtering method.

Method Error standard deviation

Noisy map 5 8
Wavelet 1.25
Curvelet 1.07
CFA 0.86

Table 4.1: Error standard deviations after denoising the synchrotron noisy map (additive white
Gaussian noise, σ = 5) by the wavelet, the curvelet and the combined denoising algorithm.

4.4.2 Experiments

Figure 4.2 shows the CFM denoised image and its residual. Figure 4.3 shows one face
(face 6) of the following Healpix images: upper left, original image; upper right, noisy
image; middle left, restored image after denoising by the combined transform; middle
right, the residual; bottom left and right, the residual using respectively the curvelet and
the wavelet denoising method. The results are reported in Table 4.1. The residual is
much better when the combined filtering is applied, and no feature can be detected any
more by eye in the residual. This was not the case for either the wavelet and the curvelet
filtering.
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Algorithm 7 The combined filtering on the Sphere.

Task: Compute the combined filtering on the sphere of a discrete s.
Parameters: Data samples s, number of iterations Ni and number of selected transforms K.
Initialization:

• Lmax = 1

• δλ = Lmax
Ni

• Estimate the noise standard deviation σ, and set ek = σ
2 .

• for k = 1, . . . ,K do calculate the transform: α
(s)
k = Tks.

• Set λ = Lmax, n = 0, and s̃n to 0.

while λ >= 0 do

1. u = s̃n.

2. for k = 1, . . . ,K do

• Calculate the transform αk = Tku.

• foreach αk,l do

– Calculate the residual rk,l = α
(s)
k,l − αk,l

– if α
(s)
k,l is significant AND | rk,l |> ek,l then αk,l = α

(s)
k,l

– αk,l = sgn(αk,l)(| αk,l | −λ)+.

• u = T−1k αk

3. Threshold negative values in u and s̃n+1 = u.

4. n = n+ 1, λ = λ− δλ

Output: s̃m with m = Ni, filtered map.
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Figure 4.2: Combined denoising (using both wavelets and curvelets) and residuals.
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Figure 4.3: Combined Filtering Method, face 6 in the Healpix representation of the image shown
in figure 4.2. From top to bottom and left to right, respectively the a) original image face, b) the
noisy image, c) the combined filtered image, d) the combined filtering residual, e) the wavelet
filtering residual and f) the curvelet filtering residual.



Chapter 5

Sparse Component Analysis, data
restoration and inpainting on the
sphere

5.1 Morphological Component Analysis on the sphere

A usual task in processing signals, images as well as spherical data maps, is to decom-
pose the data into its elementary building blocks. This can be formulated as an inverse
problem where the data is assumed to have been generated according to the following
model :

y =
∑
i

αiφi + η (5.1)

that is a linear combination of relevant waveforms φi ∈ Rn with weights αi. Here η
represents possible contamination by additive, typically Gaussian white noise. Given
data y ∈ Rn, one then wants to recover the underlying structures that is to say estimate a
set of waveforms φi that build the data and their corresponding weights α̃i. The solution
to this estimation problem will depend heavily on the available prior information. Of
interest here is the case where one is given a priori a set a waveforms from which to select
a good subset. This set may be a basis, a frame or several bases or frames grouped into
a large redundant dictionary.

Possible dictionaries in 1D and 2D include Fourier and related bases, wavelet bases,
as well as other more recent multiscale systems such as the ridgelet (Candès and Donoho
1999b) and curvelet frames (Donoho and Duncan 2000; Starck et al. 2002a), etc. De-
pending on the morphology of the data, each of these dictionaries will have different
performance characteristics in a non-linear approximation scheme. For instance, sparse
approximations of piecewise smooth signals or images with point singularities are easily
obtained using wavelets. However these are no longer optimal in the case of piecewise
smooth images with singularities along smooth curves or edges. Such images are more ef-
ficiently approximated using curvelets which are highly anisotropic and thus exhibit high
directional selectivity. Digital implementations of both ridgelet and curvelet transforms
and their application to image denoising are described in (Starck et al. 2002a).
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Available transforms in the spherical topology include the spherical harmonics and
several wavelet transforms. Software packages such as Healpix1 (Górski et al. 2005) or
Glesp (Doroshkevich et al. 2005) provide approximate digital spherical harmonic trans-
form routines based on their specific pixelization schemes. Schröder and Sweldens (Schröder
and Sweldens 1995) have developed an orthogonal wavelet transform on the sphere based
on the Haar wavelet function which then suffers from the poor frequency domain lo-
calization properties of the primitive Haar function and from the problems inherent in
orthogonal decomposition (e.g. lack of translation invariance). A few papers describe
continuous wavelet transforms on the sphere (Antoine and Vandergheynst 1999; Cayón
et al. 2001a; Holschneider 1996; Wiaux et al. 2005; Bogdanova et al. 2005) which have
been extended to directional wavelet transforms (Wiaux et al. 2006; McEwen et al. 2005).
Although useful for data analysis, these continuous transforms lack an inverse transform
and hence are clearly not suitable for restoration or synthesis purposes.

In their pioneering work, Freeden and Maier (Freeden and Maier 2002; Freeden et al.
2003) gave a wavelet transform and reconstruction scheme on the sphere which is based
on the spherical harmonic transform. Following this idea, Starck et al. (Starck et al. 2006)
have proposed a new invertible isotropic undecimated wavelet transform (UWT) on the
sphere which preserves the same desirable properties as the standard isotropic UWT for
flat 2D maps (Starck et al. 1998): the reconstruction is simple and immediate since it
is just the addition of all the wavelet bands with the coarsest scale. Based on this new
decomposition, other multiscale transforms such as the pyramidal wavelet transform, the
ridgelet transform and the curvelet transform have been successfully constructed on the
sphere (Starck et al. 2006). Each of these decompositions on the sphere will sparsely
represent parts of the image based on their morphological properties. Wavelets will easily
detect more or less isotropic localized structures, while curvelets are better suited for
efficiently detecting highly anisotropic objects.

A data set y has an exact representation over any complete basis of the data space,
or several such exact representations in the case of redundant overcomplete dictionaries.
However, these representations are not equally interesting in terms of data modeling or
feature detection. In fact, a strong a priori is to favor representations of y that use only
a small number of waveforms leading to a more concise and possibly more interpretable
representation of the data. In fact, building sparse representations or approximations
is the (he)art of structured data processing: the design of good detection, denoising,
restoration and compression algorithms relies on the availability of good dictionaries and
good selection algorithms. Indeed, selecting the smallest subset of waveforms from a
large dictionary, that will linearly combine to reproduce the salient features of a given
signal or image, is a hard combinatorial problem. Several pursuit algorithms have been
proposed that can help build very sparse decompositions such as the greedy Matching
Pursuit (MP) (Mallat and Zhang 1993) algorithm which refines the signal approximation
by picking at each iteration the one waveform which best correlates with the current
approximation error. Basis Pursuit (BP) (Chen et al. 1999) is a global procedure which
seeks an approximation ỹ to y by solving the linear programming problem:

min
α
‖α‖`1 subject to y = Φα. (5.2)

where the `1 norm measures sparsity in place of the `0 counting norm.

1http://www.eso.org/science/healpix
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In the presence of noise, a noise-aware variant of BP, known as BPDN (for BP de-
noising), can be stated as a convex quadratic programming problem and solved using the
Interior Point method (Chen et al. 1999). The BPDN problem can also be written in the
augmented Lagrangian form:

min
α
‖y − Φα‖2`2 + λ · ‖α‖`1 (5.3)

Among all possible solutions, the chosen one has the minimum `1 norm. This choice of `1
norm is very important. An `2 norm, as used in the method of frames (Daubechies 1988),
does not favor sparsity (Chen et al. 1999). A number of recent results prove that these
algorithms will recover the unique maximally sparse decomposition provided this solution
is sparse enough and the dictionnary is sufficiently incoherent (Donoho and Elad 2003;
Elad and Bruckstein 2002; Gribonval and Nielsen 2003; Donoho et al. 2006a; Fuchs 2005).
Nevertheless, in problems involving large data sets (e.g. images, spherical maps), BP
or MP synthesis algorithms are computationally prohibitive. Morphological Component
Analysis (MCA) is a recent faster alternative described in (Starck et al. 2004b) that con-
structs a sparse representation of a signal or an image assuming that it is a combination of
morphologically distinct features which are sparsely represented in different dictionaries
associated with fast transform algorithms. For instance, images commonly combine con-
tours and textures: the former are well accounted for using curvelets, while the latter may
be well represented using local cosine functions. In searching for a sparse decomposition
of a signal or image y, it is assumed that y is a sum of K components (sk)1,...,K , where
each can be described as sk = Φkαk with a possibly over-complete dictionary Φk and a
sparse vector of coefficients αk. It is further assumed that for any given component the
sparsest decomposition over the proper dictionary yields a highly sparse description, while
its decomposition over the other dictionaries, Φk′ 6=k, is non sparse. Thus, the different
Φk can be seen as discriminating between the different components of the initial signal.
MCA achieves its sparse decomposition relying on an iterative thresholding algorithm
with a successively decreasing threshold (Bobin et al. 2007b) thus refining the current
approximation by including finer structures alternatingly in the different morphological
components. Based on MCA, it has also been shown that we can derive a very efficient
inpainting method (Elad et al. 2005).

5.2 MCA on the Sphere

5.2.1 Principle and algorithm

For a given spherical map y modeled as a linear combination of K spherical maps
sk, y =

∑K
k=1 sk, having different morphologies, MCA assumes that a dictionary of bases

{Φ1, · · · ,ΦK} exists such that, for each k, sk is sparse in Φk while its representation
in the other Φk′ ( k′ 6= k) is not sparse : ∀k′ 6= k, ||ΦT

k sk||0 < ||ΦT
k′sk||0, where ||x||0

denotes the `0 pseudo-norm of the vector x The problem is to separate the mixture y
into its constitutive morphological components (sk)k=1,··· ,K relying on the discriminating
power of the different dictionaries Φk. Ideally, the αk are the solutions to :

min
α1,..., αK

K∑
k=1

‖αk‖0 subject to y =
K∑
k=1

Φkαk (5.4)
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While sensible from the point of view of the desired solution, the problem formulated in
Equation (5.4) is non-convex and combinatorial by nature. Its complexity grows exponen-
tially with the number of columns in the overall dictionary (NP-hard problem). Motivated
by recent equivalence results e.g. in (Donoho and Elad 2003), the MCA algorithm seeks
a solution to the following minimization problem:

min
s1,...,sK

λ

K∑
k=1

‖αk‖1 +

∥∥∥∥∥y −
K∑
k=1

sk

∥∥∥∥∥
2

2

with sk = Φkαk (5.5)

where an `1 sparsity measure is substituted to the `0 counting norm following a pre-
scription of the Basis Pursuit algorithm (Chen et al. 1999). In the above, the equality
constraint was relaxed and again sk = Φkαk. In the case where each Φk is an orthonor-
mal basis, a block-coordinate solution to the above problem is given by the following set
of coupled equations:

∀k, sk = rk −
λk
2

Φksign(ΦT
k sk) with rk = s−

∑
k′ 6=k

sk′ (5.6)

This can be solved efficiently using the iterative Block-Coordinate Relaxation Method
(Bruce et al. 1998) in conjunction with, at a given k, a soft-thresholding of the decom-
position of rk over Φk. However, when non-unitary or redundant transforms are used,
the above is no longer strictly valid. Nevertheless, simple shrinkage still gives satisfactory
results as explained in (Elad 2006). Finally, denoting by Tk and Rk the forward and
inverse transforms associated with the redundant dictionary Φk, MCA seeks a solution
to problem (5.5) with the algorithm 8:

5.2.2 Thresholding strategy

The operator δ in the above algorithm is a soft thresholding operator as a result of the
use of an `1 sparsity measure in approximation to the ideal `0 norm. In practice, hard
thresholding leads generally to better results (Starck et al. 2004b). The final threshold
should vanish in the noiseless case or it may be set to a multiple of the noise standard
deviation in the presence of noise as in common detection or denoising methods. The
way the threshold is decreased along the iterations of the proposed iterative thresholding
scheme is paramount in terms of performance of the MCA separation mechanism. The
original algorithm (Starck et al. 2004b) used a linear strategy :

λ(t) = λ(0) − (t− 1)
λ(0) − λmin

Imax − 1
(5.7)

where λ(0) is the initial threshold, and Imax is the number of iterations. The first threshold
can be set automatically to a large enough value such as the maximum of all coefficients
λ(0) = maxk ‖Tky‖∞. But there is no way to estimate the minimum number of iterations
yielding a successful separation. Too small a number of iterations leads to bad separation
while too large a number is computationally costly. Further, experiments have clearly
shown that the optimal number of iterations depends on the data. We recently focused
on devising some new data adaptive thresholding strategies to speed up the MCA decom-
position preserving the quality of the component separation. Hereafter we describe two
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Algorithm 8 The Morphological Component Analysis algorithm .

Task: Compute the MCA of data y.
Parameters: Data samples y, number of selected transforms K, transforms with Tk and Rk

the forward and inverse transforms operators.
Initialization:

• Set the number of iterations Imax

• Set the initial thresholds
(
λ
(0)
k

)
k

• Set the final thresholds λmin, it can depend on the noise standard deviation

while λ
(t)
k > λmin do

1. for k = 1, . . . ,K do

• Compute the residual term r
(t)
k assuming the current estimates s̃

(t−1)
k′ 6=k of sk′ 6=k, are fixed:

r
(t)
k = y −

∑
k′ 6=k s̃

(t−1)
k′

• Estimate the current coefficients of s̃
(t)
k by thresholding with threshold λ

(t)
k :

α̃
(t)
k = δ

λ
(t)
k

(
Tkr

(t)
k

)
• Get the new estimate of sk by reconstructing from the selected coeffcients α̃

(t)
k :

s̃
(t)
k = Rkα̃

(t)
k

2. Decrease the thresholds λk following a given strategy.

Output: (s̃
(m)
k ) k = 1, . . . ,K with m = Imax: separated components.

promising strategies, namely MAD and MOM, in the case where K = 2 ; generalizing to
K ≥ 2 is straightforward.

MAD Consider a map y such that y = s1 + s2 = Φ1α1 + Φ2α2 where s1 and s2 have
similar `2 norm and αk=1,2 = ΦT

k=1,2sk=1,2 are sparse. When both Φk=1,2 are orthonormal

bases, decomposing y in Φ1 leads to yΦT
1 = α1 + ΦT

1 Φ2α2. Provided the mutual coher-
ence (Elad and Bruckstein 2002; Gribonval and Nielsen 2003; Donoho and Elad 2003)
of Φ1 and Φ2 is low, y2 has no particular structure in Φ1 and hence it is tempting to
model ΦT

1 s2 as a Gaussian noise. Its standard deviation can be estimated using a ro-
bust estimator such as the Median Absolute Deviation (MAD) (Donoho and Johnstone
1994). It follows that estimating the significant entries α̃1 in α1 is a denoising problem
readily solved by thresholding ΦT

1 y with a threshold kσ (typically k is in the range
3 to 4). The next step is to project the residual a y − s̃1 = y − Φ1α̃1 on Φ2 and so
on. Clearly, the variance of the residual decreases along iterations and so this provides a
simple strategy to adaptively control the threshold in the MCA algorithm. In practice,
this strategy remains fruitful in the case of redundant dictionaries. Donoho and al. in
(Donoho et al. 2006b) have recently focused on an iterative thresholding scheme applied
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to solving under-determined linear sparse problems in which they use a similar rule to
manage their decreasing threshold.

MOM Let s̃
(t)
1 and s̃

(t)
2 denote the current estimates of components s1 and s2 at the

tth iteration of the MCA decomposition of y. The current residual is r(t) = y− s̃(t)1 − s̃
(t)
2 .

In the strategy coined MOM as in ”Mean of Max”, the value of the threshold at iteration
t is given by :

λ(t) =
1

2

[
||ΦT

1

(
y − s̃(t−1)1 − s̃(t−1)2

)
||∞ + ||ΦT

2

(
y − s̃(t−1)1 − s̃(t−1)2

)
||∞
]

(5.8)

which is easily computed at each step of the iterative process. When one considers more
than two dictionaries, one should take the mean of the two largest decomposition coef-
ficients of the full residual over two distinct dictionaries. The intuition underlying this
strategy is that the next significant coefficients to be selected should be attached to the
dictionary in which the projection of the full residual has coefficients of largest ampli-
tudes. Assuming the coefficients selected at iteration t are in Φ1, it can be shown,
under some conditions on the sparsity of the components and the mutual coherence of the
dictionary (Bobin et al. 2007b), that the proposed strategy fixes the threshold so that :

||ΦT
1 Φ2ᾱ

(t−1)
2 ||∞ < λ

(t)
1 < ||ᾱ(t−1)

1 ||∞, ᾱ(t−1)
k=1,2 = αk=1,2 − α̃(t−1)

k=1,2 (5.9)

hence avoiding false detections (upper bound) and ensuring that at least one coefficient is
selected (lower bound). This thresholding strategy can easily be made more or less con-
servative depending on the desired decomposition speed. With these new thresholding
strategies, MCA is a fast and robust algorithm to achieve sparse decompositions in re-
dundant dictionaries and a practical alternative to other well-known sparse decomposition
algorithms (Bobin et al. 2007b).

Example

The spherical maps shown on figure 5.1 illustrate a simple numerical experiment.
We applied the proposed Morphological Component Analysis on the Sphere to synthetic
data resulting from the linear mixture of components respectively sparse in the spherical
harmonics and the isotropic wavelet representations. The method was able to separate
the data back into its original constituents. A more involved application is described in
the next section.

5.2.3 Application in Physics

In Inertial Confinement Fusion (ICF) a spherical shell is irradiated by laser energy
directly or after the laser energy has been converted to soft X-rays (Atzeni and ter Vehn
2004). Either way, the aim is to implode the capsule which contains a shell of nuclear fu-
sion fuel (deuterium and tritium) ready to ignite if, after it has been imploded, its density
is high enough and a hot spot in its center becomes hot enough to cause a propagating
nuclear burn wave to travel through the rest of the fuel. This ultimate energy source
will not work if during the implosion hydrodynamic instabilities develop which can break
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Figure 5.1: Simple toy experiment with MCA on the sphere. The top map shows a linear
combination of a spherical harmonic function and a localized Gaussian-like function on the
sphere. The bottom maps show the resulting separated components that were obtained using
the proposed Morphological Component Analysis on the sphere.

apart the shell before it assembles at the center and a hot spot forms (Lindl 1997). Hy-
drodynamic instabilities such as Rayleigh-Taylor occur due to nonuniformities in the laser
spatial profile or imperfections in the composition of multiple surfaces which make up the
layers of thin material that surround the nuclear fuel. Very small amplitude imperfections
initially can result in the ultimate failure of the target due to the large compression ratios
involved in ICF. It is therefore extremely important to characterize the inner and outer
surfaces of ICF shell targets so as to know whether they are worthy of consideration for
ICF implosions. One day in a reactor setting tens of thousands of targets will have to be
imploded daily so that checking each one is totally out of the question. Instead, very good
target fabrication quality control processes have to be adopted so that confidence levels in
proper performance will be high. A major step along this path to fusion energy then is to
understand why imperfections occur and to correct the systematic elements and control
the harm done by random sources. Fine structures on the surfaces of spherical shells can
be measured on the nanometer scale, among others, by atomic force microscopy or phase
shifting spherical diffractive optical interferometry. An example of such measurements is
shown on figure 5.2. As can be seen from the figure, there appears to be a superposition
of global scale variations, isolated bumps and scratches as well as artifacts which look like
interference patterns on intermediate scales of localization. The latter must be isolated
and eliminated from consideration when deciding the readiness of the target for implo-
sion. We have achieved the morphological feature separation by first doing an isotropic
wavelet transform on the spherical data and subtracting the coarsest scale information.
MCA on the sphere was used on the rest of the image using the undecimated wavelet and
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Figure 5.2: Left: Surface structures of ICF spherical shells measured on the nanometer scale are
a superposition of global scale variations, isolated bumps and scratches as well as artifacts which
look like interference patterns on intermediate scales. Right: Coarsest scale of the undecimated
isotropic wavelet transform of the surface measurements of an ICF target.

the local cosine transforms on the sphere. The isolated bumps were thus identified and
the measurement technique caused artifacts were removed easily. The resulting bumps
added to the coarsest scale, is the clean data with the interference patterns and artifacts
removed as shown in figure 5.3. The spherical harmonic decomposition of the cleaned im-
age gives rise to coefficients of various ` modes which will be amplified by the implosion
process which can now be assessed correctly using numerical hydrodynamics simulation
generated growth factors. If the bumps are clustered and not randomly distributed, then
systematic errors in the manufacturing process can be tracked down. A code called MO-
DEM has been put together to study such target surface data and extract the localized
bump statistics including their correlations in height, size and relative location. For more
details see (Afeyan et al. 2006).

5.3 Inpainting on the Sphere

5.3.1 Algorithm

Named after the expert recovery process used for the restoration of deteriorated mas-
terpieces, inpainting refers to a set of techniques used to alter images in a way that is
undetectable to people who are unaware of the original images. There are numerous
applications among which removing scratches or objects in digitized photographs, remov-
ing overlayed text or graphics, filling-in missing blocks in unreliably transmitted images,
predicting values in images for better compression or image upsampling. Inpainting algo-
rithms strive to interpolate through the gaps in the image relying on the available pixels,
the continuation of edges, the periodicity of textures, etc. The preservation of edges and
texture, in other words discontinuities, across gaps has attracted much interest, and many
contributions have been proposed to solve this interpolation task. Non-texture image in-
painting has received considerable interest and excitement since the pioneering paper by
Masnou and Morel (Masnou and Morel 1998, 2002) who proposed variational principles
for image disocclusion. A recent wave of interest in inpainting has started from the re-
cent contributions of Sapiro and al. (Ballester et al. 2001; Bertalmio et al. 2001, 2000),
followed by Chan and Shen (Chan and Shen 2001). In these works, authors point to the
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Figure 5.3: Top: Spherical map obtained by subtracting the coarse scale map on the right of
Fig. 5.2 from the initial map on the left of Fig. 5.2. Bottom: Component maps separated by the
MCA method on the sphere: interference patterns and measurement artifacts were caught by
the local cosine functions on the sphere (left) while the isolated bumps were caught using the
undecimated wavelet on the sphere (right). Adding back the coarse scale on the right of Fig. 5.2
to the latter map results in a clean map of the surface structures of an ICF spherical shell with
the interference patterns and artifacts removed.

importance of geometry and design anisotropic diffusion PDEs to fill in gaps by smooth
continuation of isophotes. PDE methods have been shown to perform well on piecewise
smooth functions. A very different approach is the inpainting algorithm based on MCA
described in (Elad et al. 2005) which has proved capable of filling in holes in either texture
or cartoon content in 2D images. To make the link between building sparse representations
and inpainting, consider the effect of a rectangular gap on the set of Fourier coefficients
of a monochromatic sinewave : because of the non-locality of the Fourier basis functions
it takes a large number of coefficients to account for the gap, which is known as the Gibbs
effect. Seeking a sparse representation of the incomplete sine-wave outside the gap, that
is without fitting the gap, enables the recovery of the complete monochromatic sinewave.
Following (Elad et al. 2005), an inpainting algorithm on the sphere is readily built from
the Morphological Component Analysis on the sphere described in the previous section.
Consider a discrete spherical data map y and a binary map M such that ones in M in-
dicate that the corresponding pixels in y are valid data while zeros indicate invalid data.
The objective function of MCA equation (5.5) can be modified as follows :

min
s1,...,sn

λ

K∑
k=1

‖αk‖1 +

∥∥∥∥∥M � (y −
K∑
k=1

sk)

∥∥∥∥∥
2

2

with sk = Φkαk. (5.10)
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where � stands for entry-wise multiplication. Thus we are preventing the sparse model
under construction from attempting to fit the invalid data. Other constraints can be easily
imposed on the interpolated sparse components. For instance, in (Elad et al. 2005), a
total variation penalty is shown to enhance the recovery of piece-wise smooth components.
Asking for the regularity across the gaps of some localized statistics ( e.g. enforcing that
the empirical variance of a given inpainted sparse component be nearly equal outside and
inside the masked areas) are other possible constraints. In practice, because of the lack
of accuracy of some digital transformations we used in the spherical topology, additional
constraints, which may be relaxed close to convergence, were also found useful in some
cases to stabilize the described iterative algorithms. It is proposed that a solution to
the above minimization problem can be reached using the same iterative thresholding
process as in the MCA algorithm detailed in the previous section, with the only required
modification consisting in masking the full residual using M after each residual estimation,
thus giving the MCA-inpainting algorithm 9.

Algorithm 9 The Morphological Component Analysis algorithm for inpainting.

Task: Compute the MCA-inpainting of masked data y.
Parameters: Data samples y, inpainting mask M , number of selected transforms K, transforms
with Tk and Rk the forward and inverse transforms operators.
Initialization:

• Set the number of iterations Imax

• Set the initial thresholds
(
λ
(0)
k

)
k

• Set the final thresholds λmin, it can depend on the noise standard deviation

while λ
(t)
k > λmin do

1. for k = 1, · · · ,K do

• Compute the residual term r(t):

r(t) = y −
∑

k s̃
(t−1)
k

• Estimate the current coefficients of s̃
(t)
k by thresholding with threshold λ

(t)
k :

α̃
(t)
k = δ

λ
(t)
k

(
Tk

(
M � r(t) + s̃

(t−1)
k

))
• Get the new estimate of sk by reconstructing from the selected coeffcients α̃

(t)
k :

s̃
(t)
k = Rkα̃

(t)
k

2. Decrease the thresholds λk following a given strategy.

Output: (s̃
(m)
k ) k = 1, . . . ,K with m = Imax: components separated and inpainted.

The different thresholding strategies described in the previous section can be used in
the proposed MCA inpainting iterative thresholding algorithm.
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Example

Figure 5.4: Application of the proposed MCA-inpainting algorithm on the sphere. Top: original
satellite view of the Earth. Middle: incomplete map retaining 40 percent of the original pixels.
Bottom: inpainted map.

A simple numerical experiment is shown in Fig. 5.4. Starting with a full satellite view
of the Earth2, an incomplete spherical map was obtained by randomly masking some
of the pixels. In fact, as much as sixty percent of the pixels were masked. Using both
the spherical harmonics transform and the curvelet transform on the sphere within the
proposed MCA inpainting algorithm, it is possible to fill in the missing pixels in a visually
undetectable way.

2Available from: http://www.nasa.gov/vision/earth/features/bmng gallery 4.html
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5.3.2 Application in Cosmology

A major issue in modern cosmology is the measurement and the statistical charac-
terization (spatial power spectrum, Gaussianity) of the slight fluctuations in the Cosmic
Microwave Background radiation field. These are strongly related to the cosmological
scenarios describing the properties and evolution of our Universe. Some 370,000 years
after the Big Bang, when the temperature of the Universe was around 3000 K, thermal
energy was no longer sufficient to keep electrons and positively charged particles apart so
they combined. Photons were then set free in a nearly transparent Universe. Since the
Universe further expanded, these photons are now in the microwave range but they should
still be distributed according to a black body emission law. Indeed, before recombination,
the Universe was a highly homogeneous opaque plasma in near thermal equilibrium in
which photons and charged particles were highly interacting. Hence the slight fluctuations
in matter density, from which such large scale structures as galaxies or clusters of galaxies
have evolved, are also imprinted on the distribution of photons.

Figure 5.5: Left: CMB data map provided by the WMAP team. Areas of significant foreground
contamination in the galactic region and at the locations of strong radio point sources have been
masked out. Right: Map obtained by applying the MCA-inpainting algorithm on the sphere to
the former incomplete WMAP CMB data map.

The Cosmic Microwave Background (CMB) was first observed in 1965 by Penzias and
Wilson confirming a prediction made by Gamow in the late 1940s. But it was not un-
til the early 1990s that evidence for small fluctuations in the CMB sky could finally be
found thanks to the observations made by COBE (Smoot et al. 1992). This was con-
firmed by several subsequent observations and recently by NASA’s Wilkinson Microwave
Anisotropie Probe (WMAP) 3. Full-sky multi-spectral observations with unprecedented
sensitivity and angular resolution are expected from ESA’s Planck4 mission, which was
launched in 2009. The statistical analysis of this data set will help set tighter bounds on
major cosmological parameters.

A simple numerical experiment is shown in Fig. 5.5, starting with the full-sky CMB
map provided by the WMAP team. This CMB map was partially masked to discard
pixels where the level of contamination by residual foregrounds is expected to be the
highest. Applying the described inpainting algorithm, making use of the sparsity of the

3The WMAP data and mask we used here are available online at http://map.gsfc.nasa.gov/
4http://astro.estec.esa.nl/Planck
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representation of CMB in the spherical harmonics domain, leads to the map shown on
the right of Fig. 5.5: the stationarity of the CMB field appears to have been restored
and the masked region is completely undetectable to the eye. Fig. 5.6 shows the wavelet
decomposition of the inpainted map allowing for further visual positive assessment of the
quality of the proposed method as again the masked regions are undetectable at all scales.
It was shown in (Abrial et al. 2007; Abrial et al. 2008) that inpainting the CMB map is
an interesting approach for analyzing it, especially for non-Gaussianity studies and power
spectrum estimation.
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Figure 5.6: Top left: Masked area. From top to bottom and left to right: The seven wavelet
scales of the inpainted map. From the visual point of view, the initially masked area cannot be
distinguished any more in the wavelet scales of the inpainted map.



Chapter 6

Blind Source Separation on the
Sphere

6.1 Introduction

Blind Source Separation (BSS) is a problem that occurs in multi-dimensional data
processing. The overall goal is to recover unobserved signals, images or sources S from
mixtures of these sources X observed typically at the output of an array of sensors. The
simplest mixture model takes the form:

X = AS (6.1)

where X and S are random vectors of respective sizes m × 1, n × 1 and A is an m × n
matrix. The entries of S are assumed to be independent random variables. Multiplying
S by A linearly mixes the n sources into m observed processes.

Independent Component Analysis methods were developed to solve the BSS problem,
i.e. given a batch of T observed samples of X, estimate the mixing matrix A and recon-
struct the corresponding T samples of the source vector S, relying mostly on the statistical
independence of the source processes. Note that with the above model, the independent
sources can only be recovered up to a multiplication by a non-mixing matrix i.e. up
to a permutation and a scaling of the entries of S. Although independence is a strong
assumption, it is in many cases physically plausible. The point is that it goes beyond
the simple second order decorrelation obtained for instance using Principal Component
Analysis (PCA) : decorrelation is not enough to recover the source processes since any
rotation of a white random vector remains a white random vector.

Algorithms for blind component separation and mixing matrix estimation depend on
the model used for the probability distribution of the sources. In a first set of tech-
niques, source separation is achieved in a noise-less setting, based on the non-Gaussianity
of all but possibly one of the components. Most mainstream Independent Component
Analysis (ICA) techniques belong to this category : JADE (Cardoso 1999), FastICA,
Infomax (Hyvärinen et al. 2001). In a second set of blind techniques, the components
are modeled as Gaussian processes, either stationary or non stationary and, in a given
representation, separation requires that the sources have diverse, i.e. non proportional,
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variance profiles. The Spectral Matching ICA method (SMICA) (Delabrouille et al.
2003), considers in this sense the case of mixed stationary Gaussian components and goes
further than the above model Eq. (6.1) by taking into account additive instrumental noise
N :

X = AS +N (6.2)

Moving to a Fourier representation, the idea is that colored components can be separated
based on the diversity of their power spectra.

The next section give a short overview of two significant ICA methods mentioned
above and implemented in the MRS package: JADE and FastICA (Hyvärinen et al.
2001). This is followed by a description of ways to combine wavelets and ICA techniques.
Some useful properties of wavelet transforms can indeed come enhance the performance
of ICA methods in several situations. Finally, we present the method GMCA, which
performs a blind source separation using the the sparsity concept.

6.2 JADE

The Joint Approximate Diagonalization of Eigenmatrices method (JADE) assumes the
observed data X follows the noiseless mixture model (6.1) where the independent sources
S are non-Gaussian i.i.d.1 random processes. The mixing matrix is assumed to be square
and invertible so that (de)mixing is actually just a change of basis.

As mentioned above, second order statistics do not retain enough information for
source separation in this context: finding a change of basis in which the data covariance
matrix is diagonal will not in general enable to identify the independent sources properly.
Nevertheless, decorrelation is half the job (Cardoso 1998) and one may seek the basis
in which the data is represented by maximally independent processes among those bases
in which the data is decorrelated. This leads to so-called orthogonal algorithms: after a
proper whitening of the data by multiplication with the inverse of a square root of the
covariance matrix of the data W , one is then seeking a rotation R (which leaves things

white) so that Ŝ defined by

Ŝ = W−1 Y = W−1RXwhite = W−1RW X (6.3)

and B̂ = Â−1 = W−1RW are estimations of the sources and of the inverse of the mixing
matrix.

JADE is such an orthogonal ICA method and, like most mainstream ICA techniques,
it exploits higher order statistics so as to achieve some sort of non linear decorrelation.
Precisely, in the case of JADE, statistical independence is assessed using fourth order
cross cumulants :

Fijkl = cum(yi, yj, yk, yl)

= E(yiyjykyl)− E(yiyj)E(ykyl)− E(yiyl)E(yjyk)− E(yiyk)E(yjyk) (6.4)

1The letters i.i.d. stand for independently and identically distributed meaning that each entries of X at a
given time t are independent of X at any other time t′ and that the distribution of X does not depend on time.
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where E stands for statistical expectation and the yi’s are the entries of vector Y modeled
as random variables, and the correct change of basis (i.e. rotation) is found by somehow
diagonalizing the fourth order cumulant tensor. Indeed, if the yi’s were independent, all
the cumulants with at least two different indices would be zero. As a consequence of
the independence assumption of the source processes S and of the whiteness of Y for all
rotations R, the fourth order tensor F is well structured: JADE was precisely devised to
take advantage of the algebraic properties of F . JADE’s objective function is given by

Jjade(R) =
∑
ij

∑
k 6=l

cum(yi, yj, yk, yl)
2

which can be interpreted as a joint diagonalization criterion. Fast and robust algorithms
are available for the minimization of Jjade(R) with respect to R based on Jacobi’s method
for matrix diagonalization (Pham 2001). More details on JADE can be found in (Cardoso
1999, 1998; Hyvärinen et al. 2001).

JADE for spherical maps

Applying JADE on multichannel data mapped to the sphere does not require any par-
ticular modification of the algorithm. Indeed, JADE estimates the fourth order cumulant
tensor from the available data samples assuming an i.i.d. random field. Hence, given a
pixelization scheme on the sphere such as provided by the Healpix package, JADE can be
directly applied to the multichannel spherical data pixels.

6.3 FastICA

FastICA is by now a standard technique in ICA. Like JADE, it is meant for the anal-
ysis of mixtures of independent non-Gaussian sources in a noise-less setting. A complete
description of this method can be found in (Hyvärinen et al. 2001) and references therein2.
We give here a brief and simplified account of the algorithm. FastICA, again like JADE,
is a so-called orthogonal ICA method: the independent components are sought by max-
imizing a measure of non-Gaussianity under the constraint that they are decorrelated.
Intuitively, one should understand that mixtures of independent non-Gaussian random
variables tend to look more Gaussian. An enlightening view on the relation between
mutual information, which is a natural measure of independence, decorrelation and non-
Gaussianity can be found in (Cardoso 2001, 2003). Non-Gaussianity is assessed in FastICA
using a contrast function G based on a non-linear approximation to negentropy (Hyväri-
nen et al. 2001). In practice, depending on the application, different approximations or
non-linear (non-quadratic) functions should be experimented with. In a simple deflation
scheme, for sphered data, the directions are found sequentially : a direction r of maximal
non-Gaussianity is sought by maximizing

JG(r) =
(
E{G(rTxwhite)} − E{G(ν)}

)2
(6.5)

where ν stands for centered unit variance Gaussian variable, under the constraint that r
has unit norm and that r is orthogonal to the directions found previously.

2Many papers on this algorithm are available at http://www.cs.helsinki.fi/u/ahyvarin/papers/fastica.shtml
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The contrast function G can for instance be chosen among the following (Hyvärinen et al.
2001):

G0(u) =
1

a
log cosh(au)

G1(u) = −1

a
exp(−au2/2)

G2(u) =
1

4
u4

(6.6)

where a is a constant to be determined depending on the application. It can be shown
that the maxima of JG occur at certain maxima of E{G(rTxwhite)}. These are obtained
for r solution to :

E{xwhiteg(rTxwhite)} − λr = 0 (6.7)

where λ is a constant easily expressed in terms of the optimal direction r0, and g is the
derivative of G. Solving this equation using Newton’s method, and a few approximations,
a fixed-point algorithm is derived which consists in repeating the following two steps until
convergence :

r ← E{xwhiteg(rTxwhite)} − E{g′(rTxwhite)}r
r ← r

‖r‖
(6.8)

A simple implementation of this algorithm is included in the present package. It is largely
based on the MatlabTM code available at www.cis.hut.fi/projects/ica/fastica/.

6.4 Wavelet and BSS

Wavelets come into play as a sparsifying transform. Applying a wavelet transform on
both sides of (6.1) does not affect the mixing matrix and the model structure is preserved.
Also, moving the data to a wavelet representation does not affect its information content.
However, the statistical distribution of the data coefficients in the new representation
is different: wavelets are known to lead to sparse i.i.d. representations of structured
data. Further, the local (coefficient wise) signal to noise ratio depends on the choice of
a representation. A wavelet transform tends to grab the informative coherence between
pixels while averaging the noise contributions, thus enhancing structures in the data.
Although the standard ICA model (6.1) is for a noiseless setting, the derived methods
can be applied to real data. Performance will depend on the detectability of significant
coefficients i.e. on the sparsity of the statistical distribution of the coefficients. Moving
to a wavelet representation will often lead to more robustness to noise.

Once the data has been transformed to a proper representation (e.g. wavelets but
also ridgelets and curvelets in the case of strongly anisotropic 2D or 3D data), WJADE
(resp. WFastICA) consists in applying the standard JADE (resp. FastICA) method to
the new multichannel coefficients. Once the mixing matrix is estimated, the initial source
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maps are obtained using the adequate inverse transform after some non linear denoising
or thresholding of the coefficients if necessary.

6.5 Sparse Blind Source Separation: the GMCA method

6.5.1 Morpho-Spectral Diversity

Extending the redundant representation framework to the multichannel case requires
defining what a multichannel overcomplete representation is. Let us assume in this
section that A = [ϕν,1, · · · , ϕν,Nc ] ∈ RNc×Ns is a known spectral dictionary, and Φ =
[ϕ1, · · · , ϕT ] ∈ RN×T is a spatial or temporal dictionary3. We assume that each source si
can be represented as a (sparse) linear combination of atoms in Φ; si = Φαi. Let α the
Ns × T matrix whose rows are αT

i .
From Eq. (6.1), the multichannel noiseless data Y can be written as

Y = AαΦT =
Ns∑
i=1

T∑
j=1

(
ϕν,iϕ

T
j

)
αi[j] . (6.9)

Consequently, each column in of Y reads

Y[., l] = (A⊗Φ[l, .]) vect(α) , ∀ l = 1, · · · , N , (6.10)

and finally

vect(Y) = (A⊗Φ) vect(α) , (6.11)

where ⊗ is the tensor (Kronecker) product and the operator vect stacks the columns of
its argument in a long 1D vector. This latter equation brings a clear and simple insight:
the sparsity of the sources in Φ translates into sparsity of the multichannel data Y in the
multichannel tensor product dictionary Ψ = A⊗Φ.

The multichannel dictionary Ψ can also be seen as concatenation of multichannel
atoms Ψ(ij) = ϕν,iϕ

T
j which are rank-one matrices obtained from each atomic spectrum

ϕν,i and each spatial elementary atom ϕj (see Eq. (6.9)).
Some of the popular recovery results in sparse component analysis algorithm rely on

the mutual coherence of the dictionary (Elad and Bruckstein 2002; Gribonval and Nielsen
2003; Donoho and Elad 2003). In the multichannel case a quantity of that kind can be
defined. In fact, by standard properties of the tensor product, one can easily show that
the Gram matrix of a tensor product is the tensor product of the Gram matrices. Thus
the mutual coherence of the multichannel dictionary Ψ is:

0 ≤ µΨ = max {µA, µΦ} < 1 . (6.12)

This expression of mutual coherence is instructive as it tells us that multichannel
atoms can be distinguished based on their spatial or spectral morphology. In other words,
discriminating two multichannel atoms Ψij and Ψi′j′ may put on different faces:

3The adjectives spectral and spatial that characterize the dictionaries are not formal. Owing to the symmetry
of the multichannel sparse decomposition problems, A and Φ have no formal difference. In practice and more
particularly in multi/hyperspectral imaging, A will refer to the dictionary of physical spectra and Φ to the
dictionary of image/signal waveforms. In the BSS problem, A is unknown.
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• Spatial or temporal (respectively spectral) diversity: in this case i = i′ and j 6= j′

(respectively i 6= i′ and j = j′). These atoms have the same spectrum (respectively,
spatial shape) but one can discriminate between them based on their spatial (respec-
tively, spectral) diversity. From (6.12), their coherence is lower than µΦ (respectively
µA). Disentangling these multichannel atoms can equivalently be done in 5.

• Both diversities: i 6= i′ and j 6= j′, this seems to be a more favorable scenario to
differentiate the atoms as they do not share neither the same spectrum nor the same
spatial (or temporal) “shape”. Note that from (6.12), the coherence between these
atoms in this case is lower than µAµΦ ≤ max {µA, µΦ}.

6.5.2 Multichannel Sparse Decomposition

We embark from Eq. (6.9), where the multichannel dictionary Ψ is supposed to be
overcomplete, i.e. NNc < TNs. The goal is to recover the sparsest solution α from Y
which requires solving:

min
α∈RNs×T

Ns∑
i=1

‖αi‖0 s.t. Y = AαΦT. (6.13)

As justified in 5.2, this combinatorial problem can be replaced by its convex relaxation
substituting the `1 norm for the `0 pseudo-norm, hence giving:

min
α∈RNs×T

Ns∑
i=1

‖αi‖1 s.t. Y = AαΦT. (6.14)

As (6.11) is a vectorized monochannel form of (6.9), what we are trying so do is actually
to find the sparsest solution of a monochannel underdetermined system of linear equations
where the solution is sparse in an overcomplete tensor product dictionary. Recovery
properties of monochannel sparse decomposition by `1 minimization were overviewed in
chapter 5. Therefore, if one is able to translate those identifiability criteria in the language
of tensor product dictionaries, then we are done.

In particular, the coherence-based sparse recovery criterion given in (Donoho and Huo
2001) is trivial to adapt owing to (6.12). Indeed, if Y is k-sparse in the multichannel
dictionary Ψ with k < C(µ−1Ψ +1) for some C > 0 (typically C = 1/2), and the dictionary
is sufficiently incoherent (both spectrally and spatially), then the solution of Eq. (6.14) is
unique, is a point of equivalence of Eq. (6.13) and Eq. (6.14), and the recovery is stable
to bounded noise on Y.

Above, we addressed the multichannel sparse decomposition problem without assum-
ing any constraint on the sparsity pattern of the different channels. It is worth however
pointing out that sparse recovery conditions from multichannel measurements can be
refined if some structured sparsity is hypothesized. For instance, for structured multi-
channel representation (e.g. sources with disjoint supports) (Gribonval and Nielsen 2008)
provided coherence-based sufficient recovery conditions by solving Eq. (6.14). One should
note that despite apparent similarities, the multichannel sparse decomposition problem
discussed here is conceptually different from the one targeting simultaneous sparse re-
covery of multiple measurements vectors (MMV) considered by several authors, see e.g.
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(Cotter et al. 2005; Malioutov et al. 2005; Tropp 2006; Chen and Huo 2006; Argyriou
et al. 2008; Bach 2008; Gribonval et al. 2008; Eldar and Mishali 2009; Lounici et al. 2009;
Negahban and Wainwright 2009). The latter are not aware of any mixing process via A,
and their goal is to recover α from MMV Y = αΦT in which the vectors αi, i.e. rows
of α, have a common sparsity pattern. However the MMV model can also be written
vect(YT) = (Φ⊗ I) vect(αT) as in Eq. (6.11). The most widely used approach to solve
the simultaneous sparse recovery problem with joint sparsity is to minimize a mixed `p−`q
norm of the form

∑T
j=1

(
‖α[., j]‖qp

)1/q
for p ≥ 1, 0 ≤ q ≤ +∞.

6.5.3 Generalized Morphological Component Analysis

We now turn to the BSS problem and highlight the role of sparsity and morphological
diversity as a source of contrast to solve it. Towards this goal, we assume that the sources
are sparse in the spatial dictionary Φ that is the concatenation of K orthonormal bases
(Φk)k=1,··· ,K : Φ = [Φ1, · · · ,ΦK ]. The restriction to orthonormal bases is only formal
and the algorithms to be presented later still work in practice even with redundant sub-
dictionaries Φk.
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The Generalized Morphological Component Analysis framework assumes a priori that
each source is modeled as the linear combination of K morphological components where
each component is sparse in a specific basis:

∀i ∈ {1, · · · , Ns}; si =
K∑
k=1

xi,k =
K∑
k=1

Φkαi,k (6.15)

= Φαi where αi =
[
αT
i,1, · · · , αT

i,K

]T
GMCA seeks an unmixing scheme, through the estimation of A, which leads to the
sparsest sources S in the dictionary Φ. This is expressed by the following optimization
problem written in the augmented Lagrangian form:

min
A,α1,1,··· ,αNs,K

1

2

∥∥Y −AαΦT
∥∥2
F

+ λ

Ns∑
i=1

K∑
k=1

‖αi,k‖pp

s.t. ‖ai‖2 = 1 ∀i ∈ {1, · · · , Ns} (6.16)

where typically p = 0 or its relaxed convex version with p = 1, and ‖X‖F =
(
trace(XTX)

)1/2
is the Frobenius norm. The unit `2-norm constraint on the columns of A avoids the clas-
sical scale indeterminacy of the product AS in (6.2). The reader may have noticed that
the MCA problem in chapter 5 is a special case of the GMCA problem Eq. (6.16) when
there is only one source Ns = 1 and one channel Nc = 1 (no mixing). Thus GMCA is
indeed a multichannel generalization of MCA.

The program (6.16) is a notoriously difficult non-convex optimization problem even
for convex penalties when p ≥ 1. More conveniently, following (6.1), the product AS
can be split into Ns · K multichannel morphological components: AS =

∑
i,k aix

T
i,k =∑

i,k(aiα
T
i,k)Φ

T
k . Based on this decomposition, and inspired by the block-coordinate re-

laxation as for MCA, GMCA yields an alternating minimization algorithm to estimate
iteratively one term at a time (Bobin et al. 2007a). We will show shortly that the esti-
mation of each morphological component xi,k = Φkαi,k assuming A and x{i′,k′}6={i,k} are
fixed is obtained by simple hard or soft thresholding for p = 0 and p = 1.

Define the (i, k)th multichannel marginal residual by:

Ri,k = Y −
∑
i′ 6=i

∑
k′ 6=k

ai′x
T
i′,k′ (6.17)

as the part of the data Y unexplained by the multichannel morphological component
aix

T
i,k. Estimating xi,k = Φkαi,k, assuming A and the other components x(i′,k′) 6=(i,k) are

fixed, leads to the component-wise optimization problem:

min
xi,k∈RN

1

2

∥∥Ri,k − (aiα
T
i,k)Φ

T
∥∥2
F

+ λ ‖αi,k‖pp (6.18)

Since here Φk is an orthogonal matrix, with calculations using proximity operators, it
can be shown that the unique solution of Eq. (6.18) is obtained by a hard (p = 0) or soft
(p = 1) thresholding. Hence, the closed-form estimate of the morphological component
xi,k is:

x̃i,k = ∆Φk,λ′

(
1

‖ai‖22
RT
i,kai

)
(6.19)
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where λ′ = λ/ ‖ai‖22 for soft thresholding and λ′ =
√

2λ/‖ai‖2 for hard thresholding.
The operator ∆D,λ(x) consists of (i) computing the coefficients of x in the dictionary D,
(ii) thresholding (soft or hard) the obtained coefficients with the threshold λ, and (iii)
reconstructing from thresholded coefficients:

∆D,λ(x) = D Threshλ
(
DTx

)
(6.20)

Threshλ is either a hard or a soft thresholding. When Φk is redundant, (6.19) is only the
first iteration of a forward-backward splitting recursion, and which should be used when
Φk is overcomplete. However in practice (6.19) can still be used to save computation
time.

Now, considering {ai′}i′ 6=i and all morphological components as fixed, and recalling
that Nc ≥ Ns, updating the column ai is then just a least-squares estimate

ãi =
1

‖si‖22

(
Y −

∑
i′ 6=i

ai′s
T
i′

)
si (6.21)

where si =
∑K

k=1 xi,k. This estimate is then projected onto the unit sphere to meet the unit
`2-norm constraint in Eq. (6.16). The GMCA algorithm is summarized in Algorithm 10.

Algorithm 10 GMCA algorithm.

Task: Sparse Blind Source Separation.
Parameters: The data Y, the dictionary Φ = [Φ1 · · ·ΦK ], number of iterations Niter, number
of sources Ns and channels Nc, stopping threshold λmin, threshold update schedule.

Initialization: x
(0)
i,k = 0 for all (i, k), A(0) random and threshold λ0.

Main iteration:
for t = 1 to Niter do

for i = 1, · · · , Ns do
for k = 1, · · · ,K do

Compute the marginal residuals:

R
(t)
i,k = Y −

∑
(i′,k′)6=(i,k)

a
(t−1)
i′ x

(t−1)T
i′,k′ .

Estimate the current component x
(t)
i,k via thresholding with threshold λt:

x
(t)
i,k = ∆Φk,λt

(
R

(t)T

i,k a
(t−1)
i

)
.

Update ith source s
(t)
i =

∑K
k=1 x

(t)
ik .

Update ai assuming a
(t)
i′ 6=i and the morphological components x

(t)
i,k are fixed :

a
(t)
i = 1

‖s(t)i ‖22

(
Y −

∑Ns
i′ 6=i a

(t−1)
i′ s

(t)T

i′

)
s
(t)
i and normalize to a unit `2 norm.

Update the threshold λt according to the given schedule.
if λt ≤ λmin then stop.

Output: Estimated sources
(
s
(Niter)
i

)
i=1,··· ,Ns and mixing matrix A(Niter).

For p = 1 and fixed threshold λ, Algorithm 10 can be shown to converge to a stationary
point, see (Tseng 2001; Bobin et al. 2008). This point is not guaranteed to be even a
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local minimum of the energy, and this is even less clear for p = 0. Thus, in the same vein
as MCA, GMCA relies on a salient-to-fine strategy using a varying threshold to mitigate
the problem of sensitivity to initialization. More precisely, GMCA first computes coarse
versions of the morphological components for any fixed source si. These raw sources are
estimated from their most significant coefficients in Φ. Then, the corresponding column
ai is estimated from the most significant features of si. Each source and its corresponding
column of A are then alternately and progressively refined as the threshold decreases
towards λmin. This particular iterative thresholding scheme provides robustness to noise
and initialization by working first on the most significant features in the data and then
progressively incorporating smaller details to finely tune the model parameters. GMCA
can be used with either linear or exponential decrease of the threshold as for MCA.

If A were known and fixed, the GMCA would be equivalent to performing an MCA
sparse decomposition of Y in the tensor product multichannel dictionary A⊗Φ. But as
GMCA also updates the mixing matrix at each iteration, it is able to learn the spectral
part of the multichannel dictionary directly from the data.

The Thresholding Strategy

Hard or soft thresholding? In practice, it was observed that hard thresholding leads
to better results (Bobin et al. 2006, 2007a). Furthermore, if A is known and no noise
contaminates the data, GMCA with hard thresholding will enjoy the sparse recovery
guarantees given in (Bobin et al. 2007b, 2009), with the proviso that the morphological
components are contrasted and sparse in a sufficiently incoherent multichannel dictionary
A⊗Φ.

Handling additive Gaussian noise. The GMCA algorithm is well suited to deal with
data contaminated with additive Gaussian noise (see the next section for a Bayesian
interpretation). For instance, assume that the noise E in (6.2) is additive white Gaussian
in each channel, i.e. its covariance matrix ΣE is diagonal, and let σE be its standard
deviation supposed equal for all channels for simplicity. Then, Algorithm 10 can be
applied as described above with λmin = τσE, where τ is chosen as in denoising methods,
typically taking its value in the range [3, 4]. This attribute of GMCA makes it a suitable
choice for use in noisy BSS. GMCA not only manages to separate the sources, but also
succeeds in removing additive noise as a by-product.

6.5.4 The Bayesian Perspective

GMCA can be interpreted from a Bayesian standpoint. For instance, let us assume
that the entries of the mixtures (yi)i=1,··· ,Nc , the mixing matrix A, the sources (si)i=1,··· ,Ns
and the noise matrix E are random processes. We assume that the noise E is zero-
mean Gaussian where the noise vector εi in each channel is white, but the noise between
channels is possibly correlated with known covariance matrix ΣE. This means that the
log-likelihood function takes the form:

LL(Y
∣∣S,A,ΣE) =

1

2
‖Y −AS‖2ΣE

, where ‖X‖2ΣE
= trace

(
XTΣ−1E X

)
(6.22)
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We further assume that the uniform prior is imposed on entries of A. Other priors
on A could be imposed; e.g. known fixed column for example. As far as the sources
are concerned, they are known from (6.15) to be sparse in the dictionary Φ. Thus their
coefficients α = [α1, · · · , αNs ]T will be assumed as drawn independently from a leptokurtic
PDF with heavy tails such as the generalized Gaussian distribution form:

pdfα(α1,1, . . . , αNs,K) ∝
Ns∏
i=1

K∏
k=1

exp
(
−λi,k ‖αi‖pi,kpi,k

)
0 ≤ pi,k < 2 ∀(i, k) ∈ {1, · · · , Ns} × {1, · · · , K} (6.23)

Putting together the log-likelihood function and the priors on A and α, the MAP esti-
mator leads to the following optimization problem:

min
A,α1,1,··· ,αNs,K

1

2

∥∥Y −AαΦT
∥∥2

ΣE
+

Ns∑
i=1

K∑
k=1

λi,k ‖αi,k‖pi,kpi,k
(6.24)

This problem has strong similarity with that of Eq. (6.16). More precisely, if the noise is
homoscedastic and decorrelated between channels (i.e. ΣE = σ2

EI), if the shape param-
eters pi,k of the generalized Gaussian distribution prior are all equal to p and the scale
parameters are all taken as λi,k = λ/σ2

E, and if the columns of A are assumed uniform
on the unit sphere, then Eq. (6.24) is exactly Eq. (6.16). Note that in the development
above, the independence assumption in (6.23) does not necessarily entail independence
of the sources. Rather it means that there are no a priori assumptions that indicate any
dependency between the sources.

6.5.5 The Fast GMCA Algorithm

The goal here is to speed up the GMCA algorithm. As a warm-up, assume that the
dictionary Φ is no longer redundant and reduces to a single orthobasis (i.e. K = 1).
Let us denote β = YΦ the matrix where each of its rows stores the coefficients of each
channel yi. The optimization problem Eq. (6.16) then becomes (we omit the `2 constraint
on A to lighten the notation):

min
A,α

1

2
‖β −Aα‖2F + λ

Ns∑
i=1

‖αi‖pp (6.25)

where p = 0 or p = 1. The GMCA algorithm no longer needs to apply the analysis and
synthesis operators at each iteration as only the channels Y have to be transformed once
in Φ. Clearly, this case is computationally much cheaper.

However, this is rigorously valid only for an orthobasis dictionary, and no orthonormal
basis is able to sparsely represent large variety of signals and yet we would like to use very
sparse signal representations which motivated the use of redundancy in the first place.
Arguments supporting the substitution of (6.25) for (6.16) for a redundant dictionary Φ
were given in (Bobin et al. 2007a, 2008). The idea is to first compute the sparsest represen-
tation of each channel yi in the redundant dictionary Φ using an appropriate (non-linear)
decomposition algorithm (e.g. BP, MCA). Now, β denotes the matrix where each row
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contains the sparse decomposition of the corresponding channel. Because the channels are
linear mixtures of the sources via the mixing matrix A, the key argument developed by
(Bobin et al. 2007a) is that the sparse decomposition algorithm must preserve linear mix-
tures. Descriptively, the sparsest decomposition provided by the algorithm when applied
to each channel must be equal to the linear combination of the sparsest decompositions
of the sources. This statement is valid if the sources and the channels are identifiable,
meaning that they verify sufficient conditions so that their unique sparsest representation
can be recovered by the decomposition algorithm. For instance, if MCA is used, then it
is sufficient as in (Bobin et al. 2007b, 2009) that the channels and the sources be sparse
enough in an incoherent dictionary Φ, and their morphological components be sufficiently
contrasted. See (Bobin et al. 2007a, 2008) for details.

Hence, under these circumstances, a fast GMCA algorithm can be designed to solve
(6.25) by working in the transform domain after decomposing each observed channel yi in
Φ using a sparse decomposition algorithm such as MCA. There is an additional important
simplification when substituting problem (6.25) for (6.16). Indeed, since Nc ≥ Ns (i.e.
overdetermined BSS), it turns out that (6.25) is a multichannel overdetermined least-
squares fit with `0/`1-sparsity penalization. We again use an alternating minimization
scheme to solve for A and α:

• Update the coefficients: when A is fixed, since the quadratic term is strictly con-
vex (A has full column-rank), the marginal optimization problem can be solved by
a general form of the forward-backward splitting iteration (Chen and Rockafellar
1997):

α(t+1) = Threshµλ
(
α(t) + µΞAT(β −Aα(t))

)
(6.26)

where Ξ is a relaxation matrix such that the spectral radius of (I − µΞATA) is
bounded above by 1, and the step-size 0 < µ ≤ 1/|||ΞAAT|||. Taking Ξ = (ATA)−1

(ATA is non-singular and a kind of Newton’s method ensues) yields the closed-form

α̃ = Threshλ
(
A+β

)
(6.27)

where Threshλ is a thresholding operator (hard for p = 0 and soft for p = 1).

• If α is fixed, and since α is full row-rank, the mixing matrix A is given by the
least-squares estimate:

Ã = βαT
(
ααT

)−1
= βα+ (6.28)

and the columns of Ã are then normalized.

Note that the latter two-step estimation scheme has a flavor of the alternating sparse
coding/dictionary learning algorithm presented by (Aharon et al. 2006; Peyré et al. 2007)
in a different framework.

This two-stage iterative process leads to the accelerated version of GMCA summarized
in Algorithm 11.

In the same vein as in Section 6.5.3, the coarse-to-fine process is also at the heart
of this fast version of GMCA with the threshold that decreases with increasing iteration
count. This again brings robustness to noise and initialization.
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Algorithm 11 Fast GMCA algorithm.

Task: Sparse Blind Source Separation.
Parameters: The data Y, the dictionary Φ = [Φ1 · · ·ΦK ], number of iterations Niter, number
of sources Ns and channels Nc, stopping threshold λmin, threshold update schedule.
Initialization:

• α(0) = 0, A(0) a random matrix.

• Apply the MCA Algorithm 8 with Φ to each data channel yi to get β.

• Set threshold λ0 = maxi,l |β[i, l]|.

Main iteration:
for t = 1 to Niter do

• Update the coefficients α: α(t+1) = Threshλt
(
A(t)+β

)
.

• Update the mixing matrix A: A(t+1) = βα(t+1)+ , normalize columns to a unit `2 norm.

• Update the threshold λt according to the given schedule.

if λt ≤ λmin then stop.

Reconstruct the sources: s̃i =
∑K

k=1 Φkα
(Niter)
i,k , i = 1, · · · , Ns.

Output: Estimated sources
(
s̃i
)
i=1,··· ,Ns and mixing matrix A(Niter).
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Chapter 7

Statistics on the Sphere and
Non-Gaussianities Detection

7.1 Introduction

The search for non-Gaussian signatures in the cosmic microwave background (CMB)
temperature fluctuation maps furnished by MAP1 (Komatsu et al. 2003), and to be fur-
nished by PLANCK2, is of great interest for cosmologists. Indeed, the non-Gaussian
signatures in the CMB can be related to very fundamental questions such as the global
topology of the universe (Riazuelo et al. 2002), superstring theory, topological defects
such as cosmic strings (Bouchet et al. 1988), and multi-field inflation (Bernardeau and
Uzan 2002). The non-Gaussian signatures can, however, have a different but still cosmo-
logical origin. They can be associated with the Sunyaev-Zel’dovich (SZ) effect (Sunyaev
and Zeldovich 1980) (inverse Compton effect) of the hot and ionized intra-cluster gas of
galaxy clusters (Aghanim and Forni 1999; Cooray 2001), with the gravitational lensing
by large scale structures (Bernardeau et al. 2003), or with the reionization of the universe
(Aghanim and Forni 1999; Castro 2003). They may also be simply due to foreground
emission (Jewell 2001), or to non-Gaussian instrumental noise and systematics (Banday
et al. 2000).

All these sources of non-Gaussian signatures might have different origins and thus
different statistical and morphological characteristics. It is therefore not surprising that a
large number of studies have recently been devoted to the subject of the detection of non-
Gaussian signatures. Many approaches have been investigated: Minkowski functionals
and the morphological statistics (Novikov et al. 2000; Shandarin 2002), the bispectrum
(3-point estimator in the Fourier domain) (Bromley and Tegmark 1999; Verde et al. 2000;
Phillips and Kogut 2001), the trispectrum (4-point estimator in the Fourier domain)
(Kunz et al. 2001), wavelet transforms (Aghanim and Forni 1999; Forni and Aghanim
1999; Hobson et al. 1999; Barreiro and Hobson 2001; Cayón et al. 2001b; Jewell 2001;
Starck et al. 2004a), and the curvelet transform (Starck et al. 2004a). In (Aghanim et al.
2003; Starck et al. 2004a), it was shown that the wavelet transform was a very powerful tool
to detect the non-Gaussian signatures. Indeed, the excess kurtosis (4th moment) of the
wavelet coefficients outperformed all the other methods (when the signal is characterized

1http://map.gsfc.nasa.gov/
2http://astro.estec.esa.nl/SA-general/Projects/Planck/
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by a non-zero 4th moment). Based on kurtosis of wavelet coefficients, recent studies have
reported non-Gaussian signatures in the WMAP data (Vielva et al. 2004; Mukherjee and
Wang 2004; Cruz et al. 2005). The excess kurtosis is a widely used statistic, based on
the 4th moment. The kurtosis measures a kind of departure of X from Gaussianity. The
non-Gaussianty detector consists of first applying a multiscale transform (e.g., wavelet, or
curvelet), and then calculating at each scale the kurtosis. In practice, missing data and
instrumental effects may create an artificial kurtosis and it is very important to produce
realistic simulations which present the same caracteristics as the observated data (e.g.,
missing data, noise, etc.). Then the kurtosis obtained from the data is compared to the
kurtosis level expected from the simulations.

Finally, a major issue of the non-Gaussian studies in CMB remains our ability to
disentangle all the sources of non-Gaussianity from one another. Recent progress has been
made on the discrimination between different possible origins of non-Gaussianity. Namely,
it was possible to separate the non-Gaussian signatures associated with topological defects
(cosmic strings) from those due to the Doppler effect of moving clusters of galaxies (both
dominated by a Gaussian CMB field) by combining the excess kurtosis derived from both
the wavelet and the curvelet transforms (Starck et al. 2004a).

The wavelet transform is suited to spherical-like sources of non-Gaussianity, and a
curvelet transform is suited to structures representing sharp and elongated structures
such as cosmic strings. Each provides an adapted non-Gaussian estimator, namely the
normalised mean excess kurtosis. The combination of these transforms through the prod-
uct of the normalized mean excess kurtosis of wavelet transforms by normalized mean
excess kurtosis of curvelet transforms highlights the presence of the cosmic strings in a
mixture CMB+SZ+CS. Such a combination gives information about the nature of the
non-Gaussian signals. The sensitivity of each transform to a particular shape makes it a
very strong discriminating tool (Starck et al. 2004a; Jin et al. 2005).

In order to illustrate this, we show in Fig. 7.1 a set of simulated maps. Primary CMB,
kinetic SZ and cosmic string maps are shown respectively in Fig. 7.1 top left, top right and
bottom left. The “simulated observed map”, containing the three previous components,
is displayed in Fig. 7.1 bottom right. The primary CMB anisotropies dominate all the
signals except at very high multipoles (very small angular scales). The wavelet function is
overplotted on the kinetic Sunyaev-Zel’dovich map and the curvelet function is overplotted
on cosmic string map.

CMB data are different from other astronomical data sets in the sense that they are
not sparse (typical sparse data are stars or/and galaxies on top of a smooth background).
After a component separation processing (see chapter 6), the CMB data are not completely
free of contaminations. Point sources still need to be detected and removed. Once we
believe the data are clean enough, we want to check if the distribution of CMB temperature
fluctuations is Gaussian by using robust statistical Gaussianity tests.

7.2 Point Sources on a Gaussian Background

Several methods have been proposed in the last years for point source detection in the
CMB such as the the Mexican Hat wavelet (Cayón et al. 2000, 2001b), the pseudo-filter
(Sanz et al. 2001), or the biparametric scale-adaptive filter (López-Caniego et al. 2005).
A simple and robust technique, which maximizes the signal-to-noise ratio is the Matched
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Figure 7.1: Top, primary Cosmic Microwave Background anisotropies (left) and kinetic Sunyaev-
Zel’dovich fluctuations (right). Bottom, cosmic string simulated map (left) and simulated ob-
servation containing the previous three components (right). The wavelet function is overplotted
on the Sunyaev-Zel’dovich map and the curvelet function is overplotted on cosmic string map.

Filter (Vio et al. 2002). Assuming an isotropic point spread function (PSF) with known
power sprectum τ(q) and the CMB with power spectrum P (q), the Matched Filter is (Vio
et al. 2002):

ψ̂MF (q) =
1

2πα

τ(q)

P (q)
, α ≡

+∞∫
0

q
τ 2

P
dq (7.1)

with minimum variance

σ2 =
1

2πα
(7.2)
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If the PSF is unknown (or space-variant), the Mexican Hat wavelet may be a good
alternative. It consists of convolving the data with the wavelet function ψa,b(x) = ψ(x−b

a
),

where ψ(x) = 1√
2π

(1−x2)e−x2/2. a is the scale parameter and b the position parameter. A

fast implementation is obtained by using the Fourier transform to perform the convolution

products (ψ̂a(q) = 2√
π
(qa)2e−

1
2
(qa)2) (López-Caniego et al. 2005).

7.3 Detecting Faint Non-Gaussian Signals Superposed on a Gaus-
sian Signal

The superposition of a non-Gaussian signal with a Gaussian signal can be modeled
as Y = N + G, where Y is the observed image, N is the non-Gaussian component and
G is the Gaussian component. We are interested in using transform coefficients to test
whether N ≡ 0 or not.

7.3.1 Hypothesis Testing and Likelihood Ratio Test (LRT).

Transform coefficients of various kinds [Fourier, wavelet, curvelet, etc.] have been
used for detecting non-Gaussian behavior in numerous studies. Let X1, X2, . . . , Xn be the
transform coefficients of Y ; we model these as

Xi =
√

1− λ · zi +
√
λ · wi, 0 < λ < 1 (7.3)

where λ > 0 is a parameter, zi
iid∼ N(0, 1) are the transform coefficients of the Gaussian

component G, wi
iid∼ W are the transform coefficients of the non-Gaussian component N ,

and W is some unknown symmetrical distribution. Here without loss of generality, we
assume the standard deviation for both zi and wi are 1.

Phrased in statistical terms, the problem of detecting the existence of a non-Gaussian
component is equivalent to discriminating between the hypotheses:

H0 : Xi = zi (7.4)

H1 : Xi =
√

1− λ · zi +
√
λ · wi, 0 < λ < 1 (7.5)

and N ≡ 0 is equivalent to λ ≡ 0. We call H0 the null hypothesis H0, and H1 the
alternative hypothesis.

When bothW and λ are known, then the optimal test for Problem (7.4) - (7.4) is simply
the Neyman-Pearson Likelihood ratio test (LRT), (Lehmann 1986, Page 74 ). The size
of λ = λn for which reliable discrimination between H0 and H1 is possible can be derived
using asymptotics. If we assume that the tail probability of W decays algebraically,

lim
x→∞

xαP{|W | > x} = Cα, Cα is a constant (7.6)

(we say W has a power-law tail), and we calibrate λ to decay with n, so that increasing
amounts of data are offset by increasingly hard challenges:

λ = λn = n−r (7.7)
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Figure 7.2: Detection Boundary in the α−r plane. The solid curve is the detection boundary of
LRT, above which is not possible to detect, and below which it is possible to reliably detect, the
dotted line segment and solid line segment together is the detection boundary for Kurtosis, the
dotted curve and the solid curve together is the detection boundary of Max/HC. Right panel:
detectable regions for Kurtosis, Max/HC.

then there is a threshold effect for the detection problem (7.4) - (7.4). In fact, define:

ρ∗1(α) =

{
2/α, α ≤ 8
1/4, α > 8

(7.8)

then as n→∞, LRT is able to reliably detect for large n when r < ρ∗1(α), and is unable to
detect when r > ρ∗1(α); this is proved in (Donoho and Jin 2004b). Since LRT is optimal,
it is not possible for any statistic to reliably detect when r > ρ∗1(α). We call the curve
r = ρ∗1(α) in the α-r plane the detection boundary; see Figure 7.2.

In fact, when r < 1/4, asymptotically LRT is able to reliably detect whenever W
has a finite 8-th moment, even without the assumption that W has a power-law tail. Of
course, the case that W has an infinite 8-th moment is more complicated, but if W has a
power-law tail, then LRT is also able to reliably detect if r < 2/α.

Despite its optimality, LRT is not a practical procedure. To apply LRT, one needs to
specify the value of λ and the distribution of W , which seems unlikely to be available.
We need non-parametric detectors, which can be implemented without any knowledge of
λ or W , and depend on Xi’s only. In the next section, we are going to introduce three
non-parametric detectors: excess kurtosis, Max and Higher Criticism (HC).
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7.4 Kurtosis, HC from Wavelet and Curvelet Coefficients

7.4.1 Kurtosis

For a statistic Tn, the p-value is the probability of seeing equally extreme results under
the null hypothesis:

p = PH0{Tn ≥ tn(X1, X2, . . . , Xn)}

here PH0 refers to probability under H0, and tn(X1, X2, . . . , Xn) is the observed value of
statistic Tn. Notice that the smaller the p-value, the stronger the evidence against the
null hypothesis. A natural decision rule based on p-values rejects the null when p < α for
some selected level α, and a convenient choice is α = 5%. When the null hypothesis is
indeed true, the p-values for any statistic are distributed as uniform U(0, 1). This implies
that the p-values provide a common scale for comparing different statistics.

We now introduce two statistics for comparison.

Excess Kurtosis (κn). Excess kurtosis is a widely used statistic, based on the 4-th
moment. For any (symmetrical) random variable X, the kurtosis is:

κ(X) =
EX4

(EX2)2
− 3

The kurtosis measures a kind of departure of X from Gaussianity, as κ(z) = 0. Empiri-
cally, given n realizations of X, the excess kurtosis statistic is defined as:

κn(X1, X2, . . . , Xn) =

√
n

24

[ 1
n

∑
iX

4
i

( 1
n

∑
iX

2
i )2
− 3

]
(7.9)

When the null is true, the excess kurtosis statistic is asymptotically normal:

κn(X1, X2, . . . , Xn)→w N(0, 1), n→∞

thus for large n, the p-value of the excess kurtosis is approximately:

p̃ = Φ̄−1(κn(X1, X2, . . . , Xn))

where Φ̄(·) is the survival function (upper tail probability) of N(0, 1).

It is proved in (Donoho and Jin 2004b) that the excess kurtosis is asymptotically
optimal for the hypothesis testing of (7.4) - (7.4) if

E[W 8] <∞

However, when E[W 8] = ∞, even though kurtosis is well-defined (E[W 4] < ∞), there
are situations in which LRT is able to reliably detect but excess kurtosis completely fails.
In fact, by assuming (7.6) - (7.7) with an α < 8, if (α, r) falls into the blue region of
Figure 7.2, then LRT is able to reliably detect, however, excess kurtosis completely fails.
This shows that in such cases, excess kurtosis is not optimal; see (Donoho and Jin 2004b).
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7.4.2 Max

The largest (absolute) observation is a classical and frequently-used non-parametric
statistic:

Mn = ∨(|X1|, |X2|, . . . , |Xn|)

under the null hypothesis,

Mn ≈
√

2 log n

and moreover, by normalizing Mn with constants cn and dn, the resulting statistic con-
verges to the Gumbel distribution Ev, whose cdf is e−e

−x
:

Mn − cn
dn

→w Ev

where approximately

dn =

√
6Sn
π

, cn = X̄ − 0.5772dn

here X̄ and Sn are the sample mean and sample standard deviation of {Xi}ni=1 respectively.
Thus a good approximation of the p-value for Mn is:

p̃ = exp(−exp(−Mn − cn
dn

))

We have tried the above experiment for n = 2442, and found that taking cn = 4.2627,
dn = 0.2125 gives a good approximation.

Assuming (7.6) - (7.7) and α < 8, or λ = n−r and that W has a power-law tail with
α < 8, it is proved in (Donoho and Jin 2004b) that Max is optimal for hypothesis testing
(7.4) - (7.4). Recall if we further assume 1

4
< r < 2

α
, then asymptotically, excess kurtosis

completely fails; however, Max is able to reliably detect and is competitive to LRT.
On the other hand, recall that excess kurtosis is optimal for the case α > 8. In

comparison, in this case, Max is not optimal. In fact, if we further assume 2
α
< r < 1

4
,

then excess kurtosis is able to reliably detect, but Max will completely fail.
In Figure 7.2, we compared the detectable regions of the excess kurtosis and Max in

the α-r plane.

7.4.3 Higher Criticism

The Higher Criticism statistic (HC), was proposed in (Donoho and Jin 2004a). To
define HC first we convert the individual Xi’s into p-values for individual z-tests. Let
pi = P{N(0, 1) > Xi} be the ith p-value, and let p(i) denote the p-values sorted in
increasing order; the Higher Criticism statistic is defined as:

HC∗n = max
i

∣∣∣∣√n[i/n− p(i)]/
√
p(i)(1− p(i))

∣∣∣∣
or in a modified form:

HC+
n = max

{i: 1/n≤p(i)≤1−1/n}

∣∣∣∣√n[i/n− p(i)]/
√
p(i)(1− p(i))

∣∣∣∣
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we let HCn refer either to HC∗n or HC+
n whenever there is no confusion. The above

definition is slightly different from (Donoho and Jin 2004a), but the ideas are essentially
the same.

With an appropriate normalization sequence:

an =
√

2 log log n, bn = 2 log log n+ 0.5 log log log n− 0.5 log(4π)

the distribution ofHCn converges to the Gumbel distribution E4
v , whose cdf is exp(−4exp(−x)),

(Shorack and Wellner 1986):
anHCn − bn →w E

4
v

so the p-values of HCn are approximately:

exp(−4exp(−[anHCn − bn])) (7.10)

For moderately large n, in general, the approximation in (7.10) is accurate for the HC+
n ,

but not for HC∗n.
A brief remark comparing Max and HC. Max only takes into account the few largest

observations, HC takes into account those outliers, but also moderate large observations.
As a result, in general HC is better than Max, especially when we have unusually many
moderately large observations. However, when the actual evidence lies in the middle of
the distribution both HC and Max will be very weak.

7.5 Experiments

Fig. 7.3 shows, top left and right, two images with respectively Gaussians and lines.
We have created a set of simulated images by adding a Gaussian white noise with different
standard deviations to these two images. The Signal to Noise Ratio (SNR) varies between
0 and 1. For the image with lines, the SNR is defined as the pixel values along the lines
divided by the noise standard deviation, and for the image with Gaussians, the SNR is
defined as the maximum of the Gaussians divided by the noise standard deviation. Fig. 7.3
shows, bottom left and right, the two noisy images with a SNR equal to 1. Hence, for each
SNR value, we have thirty realizations of the noise, and we have calculated the kurtosis at
the different scales of both the curvelet and the wavelet coefficients. These kurtosis values
were normalized by the standard deviation of the kurtosis obtained from the wavelet and
the curvelet transform of thirty Gaussian white noise realizations. Finally we kept for each
SNR the maximum normalized kurtosis along the scales. Fig. 7.4 left (resp. right) shows
the normalized kurtosis values using the wavelet transform (resp. the curvelet transform)
for the two images (i.e. lines and Gaussians) versus the SNR. Continuous error bars
correspond to 1σ level and dashed error bars correspond to 2σ level. We can clearly see
that the detection power of the wavevet transform is much larger than the detection power
of the curvelet transform for detecting non-Gaussianities due to isotropic features, while
curvelets are more powerful than wavelets for detecting anisotropic features.

7.6 Conclusions

The kurtosis of the wavelet coefficients is very often used in astronomy for the detection
of non-Gaussianities in the CMB. It has been shown (Starck et al. 2004a) that it is also
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Figure 7.3: Top, image with Gaussians and image with lines. Bottom, same images but with an
additional Gaussian noise. The SNR is equal to 1.

possible to separate the non-Gaussian signatures associated with cosmic strings from those
due to SZ effect by combining the excess kurtosis derived from these both the curvelet
and the wavelet transform. It has been shown that kurtosis is asymptotically optimal
in the class of weakly dependent symmetric non-Gaussian contamination with finite 8-th
moments, while HC and MAX are asymptotically optimal in the class of weakly dependent
symmetric non-Gaussian contamination with infinite 8-th moment (Jin et al. 2005). Hence
depending on the nature of the non-Gaussianity, a statitic is better than another one. This
is a motivation for using several statistics rather than a single one for analysing CMB data.
The case of the detection of cosmic string contaminations has been studied on simulated
maps, and it has been shown that kurtosis outperforms clearly Max/HC (Jin et al. 2005).
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Figure 7.4: Normalised kurtosis value versus the SNR for the wavelet coefficients (left) and the
curvelet coefficients (right). The continuous error bars correspond to one σ and the dashed error
bars correspond to 2σ.



Chapter 8

IDL Routines

8.1 General functions for spherical maps

8.1.1 Reading a spherical map from a file : mrs read

Read a spherical map, either in HEALPIX or in GLESP format.

USAGE: map = mrs read( file )

where

• file : Input string, name of the file to be read. The pathname can be included in the
string, by default ’file.fits’ is equivalemt to ’./file.fits’

• map : Output IDL array of Healpix map or Glesp image IDL structure, map read.
For a Healpix map, the map is setted to the NESTED format after reading.

Example:

• healmap = mrs read( ’my file healpix.fits’ )
Read the map stored into the file ’my file healpix.fits’ and load it into healmap.

8.1.2 Writing a spherical map into a file : mrs write

Write a spherical map, either in HEALPIX with the NESTED format or in GLESP
format.

USAGE: mrs write, file, map, ring=ring

where

• file : Input string, name of the file to be writen. The pathname can be included in
the string, by default ’file.fits’ is equivalemt to ’./file.fits’

• map : Input IDL array of Healpix map or Glesp image IDL structure, to be writen.
For a Healpix map, the map is assumed to be in the NESTED format.

• ring : scalar, if set convert the Healpix map data to the RING format for the writing.
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Example:

• mrs write, ’my file healpix.fits’, healpixdata, /ring
Write the map healpixdata into the file ’my file healpix.fits’ as a ring image.

8.1.3 Ploting a spherical map on the screen : mrs tv

Visualization of a Healpix image (nested data representation) or a GLESP image.

USAGE: mrs tv, Data, graticule=graticule, gif=gif, png=png, title=title,
colt=colt, nobar=nobar, Healpix=Healpix, PS=PS, log=log, min=min,

max=max, pxsize=pxsize, big=big, x=x, pol=pol, units=units

where

• Data : Input IDL array of Healpix map or Glesp image IDL structure, map to be
visualized.

• min : float, Data image is visualized with the new min set.

• max : float, Data image is visualized with the new max set.

• log : scalar, if set plot the image in log scale, Data must be positive.

• graticule : int, Mollview Healpix command graticule keyword, see mollview Healpix
documentation for more details.

• png : string, if set write to the disk a PNG file with the filename given by the png
keyword.

• gif : string, if set write to the disk a GIF file with the filename given by the gif
keyword.

• PS : string, if set write to the disk a Postcript file with the filename given by the ps
keyword.

• title : string, if set add the string as a title of the plot in the Healpix representation.

• unit : string, name of the image’s unit to be plotted with the Look Up Table in the
Healpix representation.

• colt : int, IDL Color table.

• nobar : scalar, if set do not plot the Look Up Table in the Healpix representation.

• healpix : scalar, if set then convert the GLESP image into a Healpix one, and use
the Healpix representation for visualization. This keyword is not active for maps
already in Healpix representation.

• pxsize : int, set the number of horizontal pixel on the plot (it will be the same in
vertical), default value is 800.

• big : scalar, if set pxsize is setted to 1500.
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• pol : int, keyword for plotting polarized map T,Q,U. Default value is 0 (no polarized
map), see mollview Healpix documentation for more details.

• x : scalar, if set start interactive plot with the mapview prog, nside max=1024, data
will be resized if greater.

8.1.4 Resizing a spherical map: mrs resize

Resize map either in Healpix (nested format) or Glesp representation

USAGE: resize map = mrs resize( map, nside=nside, nx=nx, np=np,
ViaAlm=ViaAlm )

where

• map : Input IDL array of Healpix map or Glesp image IDL structure to be trans-
formed.

• resize map : Output IDL array of Healpix map or GLESP image IDL structure.
Healpix input map and output resized map are in nested format.

• nside : int, the new nside parameter of the output healpix resized map.

• nx : int = number of rings of the resized Glesp map.

• np : int = max number of pixel on a ring of the resized Glesp map.

• ViaAlm : scalar, if set use alm transform for the resizing, otherwise, use interpola-
tion. Ignored if nside keyword value is lower than imag nside, Healpix only.

Examples:

• map2 = mrs resize( map, nside = 256 )
resize an Healpix map.

• map2 = mrs resize( map, nx = 512, np = 1024 )
resize a Glesp map.

8.1.5 Spliting of a spherical map into patches: mrs split

Decompose an healpix map (nested format) into a cube of small patches.

USAGE: PatchTrans = mrs split( Imag, frac=frac, nx=nx, exrec=exrec,
SizePatchDegrees=SizePatchDegrees, PixelSizeParam=PixelSizeParam )

where

• Imag : Input IDL array of Healpix map to be to be decomposed into patches.

• PatchTrans : Output IDL structure with the following fields:
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– NMaps : long, number of patches.

– map hd : string, header of a small patch.

– Nx : long, size of each patch in the x axis.

– Ny : long, size of each patch in the y axis.

– Lon : float array[ NMaps ], Longitude of each patches if the position (Nx/2,Ny/2)
is the center of the patches.

– Lat : float array[ NMaps ], Latitude of each patches if the position (Nx/2,Ny/2)
is the center of the patches.

– Map : float array[ Nx, Nx, NMaps ], cube of the patches.

– PixelSize : float, pixel size in arc minute.

– MapSize : float, map size in arc minute.

– Frac : float, overlapping factor between patches.

– Nside : long, nside parameter of the input imag.

• Frac : float, overlapping factor between patches. Default is 0.05

• Nx : long, size of each patch along both x and y axis. Default is automatically
estimated.

• SizePatchDegrees : float, size (in degrees) of each patch. Default is 10 degrees.

• exrec : scalar, if set the pixel size is smaller in order to have an exact reconstruction
using mrs invsplit

• PixelSizeParam : float, if exrec is setted, the pixel size is multiplied by this factor
(< 1) in order to smaller pixel for exact reconstruction.

Examples:

• Patch = mrs split( map )
Decompose an image into patches with default options.

8.1.6 Reconstruction of a spherical map from its patches: mrs invsplit

Reconstruct a healpix map (nested format) from a cube of small patches obtained by
the routine mrs split.

USAGE: Map = mrs invsplit( PatchTrans )

where

• PatchTrans : Output IDL structure with the following fields:

– NMaps : long, number of patches.

– map hd : string, header of a small patch.

– Nx : long, size of each patch in the x axis.
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– Ny : long, size of each patch in the y axis.

– Lon : float array[ NMaps ], Longitude of each patches if the position (Nx/2,Ny/2)
is the center of the patches.

– Lat : float array[ NMaps ], Latitude of each patches if the position (Nx/2,Ny/2)
is the center of the patches.

– Map : float array[ Nx, Nx, NMaps ], cube of the patches.

– PixelSize : float, pixel size in arc minute.

– MapSize : float, map size in arc minute.

– Frac : float, overlapping factor between patches.

– Nside : long, nside parameter of the input imag.

• Map : Output IDL array of Healpix map reconstructed from the patches.

Examples:

• map = mrs invsplit( Patch )
Reconstruct an image from patches.

8.1.7 Transformations of a spherical map : mrs trans

Compute a transform (wavelet, curvelet. . . ) on a map on the sphere in the Healpix
representation (nested data representation).

The transform can be:

1. Spherical Harmonic Transform.

2. Orthogonal wavelet (per face).

3. A trou undecimated wavelet transform (per face).

4. Pyramidal isotropic wavelet on the sphere.

5. Undecimated wavelet transform on the sphere (using a spline wavelet, Meyer wavelet
or Needlet wavelet).

6. Ridgelet transform on the sphere.

7. Curvelet transform on the sphere.

8. Discrete Cosine Transform (per face).

The input image must be in the HEALPix pixel representation (nested data representa-
tion). The output is a IDL structure.

USAGE: mrs trans, InImag, Trans, NbrScale=NbrScale, Alm=Alm,
AT=AT, Cur=Cur, UWT=UWT, PyrWT=PyrWT, OWT=OWT,
Rid=Rid, DCT=DCT, lmax=lmax, FirstBlockSize=FirstBlockSize,

DifInSH=DifInSH, MeyerWave=MeyerWave, NeedletWave=NeedletWave,
B NeedletParam=B NeedletParam, Overlap=Overlap
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where

• Imag : Input 1D IDL array of healpix map in nested format. Input image to be
transformed.

• Trans : Output IDL structure with the following fields:

– NbrScale : int, number of scales.

– nside : int, Healpix nside parameter.

– lmax : int, maximum l value in the Spherical Harmonic Space.

– npix : long, number of pixels of the input image.

– MeyerWave : int, 1 if the keyword MeyerWave used, otherwise 0.

– NeedletWave: int , 1 if the keyword NeedletWave is used, otherwise 0

– B NeedletParam: int, B NeedletParam (default is 2).

– DifInSH : int, 1 if the keyword DifInSH used, otherwise 0.

– pyrtrans : int, 1 if a pyramidal decomposition has been applied, otherwise 0.

– DEC : IDL structure, transformation result (depends on the chosen transform).

– TransChoice : string, code of the chosen transform.

– TabCodeTransform : string array, array of transforms codes. TabCodeTrans-
form = [’T ALM’, ’T OWT’, ’T AT’, ’T PyrWT’, ’T UWT’, ’T Ridgelet’, ’T CUR’,
’T DCT’]

– TransName : string, transform’s name.

– TransTypeName : string array, array of transforms names. TransTypeName
= [’Alm’,’Bi-Orthogonal WT’, ’A Trous WT’, ’Pyramidal WT’, ’Undecimated
WT’, ’Ridgelet Transform’, ’Curvelet’, ’DCT’]

• NbrScale : int, number of scales of the wavelet transforms.

• Alm : scalar, if set perform a Spherical Harmonic Transform. If no transform is
selected, it will be the default transformation.

• Cur : scalar, if set perform a curvelet transform.

• uwt : scalar, if set perform an undecimated isotropic wavelet transform.

• PyrWT : scalar, if set perform a pyramidal isotropic wavelet transform.

• owt : scalar, if set perform a bi-orthogonal wavelet transform on each face.

• AT : scalar, if set perform a A trou undecimated wavelet transform on each face.

• Rid : scalar, if set perform a Ridgelet transform on the sphere.

• DCT : scalar, if set perform a Discrete Cosine Transform (per face).

• Overlap : int, if equal to 1 if blocks are overlapping, only used with curvelet trans-
form.
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• FirstBlockSize : int, block size in the ridgelet transform at the finest scale (default
is 16), only used with curvelet transform.

• lmax : int, maximum l value in the Spherical Harmonic Space (for isoptropic wavelet
transform only).

• DifInSH : Input keyword parameter. If set, the wavelet coefficients are computed
as the difference between two resolutions in the spherical harmonics representation.
Otherwise, the wavelet coefficients are computed as the difference between two res-
olutions in direct space. Only used with keyword uwt or PyrWT.

• MeyerWave : If set, use Meyer wavelets and set the keyword DifInSH. Only used
with keyword uwt or PyrWT.

Examples:

• mrs trans, Imag, WT, NbrScale=5, /uwt
Compute the undecimated wavelet transform of the map Imag with five scales. The
result is stored in WT.

8.1.8 Reconstructions of a spherical map : mrs rec

Compute a inverse transform (wavelet, curvelet, . . . ) to get a map on the sphere in
the Healpix representation (nested data representation) from its decomposition obtained
by mrs trans.

USAGE: mrs rec, Trans, Rec

where

• Trans : Input IDL structure, see mrs trans for more details.

• Rec : Output 1D IDL array of healpix map in nested format. Reconstructed image.

Examples:

• mrs trans, Imag, WT, NbrScale=5, /uwt
Compute the undecimated wavelet transform of the map Imag with five scales. The
result is stored in WT.

• mrs rec, WT, RecIma
Reconstruct the image.
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8.2 Spherical Harmonics

8.2.1 ALM transform : mrs almtrans

Computes the spherical harmonic transform, using the Healpix representation (nested
data representation by default) or the GLESP data representation.

USAGE: mrs almtrans, Imag, Trans, lmax=lmax, ring=ring, tab=tab,
complex=complex, psp=psp, norm=norm

where

• Imag : Input IDL array of Healpix map or Glesp image IDL structure. Input image
to be transformed.

• Trans : Output IDL structure with the following fields:

– ALM : array of the ALM coefficients

ALM = fltarray[*,2] list of the real part (ALM[*,0]) and imaginary part
(ALM[*,1]) of the ALM. This is the default storage.

ALM = cfarr[*] list of the ALM in complex values format if the keyword
complex is set.

ALM = fltarray[NbrMaxM, NbrMaxL, 2] table of the real part (ALM[*,*,0])
and imaginary part (ALM[*,*,1]) of the ALM if the keyword tab is set.

ALM = cfarr[NbrMaxM, NbrMaxL] table of the ALM in complex values
format if the keywords complex and tab are both setted. By default,

NbrMaxM = NbrMaxL = lmax+1

– complex alm : int, 0 (default value) if ALM array contains real and imaginary
part separated. 1 if ALM is a complex array. 2 if ALM array contains the power
spectrum and the phase.

– PixelType : int, 0 for a Healpix input map and 1 for a GLESP input map.

– tab : int, 0 for default ALM representation as a list (i.e. 1D IDL array) and
1 for 2D representation as a table (i.e. l for the first dimension and m for the
second).

– nside : int, Healpix nside parameter, only used in Healpix representation, oth-
erwise, 0.

– lmax : int, maximum l value in the Spherical Harmonic Space.

– npix : long, number of pixels of the input image (12*nside*nside for Healpix).

– nx : int = number of rings (Glesp parameter), otherwise, 0.

– np : int = max number of pixel on a ring (Glesp parameter), otherwise, 0.

– x sky : float array with COS( THETA ) for each ring (Glesp parameter), oth-
erwise, 0.

– y sky : long array number of pixels/ring (Glesp parameter), otherwise, 0.

– TabNbrM : int array[NbrMaxL], max number of m value for a given l, only used
if keyword tab is set otherwise, 0.
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– index : long array, indicies of the ALM coefficients, used only if keyword tab is
not set.

– NormVal : float, normalization value applied to the alm coefficients (only if
keyword norm used).

– norm : int, 0 if no normalization has been aplied, else 1.

• Lmax : int, Number of spherical harmonics computed in the decomposition. For a
Healpix map, default is 3*nside and should be between 2*nside and 4*nside. For a
GLESP map, default is: min([Imag.nx/2, Imag.np/4]).

• ring : scalar, if set the input Healpix map is supposed to be in RING representation,
ignored with GLESP images.

• Tab : scalar, if set, ALM coefficients in Trans.alm are stored in a 2D array: Trans.alm[m,l]
where m = 0..Trans.TabNbrM[l]-1 and l = 0..lmax-1

• complex : scalar, if set Trans.alm will contain complex values instead of the real and
imaginary parts.

• psp : scalar, if set Trans.alm will contain the power spectrum and the phase instead
of the real and imaginary parts. This is ignored if keyword complex is also set.

• norm : scalar, if set, a normalization is performed to the alm coefficients.

Examples:

• mrs almtrans, Imag, Output
Compute the spherical harmonics transform of an image, the result is stored in
Output.

8.2.2 ALM inverse transform : mrs almrec

Computes the inverse spherical harmonic transform, using the Healpix representation
(nested data representation by default) or the GLESP representation.

USAGE: mrs almrec, Trans, Imag, to healpix=to healpix, to glesp=to glesp,
pin=pin, nx=nx, np=np, pixel window=pixel window

where

• Trans : Input IDL structure of ALM coefficients, see mrs almtrans above for details.

• Imag : Output IDL array of Healpix map (if Trans.pixeltype=0) or Glesp image
IDL structure (if Trans.pixeltype=1). Image reconstructed, Healpix images are only
reconstructed in nested representation.

• to healpix : int, if to healpix=1, the reconstructed image will be in Healpix format
instead of GLESP. If Trans.pixeltype=0 (already healpix), generates an error. If
to healpix ¿ 1, force the output to be in Healpix format with nside = to healpix
(must be a valid value)
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• to glesp : scalar, if set the reconstructed image will be in GLESP format instead of
healpix. If Trans.pixeltype=1 (already GLESP), generates an error.

• nx : int, new number of rings for the reconstructed GLESP image (should be equal
to 4*nside), nx must be larger than 2*lmax.

• np : int, new number of pixels for the central ring of the reconstructed GLESP image
(should be equal to 8*nside) np must be larger than 4*lmax.

• pixel window : scalar, if set the image is convolved by the healpix pixel window (only
for Healpix map).

• pin : int, GLESP parameter -1 for equal aera (default), 0 for iso lat/lon (Theta-Phi
image), 1 for triangular . . .

Examples:

• mrs almtrans, Imag, Output
Compute the spherical harmonics transform of an image, the result is stored in
Output.

• mrs almrec, Output, Rec
Reconstruct the image.

8.2.3 Power spectrum exctraction from ALM : mrs alm2spec

Compute the power spectrum C(l) from the Al,m coefficients.

C(l) =
1

2l + 1

m=l∑
m=−l

| Al,m |2 (8.1)

USAGE: spec = mrs alm2spec( ALM, StdPS=StdPS )

where

• ALM : Input IDL structure of ALM coefficients, see mrs almtrans above for details.

• spec : Output 1D IDL float array[ALM.lmax+1]: Power spectrum C(l) extracted
from the ALM coefficients.

• StdPS : 1D IDL float array[ALM.lmax + 1]: estimated standard deviation of the Cl
coefficients.

Examples:

• mrs almtrans, Imag, Output
Compute the spherical harmonics transform of an image, the result is stored in
Output.

• spec = mrs alm2spec( Output, StdPS=StdPS )
Compute the power spectrum of the image and it’s associated standard deviation.
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8.2.4 Power spectrum exctraction from an image : mrs powspec

Computes the power spectrum of a map, using the Healpix representation (nested data
representation by default) or the GLESP representation. If the keyword log is set, it is
the log-power spectrum which is returned. If the global variable DEF NORM POWSPEC
equal to 1 or if the keyword /set norm is set, then a normalization is performed, so that
a Gaussian randomn noise with variance equal to 1 has a power spectrum equal to 1.

USAGE: spec = mrs powspec( Imag, plot=plot, lplot=lplot, log=log,
IndL=IndL, PowSpecIma=PowSpecIma, StdPS=StdPS, set norm=set norm,

nonorm=nonorm, NormVal=NormVal, alm=alm, lmax=lmax )

where

• Imag : Input IDL array of Healpix map or Glesp image IDL structure. Input image
whose power spectrum will be extracted.

• spec : Output 1D IDL float array[Lmax+1]: Power spectrum C(l) extracted from
the map.

• plot : scalar, if set the power spectrum is plotted.

• lplot : scalar, if set the power spectrum multiplied by l(l+1) is plotted.

• log : scalar, if set the log power spectrum is calculated instead of the power spectrum.

• Lmax : int, number of spherical harmonics computed in the decomposition and size of
the computed spectrum (Lmax+1). For a Healpix map, default is 3*nside and should
be between 2*nside and 4*nside. For a GLESP map, default is: min([Imag.nx/2,
Imag.np/4]).

• nonorm : scalar, if set no normalisation is applied on the ALM computed.

• set norm : scalar, if set a l2 normalization if perform, so a Gaussian randomn noise
with variance equal to 1 will have a power spectrum equal to 1.

• IndL : Optional output 1D IDL int array [Lmax+1]. Contains the multiplicative
l(l+1) values.

• StdPS : 1D IDL float array[Lmax+1]: estimated standard deviation of the Cl coef-
ficients.

• NormVal : float, normalization value applied to the alm coefficients.

• alm : IDL structure of ALM coefficients, result of the alm transform of the input
image (see mrs almtrans) with options lmax, /tab, /psp, norm=? .

• PowSpecIma : 2D IDL float array: Power spectrum of the input data for l and m.

Examples:

• P = mrs powspec( Imag )
Compute the power spectrum of the image.
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8.2.5 Wiener filtering of a map in spherical harmonics space : mrs wiener

Perform wiener filtering of a map, in the spherical harmonic space, using the Healpix
representation (nested data representation by default) or the GLESP representation.
Alm output = Alm input ∗WienerF ilter where:

WienerF ilter =
P ∗S

| PP ∗ |2 S +N

with

• P, instrumental beam (i.e. PSF, by default P = 1)

• S, a priori Signal Power Spectrum (default, power spectrum of the data)

• N, Noise power spectrum

If the keyword ALM is set (it should be a structure (see mrs almtrans) containg the
ALM coefficients of the data, then the first parameter is not used and the alm are not
calculated in this routine. The Wiener is optimal in the sens of the Least mean square
error of the reconstructed map. The power spectrum of the reconstructed map is biased

(i.e. PowSpectrum(WienerMap) = PowSpectrum(RealMap)
(1+N/(P 2S))

). If the Cole keyword is set,

then the Wiener filtering is replaced by the Cole filtering and the power spectrum of the
reconstructed map is unbiased, but the estimation is not optimal anymore for the east
mean square error criterion. The Cole filter is:

ColeF ilter =
( S

(| PP ∗ |2 S +N)

) 1
2

If the keyword DataPrior is set, then the vector given by SignalPrior corresponds to an a
priori on the power spectrum of the signal multiplied by P 2

USAGE: mrs wiener, Imag, NoiseSpectrum, Recons, alm=alm, lmax=lmax,
SignalPrior=SignalPrior, Spec1D=Spec1D, WienerFilter=WienerFilter,

Psf=Psf, Cole=Cole, bias=bias

where

• Imag : Input IDL array of Healpix map or Glesp image IDL structure, image to be
denoised.

• NoiseSpectrum : float or IDL 1D float array: variance or power spectrum of the
noise.

• Recons : Output IDL array of healpix map or Glesp image IDL structure, denoised
image.

• SignalPrior : Input IDL 1D float array, power spectrum of the expected signal. By
default, it is estimated from the data.

• DataPrior : scalar, if set the vector given by SignalPrior corresponds to an a priori
on the power spectrum of the signal multiplied by P 2
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• Psf : Input IDL 1D float array, instrumental beam i.e. PSF[l] = Spherical Harmonics
al,0 = . . . = al,l+1 of the intrumental beam (i.e. Point Spread Funciton).

• alm : input/output ALM structure (see mrs almtrans). If this keyword is set, the
input image is not used, and the ALM given by this keyword are used instead. The
denoised ALM are stored in the structure. ALM MUST have been calculated
with the keywords ”/tab” and ”/norm” and not ”/psp” or ”/complex”

• Spec1D : Output IDL 1D float array, estimated power spectrum of the denoised
image.

• WienerFilter : Output IDL 1D float array, Wiener filter.

• Lmax : int, maximum l used in the calculation of the ALM. This kewyord is not
used if the keyword ALM is set.

• Cole : scalar, if set the Wiener filter is replaced by the Cole filter.

• bias : Output float or IDL 1D float array, estimated bias on the power spectrum.

8.2.6 Iterative Wiener filtering of a map: mrs itwiener

Perform wiener filtering of a spherical map when the noise is non-stationary using the
Healpix representation (nested data representation by default).

If the keyword Frg is set, it also estimates the contribution coming from extra fore-
ground residuals.

USAGE: mrs itwiener, Imag, Powspec, Recons, Noise=Noise, fNoise=fNoise,
niter=niter,cole=cole,StartWiener=StartWiener, NbrScale=NbrScale,

BS=BS,Frg=Frg,RMSmoothing=RMSmoothing,tol=tol,verbose=verbose

where

• Imag : Input IDL array of Healpix map, image to be denoised.

• Powspec : float or IDL 1D float array: theoretical power spectrum of the image.

• Recons : Output IDL array of healpix denoised image.

• Noise :Input Noise realization from which the noise statistics are measured.

• fNoise : Output Noise realization (apply the same filtering on the data and on the
input noise realization).

• niter : scalar, number of iterations. Default is 100.

• Cole : scalar, if set the Wiener filter is replaced by the Cole filter.

• StartWiener : if set, the algorithm is initialized with the global Wiener filter (i.e. in
the spherical harmonics).

• NbrScale scalar: number of wavelet scales used for analysis. Default is 4.
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• BS scalar: minimal patch size used to compute the noise variance. Default is 16.

• Frg scalar: if set, also estimates the contribution coming from extra foreground
residuals. Default is no.

• RMSmoothing scalar: if set, applies a smoothing of the estimated noise variance
maps. Default is no.

• tol : scalar, convergence precision. Default is 1e−6.

8.3 Wavelets

8.3.1 Mexican Hat Wavelet Transform : mrs wtmexhat

Convolves an input spherical map with the mexican hat wavelet function at a given
scale.

USAGE: Scale = mrs wtmexhat( Image, ScaleParameter )

where

• Image : IDL array of Healpix map. Input image to be transformed

• ScaleParameter : float = Scale parameter

Examples:

• coef = mrs wtmexhat( Image,
√
3
3

)
Convolve the data with a mexican hat wavelet function, with a scale parameter equal

to
√
3
3

which corresponds to an angular spread in θ of about π
6
.

8.3.2 bi-orthogonal wavelet transform : mrs owttrans

Computes the bi-orthogonal wavelet transform on the sphere with the filter bank 7/9
(L2 normalization), using the HEALPix pixel representation (nested data representation).
The wavelet transform is applied successively on the 12 faces of the Healpix image. The
output is an IDL structure.

USAGE: mrs owttrans, Imag, Trans, NbrScale=NbrScale, Opt=Opt

where

• Image : Input IDL array of a Healpix map to be transformed.

• Trans : Output IDL structures with the following fields:

– NbrScale : Number of scales of the wavelet transform.

– Coef : 3D IDL array [∗, ∗, 12] which contains the wavelet coefficients. COEF [∗, ∗, f ]
is the wavelet transform of the face f (f=0..11).
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– Nx : int. number of pixels on the side of the Healpix patch, nside

– Ny : int, same as Nx.

• NbrScale : int, input optional parameter specifying the number of scales of the
wavelet transform (default is 4)

• Opt : string: if package MR1 is also installed, extra keyword used by mr transform.pro
for the computation of the wavelet transform

Examples:

• mrs owttrans, Imag, WT, NbrScale=5
Compute the bi-orthogonal wavelet transform with five scales.

• tvscl, WT.coef[*,*,f]
plot the wavelet transform of the fth face, for f ∈ {0 . . . 11}.

8.3.3 bi-orthogonal wavelet reconstruction : mrs owtrec

Reconstructs an image on the Sphere from its bi-orthogonal wavelet transform.

USAGE: mrs owtrec, WT Struct, result

where

• WT Struct : Input IDL structure Wavelet transform structure.

• Result : Output 1D array of an Healpix image (nested format).

Examples:

• mrs owttrans, Imag, WT, NbrScale=5
Compute the bi-orthogonal wavelet transform with five scales.

• mrs owtrec, WT, RecIma
Wavelet reconstruction.

8.3.4 Undecimated Isotropic Wavelet Transform : mrs wttrans

Computes the undecimated isotropic wavelet transform on the sphere, using the Healpix
pixel representation (nested data representation) or Glesp Data representation. The
wavelet function is zonal and its spherical harmonics coefficients al,0 follow a cubic box-
spline profile. If DifInSH is set, wavelet coefficients are derived in the Spherical Harmonic
Space, otherwise (default) they are derived in the direct space.

USAGE: mrs wttrans, Imag, Trans, NbrScale=NbrScale,
Healpix with Glesp=Healpix with Glesp, lmax=lmax,
MeyerWave=MeyerWave, NeedletWave=NeedletWave,
B NeedletParam=B NeedletParam, DifInSH=DifInSH



114 IDL Routines

where

• Imag : Input IDL array of Healpix map or Glesp image IDL structure. Input image
be transformed.

• Trans : Output IDL structures with the following fields:

– NbrScale : int, number of scales

– nside : int, Healpix nside parameter (0 for a Glesp image)

– lmax : int, maximum l value in the Spherical Harmonic Space

– npix : long, Number of pixels of the input image

– Healpix with Glesp : int, 1 if the keyword Healpix with Glesp used, otherwise 0

– UseGLESP : int, 1 if the input image was in Glesp format, otherwise 0

– MeyerWave : int, 1 if the keyword MeyerWave used, otherwise 0

– NeedletWave: int , 1 if the keyword NeedletWave is used, otherwise 0

– B NeedletParam: int, B NeedletParam (default is 2).

– DifInSH : int, 1 if the keyword DifInSH used, otherwise 0

– nx : int, number of rings (Glesp parameter), otherwise, 0

– np : int, max number of pixel on a ring (Glesp parameter), otherwise, 0

– x sky : float array with COS( THETA ) for each ring (Glesp parameter), oth-
erwise, 0

– y sky : long array number of pixels/ring (Glesp parameter), otherwise, 0

– Coef : fltarr[ npix, NbrScale ] wavelet transform of the data

Coef[ *, 0 ] = wavelet coefficients of the finest scale (highest frequencies).
Coef[ *, NbrScale-1 ] = coarsest scale (lowest frequencies).

• NbrScale : int, optional input parameter specifying the number of scales (default is
4).

• Lmax : int, optional input parameter specifying the maximum multipole number l
in the spherical harmonics decomposition (default is 3 × nside, should be between
2× nside and 4× nside).

• DifInSH : Input keyword parameter. If set, the wavelet coefficients are computed
as the difference between two resolutions in the spherical harmonics representation.
Otherwise, the wavelet coefficients are computed as the difference between two res-
olutions in direct space.

• MeyerWave : If set, use Meyer wavelets and set the keyword DifInSH.

• Healpix with Glesp : If set, a copy of Imag is done in Glesp format in order to
compute the wavelet transform.
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Examples:

• mrs wttrans, Imag, Trans, NbrScale=5
Undecimated Wavelet transform with five scales.

• tvs, Trans.coef[*,0]
Visualization of the first scale.

8.3.5 Undecimated Isotropic Wavelet Reconstruction : mrs wtrec

Reconstructs an image on the sphere from its wavelet coefficients obtained with the
undecimated isotropic wavelet transform on the sphere, described right above.

USAGE: mrs wtrec, Trans, Rec, filter=filter

where

• Trans: input IDL structures (see mrs wttrans).

• Rec : Output IDL array of healpix map: reconstructed image from the wavelet
coefficients or Glesp image IDL structure if UseGlesp=1.

• filter : Input keyword parameter. Use filters for the reconstructions. If this keyword
is not set, the reconstructed image is obtained by a simple addition of all wavelet
scales. Automatically applied if keyword MeyerWave, NeedletWave, or DifInSH were
set at the wavelet decomposition.

Examples:

• mrs wttrans, Imag, Trans, NbrScale=5
Undecimated Wavelet transform with five scales.

• mrs wtrec, Trans, RecIma
Reconstruction of the image from its wavelet coefficients.

8.3.6 Undecimated Isotropic Wavelet Packet Transform : mrs wptrans

Computes the undecimated isotropic wavelet packet transform on the sphere with
Meyer wavelets, using the Healpix representation (nested data representation) or the
Glesp representation.

USAGE: mrs wptrans, Imag, Trans, NbrScale=NbrScale

where

• Imag : Input IDL array of Healpix map or Glesp image IDL structure. Input image
be transformed.

• Trans : Output IDL structures with the following fields:
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– NbrScale : int, number of scales

– nside : int, Healpix nside parameter (0 for a Glesp image)

– lmax : int, maximum l value in the Spherical Harmonic Space

– npix : long, Number of pixels of the input image

– UseGLESP : int, 1 if the input image was in Glesp format, otherwise 0

– nx : int, number of rings (Glesp parameter), otherwise, 0

– np : int, max number of pixel on a ring (Glesp parameter), otherwise, 0

– x sky : float array with COS( THETA ) for each ring (Glesp parameter), oth-
erwise, 0

– y sky : long array number of pixels/ring (Glesp parameter), otherwise, 0

– Coef : fltarr[ npix, NbrScale ] wavelet transform of the data

• NbrScale : int, optional output parameter specifying the number of scales.

• The image reconstruction is done by using the procedure mrs wtrec

Examples:

• mrs wptrans, Imag, Trans
Undecimated Wavelet Packet transform.

• mrs wtrec, Trans, RecIma
Reconstruction of the image from its wavelet coefficients.

8.3.7 Undecimated Wavelet Transform with ”A Trou” Algorithm : mrs attrans

Compute the isotropic wavelet transform on the sphere, using the Healpix pixel rep-
resentation (nested data representation) and using the ”à trous” algorithm. The wavelet
transform is applied successively on the 12 faces of the Healpix image. The output is a
IDL structure.

USAGE: mrs attrans, Imag, Trans, NbrScale=NbrScale, Opt=Opt,
modif=modif, healpix=healpix

where

• Imag : Input IDL array of Healpix map or Glesp image IDL structure. Input image
be transformed.

• Trans : Output IDL structures with the following fields:

– NbrScale : int, number of scales of the wavelet transform.

– Coef : 4D IDL float array [*,*,*,12] : Wavelet coefficients cube containing all
wavelet coefficients.

Coef[ x, y, j, f ] = wavelet coefficients at face f (f=0..11), position x, y and
scale j
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– Nx : int, number of pixels on the side of the Healpix patch, nside

– Ny : int, same as Nx

• NbrScale : int, number of scales of the wavelet transform, default is 4

• Opt : string, if package MR1 is installed, extra keyword used by mr transform.pro

• modif : scalar, if set, add extra smoothing with spline filtering

• healpix : scalar, if set, change ATTrans.coef to a 2D array [ c, j ] by reordering
wavelet coefficients at scale j as a Healpix NESTED map.

Examples:

• mrs attrans, Imag, WT, NbrScale=5
Undecimated Wavelet transform with five scales and ”A TROU” algorithm.

• tvscl, WT.coef[*,*,0,f]
Plot the fth face of the first scale of the wavelet transform.

8.3.8 Undecimated Wavelet Transform with ”A Trou” Algorithm reconstruc-
tion : mrs atrec

Reconstructs an image on the sphere from its wavelet coefficients obtained with the
undecimated wavelet transform on the sphere with the ”A TROU” algorithm, described
right above.

USAGE: mrs atrec, Trans, Rec

where

• Trans: input IDL structures with the following fields:

– NbrScale : int, number of scales of the wavelet transform.

– Coef : 4D IDL float array [*,*,*,12] : Wavelet coefficients cube containing all
wavelet coefficients.

Coef[ x, y, j, f ] = wavelet coefficients at face f (f=0..11), position x, y and
scale j

– Nx : int, number of pixels on the side of the Healpix patch, nside

– Ny : int, same as Nx

• Rec : Output IDL array of healpix map in nested format: reconstructed image from
the wavelet coefficients.
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Examples:

• mrs attrans, Imag, Trans, NbrScale=5
Undecimated Wavelet transform with five scales.

• mrs atrec, Trans, RecIma
Reconstruction of the image from its wavelet coefficients.

8.3.9 Pyramidal Wavelet Transform : mrs pwttrans

Computes the pyramidal wavelet transform on the sphere, using the Healpix pixel
representation (nested data representation) or Glesp Data representation. The wavelet
function is zonal and its spherical harmonics coefficients al,0 follow a cubic box-spline
profile.

USAGE: mrs pwttrans, Imag, Trans, NbrScale=NbrScale, lmax=lmax,
DifInSH=DifInSH, MeyerWave=MeyerWave

where

• Imag : Input IDL array of Healpix map or IDL structure of a Glesp map. Input
image be transformed.

• Trans : Output IDL structures with the following fields:

– UseGLESP : int, 1 if the input image was in Glesp format, otherwise 0

– NbrScale : int, number of scales

– nside : int, Healpix nside parameter, only present with healpix input image

– npix : long, Number of pixels of the input image

– lmax : int, maximum l value in the Spherical Harmonic Space at the first scale

– Tab lmax : int array Tab lmax[j], lmax at scale j+1, j=0..NbrScale-1

– Tab nside : int array Tab nside[j], nside parameter of the scale j+1, j=0..NbrScale-
1 (Healpix input map) or nx number of rings, Glesp parameter of the scale j+1,
j=0..NbrScale-1 (Glesp input map)

– nx : int, number of rings at the first scale, Glesp parameter, only present with
glesp input image

– np : int, max number of pixel on a ring at the first scale, Glesp parameter, only
present with glesp input image

– Scalej : j th scale (j=1..NbrScale), j = 1 is the finest scale (highest frequencies),
with j = NbrScale, coarsest resolution. A IDL array of healpix map or IDL
structure of a Glesp map

– MeyerWave : int = 1 if the keyword MeyerWave used, otherwise 0

– DifInSH : int = 1 if the keyword DifInSH used, otherwise 0

• NbrScale : Optional input parameter specifying the number of scales in the decom-
position (default is 4).
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• lmax : Optional input parameter specifying the maximum multipole number l in the
spherical harmonics decomposition (default is 3×nside, should be between 2×nside
and 4× nside).

• DifInSH : Compute be difference between two resolution in the spherical harmonic
space instead of the direct space.

• MeyerWave : If set, use Meyer wavelets and set the keyword DifInSH

Examples:

• mrs pwttrans, Imag, Trans, NbrScale=5
Pyramidal Wavelet transform with five scales.

• tvs, Trans.Scale1
Visualization of the first scale.

8.3.10 Pyramidal Wavelet Reconstruction : mrs pwtrec

Computes the inverse pyramidal wavelet transform on the sphere.

USAGE: mrs pwtrec, Trans, Rec, filter=filter

where

• Trans : Input IDL structures with the following fields:

– UseGLESP : int, 1 if the input image was in Glesp format, otherwise 0

– NbrScale : int, number of scales

– nside : int, Healpix nside parameter, only present with healpix input image

– npix : long, Number of pixels of the input image

– lmax : int, maximum l value in the Spherical Harmonic Space at the first scale

– Tab lmax : int array Tab lmax[j], lmax at scale j+1, j=0..NbrScale-1

– Tab nside : int array Tab nside[j], nside parameter of the scale j+1, j=0..NbrScale-
1 (Healpix input map) or nx number of rings, Glesp parameter of the scale j+1,
j=0..NbrScale-1 (Glesp input map)

– nx : int, number of rings at the first scale, Glesp parameter, only present with
glesp input image

– np : int, max number of pixel on a ring at the first scale, Glesp parameter, only
present with glesp input image

– Scalej : j th scale (j=1..NbrScale), j = 1 is the finest scale (highest frequencies),
with j = NbrScale, coarsest resolution. A IDL array of healpix map or IDL
structure of a Glesp map

– MeyerWave : int = 1 if the keyword MeyerWave used, otherwise 0

– DifInSH : int = 1 if the keyword DifInSH used, otherwise 0
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• Rec : IDL array of Healpix map or IDL structure of a Glesp map. Output recon-
structed image.

• filter : Optional inout keyword. If set, conjugate filters are used in the reconstruction.
Otherwise, the reconstructed image is obtained by a simple interpolation/addition
of all wavelet scales. When computing direct transform (mrs pwttrans function), if
the keywords DifInSH or MeyerWave were setted, filter is automatically used.

Examples:

• mrs pwttrans, Imag, Trans, NbrScale=5
Pyramidal Wavelet transform with five scales.

• mrs pwtrec, Trans, RecIma
Reconstruction of the image from its wavelet coefficients.

8.3.11 Extract a Wavelet Scale : mrs wtget

Returns a scale of the wavelet transform obtained by the command mrs wttrans or by
the command mrs pwttrans.

USAGE: Scale = mrs wtget( Trans, ScaleNumber, Face=Face,
NormVal=NormVal )

where

• Trans : Input IDL structure containing the wavelet transform.

• ScaleNumber : integer scale number. The scale number must be between 0 and
Trans.NbrScale-1

• Face : optional input keyword parameter. If set, the routine returns a Cube[*,*,0:11]
containing the twelve faces of the HEALPix representation.

• NormVal : float, normalization coefficient in that band.

Examples:

• mrs pwttrans, Imag, Trans, NbrScale=5
Pyramidal Wavelet transform with five scales.

• Band1 = mrs wtget(Trans,0)
Extract the first wavelet scale.
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8.3.12 Insert a band into Wavelet Transform : mrs wtput

Replaces a map of coefficients at a given scale in the wavelet transform obtained by
the command mrs wttrans or by the command mrs pwttrans.

USAGE: mrs wtput, Trans, Scale, ScaleNumber, Face=Face

where

• Trans : Input IDL structure containing the wavelet transform.

• Scale : IDL array, the wavelet scale we want to insert in the specified decomposition.

• ScaleNumber : integer. Specifies the scale number to be replaced by the given Scale
map. The scale number must be between 0 and Trans.NbrScale− 1.

• Face : If set, the routine put into Trans a Cube[*,*,0:11] containing the twelve faces
of the HEALPix representation

• NormVal : float: Normalization value of the band.

Examples:

• mrs pwttrans, Imag, Trans, NbrScale=5
Pyramidal Wavelet transform with five scales.

• Band1 = mrs wtget( Trans, 0 )
Extract the first wavelet scale.

• Band1 thres = mrs absthreshold( Band1, mrs sigma( Band1 ) )
Hard thresholding of the scale.

• mrs wtput, Trans, Band1 thres, 0
Insert the new wavelet scale.

8.3.13 Visualization of the wavelet scales : mrs wttv

Visualization of the wavelet transform obtained by the command mrs wttrans or by
the command mrs pwttrans. If the keyword WRITE is set to a string, then all the scales
are written on the disk as PNG files, and the string is used as a prefix for the file name
of the different scales.

USAGE: mrs wttv, Trans, Tit=Tit, write=write, graticule=graticule,
min=min, max=max, big=big

where

• Trans : Input IDL structure containing the wavelet transform.

• Tit : string: Title of the plot.
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• write : string: Prefix filename. If set, write to disk each scale of the wavelet transform
in PNG format.

• graticule : this is the GRATICULE keyword in the HEALPix command MOL-
LVIEW.

• min : float Mollview Healpix command min, new min value to be used for the
display.

• max : float Mollview Healpix command max, new max value to be used for the
display.

• big : bool if set, Mollview Healpix keyword pxsize is set to 1500

Examples:

• mrs pwttrans, Imag, Trans, NbrScale=5
Pyramidal Wavelet transform with five scales.

• mrs wttv, Trans
Visualization of all scales.

8.4 Ridgelet

8.4.1 Ridgelet transform : mrs ridtrans

Compute the ridgelet transform on the sphere using the Healpix pixel representa-
tion (nested data representation). The standard ridgelet transform is applied on the
12 faces of the Healpix image. The output is an IDL structure. A band at scale j
(j = 0 . . .NBRSCALE−1) can be extracted using the function mrs ridget(Rid, j) (e.g.
Scale2 = mrs ridget(RidTrans, 2)) and a band can be inserted in the transformation
using the routine mrs ridput (e.g. mrs ridput, RidTrans, Scale2, 2).

USAGE: mrs ridtrans, Imag, RidTrans, NbrScale=NbrScale,
overlap=overlap, blocksize=blocksize, Opt=Opt

where

• Image : Input IDL HEALPix array containing the input map.

• RidTrans : Output IDL structure with the following fields:

– NbrScale : long, Number of scales of the ridgelet transform.

– Coef : Ridgelet coefficients. If MR1 package is installed, it is a 3D IDL array
[*,*,12] containing all ridgelet coefficients. If MR1 package is not installed, it is
a IDL array of 12 structures (one for each Healpix face).

– Bsize : long, Block size used in the ridgelet transform.

– nxb : long, Number of blocks in the x-axis direction.
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– nyb : long, Number of blocks in the y-axis direction.

– Overlap : long, is equal to 1 if blocks are overlapping.

– TabNorm : float Array[ 0 : NBRSCALE-1 ]: Normalization value for each scale.

• NbrScale : int, number of scales in the ridgelet decomposition. By default it is
automatically estimated.

• Overlap : if this keyword is set, the blocks in the local ridgelet transform overlap by
half their size, otherelse the blocks do not overlap.

• Blocksize : long, this is the size of the square blocks on which the local ridgelet
transform is computed. If not set, then the blocksize is taken to be half the size
of the individaul faces ie blocksize = nside/2. Blocksize is required to be a power
of two smaller than nside which is also a power of two. There is no testing of this
requirement.

• Opt : string, sets options to used if the mre package is available. If mre is not
available, then Opt is useless, and only procedures in mrs are used.

Examples:

• mrs ridtrans, Imag, Rid
Compute the ridgelet transform

• mrs ridtrans, Imag, Rid, /overlap, blocksize=32
Ditto, but using a overlapping blocks of size 32.

8.4.2 Ridgelet reconstruction : mrs ridrec

Reconstructs an image on the Sphere from its ridgelet transform (see mrs ridtrans).

USAGE: mrs ridrec, Rid Struct, Result

where

• Rid Struct : Input IDL structure, Ridgelet transform structure (see mrs ridtrans).

• Result : Output 1D array of an Healpix image (nested format).

Examples:

• mrs ridtrans, Imag, Rid
Compute the ridgelet transform

• mrs ridrec, Rid, RecIma
Ridgelet reconstruction.
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8.4.3 Extract a ridgelet band : mrs ridget

Extracts a ridgelet band from the ridgelet transform (see mrs ridtrans). A specific
normalization can be applied to the local ridgelet coefficients. Indeed, after applying the
ridgelet transform to all blocks, we obtain a set of nb blocks Ri(a, b, θ) (i = 1 . . . nb), and
for each scale, orientation and position (a, b, θ), we extract the vector Va,b,θ(i). Then the
normalization consists in dividing the ridgelet coefficients Ri(a, b, θ) (i = 1..nb) by their
MAD value (Median Absolution Deviation) defined by MAD = median(| x |)/0.6745
(Rousseeuw and Croux 1993). Hence, we normalize the ridgelet coefficients by the follow-
ing expression:

R̄i(a, b, θ) =
Ri(a, b, θ)

MAD(Va,b,θ)
(8.2)

If the keyword NormMad is set, the normalization is applied.

USAGE: Result = mrs ridget( Rid Struct, ScaleRid, NormMad=NormMad,
ImaMean=ImaMean, ImaMad=ImaMad )

where

• Rid Struct : Input IDL structure. Ridgelet transform structure (see mrs ridtrans).

• ScaleRid : int, input Ridgelet band number.

• NormMad : scalar, if set, normalize the coefficients by the Median Absolution De-
viation of all coefficients at a give position in the block.

• ImaMean : 2D IDL float array: Image containing the mean value for all coefficients
at a given position in the block.

• ImaMad : 2D IDL float array: Image containing the normalization parameters.

• Result : 4D IDL float array[*,*,*,12], output extracted band.

Examples:

• mrs ridtrans, Imag, Rid
Compute the ridgelet transform

• Band = mrs ridrec(Rid,0)
Extract the first scale.

8.4.4 Insert a band into Ridgelet Transform : mrs ridput

Insert a band in the ridgelet transform (see mrs ridtrans).

USAGE: mrs ridput, Rid Struct, Band, ScaleRid

where

• Rid Struct : Input/Output IDL structure. Ridgelet transform structure (see mrs ridtrans).

• Band : IDL 4D array: input band to insert in the ridgelet transform.

• ScaleRid : int, input Ridgelet band number.
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Examples:

• mrs ridtrans, Imag, Rid
Compute the ridgelet transform

• Band = mrs ridget(Rid,0)
Extract the first scale.

• Band[*] = 0 Set the band to zero.

• mrs ridput, Rid Struct, Band, 0
Reinsert the modified band.

8.5 Curvelet

8.5.1 Curvelet transform : mrs curtrans

Computes the curvelet transform on the sphere, using the Healpix pixel representation
(nested data representation). A band of the curvelet transform is defined by two number,
the 2D WT scale number and the ridgelet scale number. The output is an IDL structure.
A band at wavelet scale j (j=0...NBRSCALE-1) and ridgelet scale j1 can be extracted
using the function mrs curget(Curtrans, j, j1) (ex: Scale2 1 = mrs curget(CurTrans, 2,
1)) and a band can be inserted in the transformation using the routine mrs curput (ex:
mrs curput, CurTrans, Scale2 1, 2, 1). By default, the pyramidal curvelet is applied. If
the keyword UNDEC is set, then the standard undecimated curvelet transform is applied.

USAGE: mrs curtrans, Imag, CurTrans, Opt=Opt, lmax=lmax,
NbrScale=NbrScale, Overlap=Overlap, Undec=Undec,

FirstBlockSize=FirstBlockSize, Silent=Silent

where

• Image : Input IDL Healpix array of the map to be transformed.

• RidTrans : Output IDL structure with the following fields:

– NbrScale : int, Number of scales of the ridgelet transform.

– TabBlockSize : int array TABBLOCKSIZE[j], Block size in the ridgelet trans-
form at scale j, j = 0...NBRSCALE-1.

– TabNbrScaleRID : int array TABNBRSCALERID[j], number of ridgelet band
at scale j.

– TabNorm : 2D IDL array : Normalization array.

– RidScale1 : IDL structure : ridgelet transform of the first wavelet scale (see
mrs ridtrans for details).

– RidScalej : IDL structure : ridgelet transform of the jth wavelet scale,
j = 1 . . .NBRSCALE-1.

– LastScale : 1D IDL float array: Healpix image of the coarsest scale.
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– WT : IDL structure: Wavelet structure (for internal use only).

– PyrTrans : int, equal to 1 for a pyramidal curvelet transform and 0 otherwise .

• NbrScale : int, Number of scales in the 2D wavelet transform (default 4).

• Undec : int, if set, an undecimated curvelet transform is used instead of the pyra-
midal curvelet transform.

• FirstBlockSize : int Block size in the ridgelet transform at the finest scale (default
value is 16).

• Lmax : int, Number of used spherical harmoniques used in the wavelet transform
(default is 3× nside, should be between 2× nside and 4× nside).

• Overlap : int, if set blocks in the internal ridgelet transform are overlapping.

• Opt : string, optionnal parameters used by mrs ridtrans (see mrs ridtrans).

• Silent : scalar, if set, verbose mode disabled

Example:

• mrs curtrans, Imag, Cur
Compute the curvelet transform

8.5.2 Curvelet reconstruction : mrs currec

Reconstructs an image on the Sphere from its curvelet transform (see mrs curtrans).

USAGE: mrs currec, Cur Struct, result

where

• Cur Struct : Input IDL structure, Curvelet transform structure (see mrs curtrans).

• Result : Output 1D IDL array of the reconstructed Healpix image (nested format).

Examples:

• mrs curtrans, Imag, Cur
Compute the curvelet transform

• mrs currec, Cur, RecIma
Curvelet reconstruction.
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8.5.3 Extract a curvelet band : mrs curget

Extracts a curvelet band from the curvelet transform (see mrs curtrans). If the key-
word NormMad is set, a normalization is applied (see mrs ridget).

USAGE: Result = mrs curget( Cur Struct, ScaleWT2D, ScaleRid,
NormMad=NormMad, ImaMean=ImaMean, ImaMad=ImaMad )

where

• Cur Struct : Input IDL structure, Curvelet transform structure (see mrs curtrans).

• ScaleWT2D : int, specifies in which 2D WT scale to get the curvelet band.

• ScaleRid : int, specifies which ridgelet band of the specified wavelet scale corresponds
to the requested curvelet band.

• NormMad : scalar, if set, normalize the coefficients by the Median Absolution De-
viation of all coefficients at a given position in the block.

• ImaMean : 2D IDL array: Image containing the mean value for all coefficients at a
given position in the block.

• ImaMad : 2D IDL array: Image containing the normalization parameters.

• Result : 4D IDL float array[*,*,*,12], extracted band

Example:

• mrs curtrans, Imag, Cur
Compute the ridgelet transform

• Band = mrs ridrec(Rid,0,0)
Extract the first scale.

8.5.4 Insert a band into the Curvelet Transform : mrs curput

Inserts a band back in the curvelet transform (see mrs curtrans).

USAGE: mrs curput, Cur Struct, Band, ScaleWT2D, ScaleRid

where

• Cur Struct : Input/Output IDL structure, Curvelet transform structure (see mrs curtrans).

• Band : 4D IDL float array[*,*,*,12], input band to be inserted in the curvelet trans-
form.

• ScaleWT2D : int, specifies in which 2D WT scale to put the given curvelet band.

• ScaleRid : int, specifies which ridgelet band of the specified wavelet scale is to be
replaced by the given curvelet band.
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Examples:

• mrs curtrans, Imag, Cur
Compute the curvelet transform

• Band = mrs curget( Rid, 0, 0)
Extract the first scale.

• Band[*] = 0 Set the band to zero.

• mrs curput, Cur Struct, Band, 0, 0
Reinsert the modified band.

8.6 Denoising

8.6.1 Wavelet filtering : mrs wtfilter

Wavelet denoising of an image on the sphere (Healpix pixel nested representation)
or Glesp Data representation. By default, the noise is assumed to follow a Gaussian
distribution. If the keyword SigmaNoise is not set, then the noise standard deviation is
automatically estimated. If the keyword MAD is set, then a correlated Gaussian noise
is considered, and the noise level at each scale is derived from the Median Absolution
Deviation (MAD) method. If the keyword KillLastScale is set, the coarsest resolution is
set to zero. If the ”Pyr” keyword is used, then the pyramidal WT is used instead of the
undecimated WT. If the ”atrou” keyword is used, then the ”a trou” WT is used instead
of the undecimated WT. If the keyword CYCLE is set, the denoising is performed three
times, by shifting the data by π/4 and −π/4, denoising the shifted version, and averaging
the unshifted denoising maps. This procedure allows us to remove the block effect which
may appear on the border of the Healpix faces. The thresholded wavelet coefficients can
be obtained using the keyword Trans. If the input keyword NITER is set, then an iterative
algorithm is applied and if the POS keyword is also set, then a positivity constraint is
added.

USAGE: mrs wtfilter, Imag, Filter, NbrScale=NbrScale, NSigma=NSigma,
SigmaNoise=SigmaNoise, lmax=lmax, TabNSigma=TabNSigma, mad=mad,

localmad=localmad, WinMinSize=WinMinSize, Soft=Soft, niter=niter,
pos=pos, Pyr=Pyr, cycle=cycle, Trans=Trans, KillLastScale=KillLastScale,

FirstScale=FirstScale, fdr=fdr, Use FdrAll=Use FdrAll, mask=mask,
FilterLast=FilterLast, atrou=atrou, OutMask=OutMask

where

• Image : Input IDL Healpix array or Glesp IDL structure containing the input map.

• Filter : Output IDL Healpix array or Glesp IDL structure containing the output
filtered map.

• NbrScale : int = Number of scales (default is 4).

• NSigma : float = Level of thresholding (default is 3).
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• TabNSigma : float array = Level of thresholding at each scale

• SigmaNoise : float = Noise standard deviation. Default is automatically estimated.

• mad : if set, then the noise level is derive at each scale using the MAD of the wavelet
coefficient. MAD = median ( ABS( WaveletScale) ) / 0.6745.

• localmad : int if set, similar to keyword MAD but with one value for each patch of
the image and each instead of one value for the full image at each scale.

• WinMinSize : int minimal size of patches (default is 8).

• KillLastScale : if set, the last scale is set to zero.

• niter : number of iterations used in the reconstruction.

• pos : if set, the solution is assumed to be positive.

• Pyr : if set, a pyramidal WT is used instead of the the undecimated WT.

• cycle : int: if set, then a cycle spanning is applied.

• FirstScale : int: Consider only scales larger than FirstScale. Default is 1 (i.e. all
scales are used).

• Soft : if set, use soft thresholding instead of hard thresholding.

• fdr : float between 0 (default) and 1 (max, if greater or equal to 1, set to 0.05), used
to estimate a threshold level instead of a NSigma threshold, threshold is applied
from scale j=FirstScale to the last.

• Use FdrAll : same as fdr but applied to all scales.

• FilterLast : if set, the last scale is filtered.

• mask : IDL array of healpix map, input mask applied.

• lmax : int = maximum l value in the Spherical Harmonic Space.

• atrou : if set, a ”a trou” WT is used instead of the the undecimated WT.

• Trans : IDL structure: Thresholded wavelet decomposition of the input image.

• OutMask : IDL array of healpix map, part of Imag that were set to 0 via the filtering,
including keyword mask if used.

• localmad, cycle and atrou keywords don’t work with Glesp images, an
error will be generated

Examples:

• mrs wtfilter, Imag, Filter, NbrScale=5
Wavelet filtering with five scales.

• mrs wtfilter, Imag, Filter, NbrScale=5, Nsigma=5
Ditto, but using a 5 sigma threshold.
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8.6.2 Curvelet filtering : mrs curfilter

Curvelet denoising of an image on the sphere (Healpix pixel representation). By de-
fault Gaussian noise is considered. If the keyword SigmaNoise is not set, then the noise
standard deviation is automatically estimated. If the keyword MAD is set, then a corre-
lated Gaussian noise is considered, and the noise level at each scale is derived from the
Median Absolution Deviation (MAD) method. If the keyword KillLastScale is set, the
coarsest resolution is set to zero. If the UNDEC keyword is used, then a undecimated
decomposition is used instead of the pyramidal WT. The threshold curvelet coefficients
can be obtained using the keyword Trans. If the input keyword NITER is set, then an
iterative algorithm is applied and if the POS keyword is also set, then a positivity con-
straint is added. If the keyword CYCLE is set, the denoising is performed three times,
by shifting the data by π/4 and −π/4, denoising the shifted version, and averaging the
unshifted denoising maps. This procedure allows us to remove the block effect which may
appear on the border of the Healpix faces.

USAGE: mrs curfilter, Image, Filter, NbrScale=NbrScale, NSigma=NSigma,
SigmaNoise=SigmaNoise, mad=mad, Trans=Trans, niter=niter, pos=pos,

Undec=Undec, KillLastScale=KillLastScale, FirstBlockSize=FirstBlockSize,
cycle=cycle, FirstScale=FirstScale

where

• Image : Input IDL Healpix array containing the input map.

• Filter : Output IDL Healpix array containing the output filtered map.

• NbrScale : int = Number of scales (default is 4).

• NSigma : float = Level of thresholding (default is 3).

• SigmaNoise : float = Noise standard deviation. Default is automatically estimated.

• MAD : if set, then the noise level is derive at each scale using the MAD of the
wavelet coefficient. MAD = median ( ABS( WaveletScale) ) / 0.6745.

• KillLastScale : if set, the last scale is set to zero.

• FirstBlockSize : int Block size in the ridgelet transform at the finest scale (default
value is 16).

• niter : int, number of iterations used in the reconstruction.

• pos : if set, the solution is assumed to be positive.

• Undec : if set, an undecimated WT is used instead of the the pyramidal WT.

• cycle : int, if set a cycle spanning is applied.

• FirstScale : int, consider only scales larger than FirstScale. Default is 1 (i.e. all
scales are used).

• Trans : Output optional IDL structure for storing the thresholded curvelet decom-
position of the input image.
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Examples:

• mrs curfilter, Imag, Filter, NbrScale=5
Pyramidal Curvelet filtering with five scales.

• mrs curfilter, Imag, Filter, NbrScale=5, Nsigma=5
Ditto, but using a 5 sigma threshold.

8.6.3 Combined filtering : mrs cbfilter

Combined filtering using Wavelet and Curvelet of an image on the sphere (Healpix pixel
representation). By default, Gaussian noise is considered and if the keyword SigmaNoise
is not set, then the noise standard deviation is automatically estimated. If the keyword
MAD is set, then a correlated Gaussian noise is considered, and the noise level at each
scale is derived from the Median Absolution Deviation (MAD) method. If the keyword
KillLastScale is set, the coarsest resolution is set to zero. If the ”undec” keyword is used,
then a undecimated decomposition is used instead of the pyramidal WT. An iterative
algorithm is applied and the keyword NITER gives the number of iterations (10 iterations
by default).

USAGE: mrs cbfilter, Image, Filter, NbrScale=NbrScale, NSigma=NSigma,
SigmaNoise=SigmaNoise, mad=mad, niter=niter, pos=pos, Undec=Undec,

KillLastScale=KillLastScale, FirstBlockSize=FirstBlockSize,
FirstScale=FirstScale

where

• Image : Input IDL Healpix array containing the input map.

• Filter : Output IDL Healpix array containing the output filtered map.

• NbrScale : int = Number of scales (default is 4).

• NSigma : float = Level of thresholding (default is 3).

• SigmaNoise : float = Noise standard deviation. Default is automatically estimated.

• MAD : if set, then the noise level is derive at each scale using the MAD of the
wavelet coefficient. MAD = median ( ABS( WaveletScale) ) / 0.6745.

• KillLastScale : if set, the last scale is set to zero.

• niter : int, number of iterations used in the reconstruction (default value is 10).

• pos : if set, the solution is assumed to be positive.

• Undec : if set, an undecimated WT is used instead of the the pyramidal WT.

• FirstBlockSize : int Block size in the ridgelet transform at the finest scale (default
value is 16).

• FirstScale : int, consider only scales larger than FirstScale. Default is 1 (i.e. all
scales are used).
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Examples:

• mrs cbfilter, Imag, Filter, NbrScale=5
Pyramidal Curvelet and pyramidal wavelet filtering with five scales.

• mrs cbfilter, Imag, Filter, NbrScale=5, Nsigma=5
Ditto, but using a 5 sigma threshold.

8.7 Blind Source Separation

8.7.1 Blind source separation using JADE : mrs jade

Apply the ICA method JADE (Cardoso 1999) on data in different settings : the mixed
multichannel data gathered from m sensors, may consist of either 1D time series, 2D flat
images or spherical maps. A mask can be specified to indicate missing or invalid pixels.
The components to be separated are all assumed to be independently and identically
distributed random fields in the specified representation. The possible representations
offered here are ’initial’ or ’wavelet’. The chosen wavelet transform is an orthogonal
wavelet transform or an extension of it to the sphere.

USAGE: mrs jade, data, topology, nb sources, sources, demixingmat,
domain = domain, mask = mask, nb scales=nb scales

where

• data : either an IDL 2D array of size m*T in the ’1D’ case, or an IDL 3D array of
size tx*ty*m in the flat ’2D’ case, or an array of strings giving the filenames of m
spherical data maps in the Healpix nested format in the ’Sphere’ case.

• topology : string = either ’1D’ or ’2D’ or ’Sphere’. Specifies the topology of the
maps in the multichannel data to be processed. This is clearly redundant information
but makes things simpler. The specified ’topology’ and the structure of the input
data should obviously agree.

• nb sources : integer = number of independent sources one wants to recover from the
data. The number of sources should be less than or equal to the number of channels
m.

• sources : either an IDL 2D array of size nb sources*T in the ’1D’ case, or an IDL 3D
array of size tx*ty*nb sources in the flat ’2D’ case, or an array of strings giving the
predefined filenames of nb sources spherical data maps in the Healpix nested format
in the ’Sphere’ case.

• demixingmat : IDL array of size nb sources * m. Inverse or pseudo inverse of the
mixing matrix, used to estimate the source processes from the data according to
’sources = demixingmat * data’.

• domain : string = either ’initial’ or ’wavelet’. Specifies the representation in which
the source separation algorithm JADE should be run i.e. the representation in which
the cumulant statistics should be computed (default is ’initial’).
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• mask : either a length T IDL array in the ’1D’ case, or an IDL array of size tx*ty in
the flat ’2D’ case, or a string giving the filename of a spherical map in the Healpix
nested format in the ’Sphere’ case. The specified mask should be the same size as
one of the data maps. A mask is an array of 0s and 1s where 0 indicates an invalid
data sample, and 1 indicates a valid data sample.

IF A MASK IS SPECIFIED, THE DATA HAVE TO BE MULTIPLIED BY THE
MASK PRIOR TO CALLING THE MRS JADE ROUTINE.

• nb scales : int = number of scales in the wavelet transform including the smooth
array (default is nb scales = 4). There is no verification that it is a valid number of
scales for the given data.

Examples:

• mrs jade, data, ’Sphere’, 4, sources, demixingmat

Recovering four independent sources from a set of spherical mixture maps using
Jade.

• mrs jade, data, ’1D’, 3, sources, demixingmat, domain = ’wavelet’, mask = ’the-
mask.fits’, nb scales=5

Recovering three independent sources from a set of 1D mixtures using Jade in a
wavelet representation on five scales, with missing samples specified by a mask.

8.7.2 Blind source separation using fastICA : mrs fastica

Apply the ICA method fastICA (Hyvärinen et al. 2001) on data in different settings:
the mixed multichannel data gathered from m sensors may consist of either 1D time
series, 2D flat images or spherical maps. A mask can be specified to indicate missing
or invalid pixels. The components to be separated are all assumed to be independently
and identically distributed random fields in the specified representation. The possible
representations offered here are ’initial’ or ’wavelet’. The chosen wavelet transform is an
orthogonal wavelet transform or an extension of it to the sphere.

USAGE: mrs fastica, data, topology, nb sources, sources, demixingmat,
domain = domain, mask = mask, nb scales=nb scales

where

• data : either an IDL 2D array of size m*T in the ’1D’ case, or an IDL 3D array of
size tx*ty*m in the flat ’2D’ case, or an array of strings giving the filenames of m
spherical data maps in the Healpix nested format in the ’Sphere’ case.

• topology : string = either ’1D’ or ’2D’ or ’Sphere’. Specifies the topology of the
maps in the multichannel data to be processed. This is clearly redundant information
but makes things simpler. The specified ’topology’ and the structure of the input
data should obviously agree.
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• nb sources : integer = number of independent sources one wants to recover from the
data. The number of sources should be less than or equal to the number of channels
m.

• sources : either an IDL 2D array of size nb sources*T in the ’1D’ case, or an IDL 3D
array of size tx*ty*nb sources in the flat ’2D’ case, or an array of strings giving the
predefined filenames of nb sources spherical data maps in the Healpix nested format
in the ’Sphere’ case.

• demixingmat : IDL array of size nb sources * m. Inverse or pseudo inverse of the
mixing matrix, used to estimate the source processes from the data according to
’sources = demixingmat * data’.

• domain : string = either ’initial’ or ’wavelet’. Specifies the representation in which
the source separation algorithm fastICA should be run (default is ’initial’).

• mask : either a length T IDL array in the ’1D’ case, or an IDL array of size tx*ty in
the flat ’2D’ case, or a string giving the filename of a spherical map in the HEALPix
nested format in the ’Sphere’ case. The specified mask should be the same size as
one of the data maps. A mask is an array of 0s and 1s where 0 indicates an invalid
data sample, and 1 indicates a valid data sample.

IF A MASK IS SPECIFIED, THE DATA HAS TO BE MULTIPLIED BY THE
MASK PRIOR TO CALLING THE MRS FASTICA ROUTINE.

• nb scales : int = number of scales in the wavelet transform including the smooth
array (default is nb scales = 4). There is no verification that it is a valid number of
scales for the given data.

Examples:

• mrs fastica, data, ’Sphere’, 4, sources, demixingmat

Recovering four independent sources from a set of spherical mixture maps using
fastICA.

• mrs fastica, data, ’1D’, 3, sources, demixingmat, domain = ’wavelet’, mask = ’the-
mask.fits’, nb scales=5

Recovering three independent sources from a set of 1D mixtures using fastICA in a
wavelet representation on five scales, with missing samples specified by a mask.

8.7.3 Handling missing/masked data through wavelet scales : mrs mask

When gaps exist in a signal or a map, some wavelet coefficients located outside the
initial mask are affected. The extent of the influence of the mask depends on scale. The
purpose of this function is to apply the specified wavelet transform to the specified mask
and to return a mask on each scale where 1s correspond to valid coefficients (i.e. coefficient
which are contaminated by the mask but below some threshold) and 0s correspond to
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contaminated coefficients. Implemented for three different topologies and ”two” different
transforms (ie undecimated a trous algorithm or orthogonal transform ): the undecimated
transform is the one used in mrs smica whereas the orthogonal transform is used in
mrs jade.

USAGE: mrs mask, mask, topology, wt type, nb scales, mask out,
nlmax=nlmax

where

• mask : either a length T IDL array in the ’1D’ case, or a tx*ty IDL array in the flat
’2D’ case, or an IDL array in Healpix nested format in the ’Sphere’ case.

• topology : string = either ’1D’ or ’2D’ or ’Sphere’. Specifies the topology of the
maps in the multichannel data to be processed. This is clearly redundant information
but makes things simpler. The specified ’topology’ and the structure of the input
data should obviously agree.

• wt type : string = either ’atrous’ or ’ortho’. Specifies the wavelet transform type
to be used, either respectively the undecimated a trous wavelet transform (and ex-
tensions in different topologies) or the orthogonal wavelet transform (and extensions
in the different topologies).

• nb scales : int = number of scales in the wavelet transform including the smooth
array (there is no verification that it is a valid number of scales for the given data).

• mask out:

– if wt type = ’atrous’, this is either an nb scales*T array in the 1D case, or a
tx*ty*nb scales array in the flat 2D case, or an npix*nb scales array of nb scales
spherical masks in Healpix nested format where npix is the size of the initial
mask in Healpix nested format.

– if wt type = ’ortho’, this is either a length T array in the 1D case, or a tx*ty
array in the flat 2D case, or an array the same size as the initial mask in Healpix
nested format.

• nlmax : this is only used in the undecimated spherical wavelet transform so when
the specified topology is ’Sphere’ and the specified transform is ’atrous’. This is not
an optional input in the ’Sphere’ AND ’atrous’ case. N.B.: The same value of nlmax
should be used as in the corresponding spherical wavelet transform of the data maps
on which the map is to be applied.

Examples:

• mrs mask, mask, ’1D’, ’ortho’, 5, mask out

Computing the mask to be used on each scale of a 1D orthogonal wavelet transform
on five scales of the data.
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• mrs mask, mask, ’Sphere’, ’atrous’, 5, mask out, nlmax = 512

Computing the mask to be used on each scale of an isotropic undecimated spherical
wavelet transform on five scales of the data.

8.7.4 Morphological Components Analysis on the sphere : mrs mca

Apply the sparse component analysis method called Morphological Component Anal-
ysis, including a hard thresholding with linear decreasing threhold, on a spherical map in
Healpix representation (NESTED format) using several basis decompositions and there
transforms on the sphere selected in the following list:

1: Isotropic Undecimated Wavelet

2: Pyramidal Wavelet

3: Othogonal Wavelet Transform (on each face)

4: ALM

5: Dirac

6: Curvelet

7: DCT (on each face)

8: A Trou Wavelet (on each face)

9: CMBLET

Default transforms are Pyramidal Wavelet and ALM

With the selection of only one transform and the use of a mask, MCA will make an
inpainting of the input data.

USAGE: mrs mca, data in, data out, Bounded=Bounded, residual=residual,
CstSigma=CstSigma, SelectTrans=SelectTrans, SigmaNoise=SigmaNoise,
Positivity=Positivity, LastThreshold=LastThreshold, niter=niter, fit=fit,

FirstThreshold=FirstThreshold, tabNameTrans=tabNameTrans, mad=mad,
FirstWTDetectScale=FirstWTDetectScale, DCTblocksize=DCTblocksize,

NbrScale=NbrScale, mom=mom, expo=expo, soft=soft, lmax=lmax,
Mask=Mask, nomean=nomean

where

• data in : Input 1D IDL array of a Healpix map, image to be analysed.

• data out : Output 2D IDL array[*, NbTrans] of Healpix maps, components esti-
mated from data in. NbTrans is the number of selected transforms (via SelectTrans
keyword), by default there are 2 transforms.

• SelectTrans : 1D int array with the code number of the selected transforms. Select-
Trans[i] value must be between 1 and 9. Default value: SelectTrans = [2,4]

• niter : int, iteration number of the MCA algorithm. Default value is 10.
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• Mask : 1D IDL array of Healpix map, mask applied to data in. Inpainting on the
masked areas.

• expo : scalar, if set use an exponential decreasing thresholding instead of linear
decreasing thresholding.

• mom : scalar, if set use a linear decreasing thresholding with MOM as a first thresh-
old.

• mad : scalar, if set use a linear decreasing thresholding with MAD as a first threshold.

• fit : scalar, if set fit the threshold levels to ALM decomposition of data in.

• soft : scalar, if set use soft thresholding instead of hard thresholding.

• SigmaNoise : float, standard deviation of the noise, assumed gaussian. Default value
is 1.

• NbrScale : int, number of scale decompositions for wavelet transfroms. Default value
is 5.

• lmax : int, maximum l number of spherical harmonics. Default value is 3*nside,
max value is 3000.

• Bounded : scalar, if set constraints the reconstructed components of data out to be
bounded by the min and max of data in.

• Positivity : scalar, if set constraints the reconstructed components of data out to be
positive.

• CstSigma : scalar, if set and if a mask is applied, constraints the decompositions
coefficients to have the same standard deviation inside and outside the masked area.

• nomean : scalar, if set remove the mean of the reconstructed components of data out.
Work only with keywords mask and CstSigma.

• DCTblocksize : int, size of the blocks for DCT transform (if selected). Default value
is the nside parameter of data in.

• FirstWTDetectScale : int, for isotropic wavelet only, set all wavelet coefficients from
Scale ¡ FirstWTDetectScale to 0.

• LastThreshold : float, last threshold level. Default value is 0. input / output

• FirstThreshold : float, first threshold level. Default is automatically estimated.
input / output

• residual : Output 1D IDL array of a Healpix map, final residual.

• tabNameTrans : Output string array, list of the possible transforms. tabNameTrans
= [’Unknown’, ’Isotropic Undecimated Wavelet’, ’Pyramidal Wavelet’, ’Orthogonal
Wavelet Transform’, ’ALM’, ’DIRAC’, ’Curvelet’, ’DCT’, ’a trous WT’, ’CMBLET’]
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Examples:

• mrs mca, Data, Components, SelectTrans=[2,4,5,6]
Compute the MCA on a Healpix image data, considering 4 components: Curvelet,
ALM, Pyramidal Wavelet and Dirac.

8.7.5 Generalized Morphological Components Analysis on the sphere : mrs gmca

Apply the blind component separation method called GMCA on spherical maps using
Healpix representation (NESTED format) with the orthogonal wavelet transform on the
sphere.

USAGE: mrs gmca, Data, NbrSource, RecSource, MixintMat, NbrIter,
NbrScale=NbrScale, VARMEAN=VARMEAN, SpecConst=SpecConst,
A0=A0, ForceGalactic=ForceGalactic, DustAlmConst=DustAlmConst,

SyncAlmConst=SyncAlmConst, GMCA mask=GMCA mask

where

• Data : Input 2D IDL float array: Multichannel data on the Sphere (Healpix nested
format). Data[*,i] is the ith channel.

• NbrSource : int, number of estimated sources. The number of source must be smaller
or equal to the number of channels.

• NbrIter : int, number of iterations.

• RecSource : Output 2D IDL float array, multichannel reconstructed sources. Rec-
Source[*,i] (i=0,NbrSource-1) is the ith source.

• MixintMat : Output 2D IDL float array, estimated mixing matrix ( Data = Mix-
intMat # RecSource ). MixintMat is of size NumberChannels × NbrSource (
MixintMat[0:NumberChannels-1, 0:NbrSource-1] ).

• NbrScale : int, number of scales in the wavelet transform. Default value is 4.

• VARMEAN : 2D IDL float array, noise covariance matrix given on input, if not set,
it is assumed it is identity matrix.

• GMCA mask : 1D IDL array of Healpix map. optional mask applied to the data.

• A0 : 1D IDL float array [0..NumberChannels-1]. If set, then the first column of
the matrix is considered as known and does not need to be estimated. We have
MixintMat[*, 0] = A0

• SpecConst : 2D IDL float array, initial mixing matrix with CMB and SZ spectral
contraints (the components 0 and 1 of the mixing matrix are fixed).

• ForceGalactic : scalar, if SpecConst is also set then the values of the Dust and
Synchrotron spectra (the components 2 and 3 of the mixing matrix) are also fixed.
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• DustAlmConst : scalar, if set then it constraints the first 769 alm coefficients of the
2nd estimated sources (being the estimated dust).

• SyncAlmConst : scalar, if set then it constraints the first 769 alm coefficients of the
3rd estimated sources (being the estimated synchrotron).

Examples:

• mrs gmca, Data, 4, Sources, mat, 100, NbrScale=5
Compute the GMCA on a 2D data set considering 4 sources, 100 iterations and 5
wavelet scales.

8.7.6 A few more examples

Several scripts are included in the package giving examples of how to run the different
source separation codes :

• test mrs jade.pro

• test mrs fastica.pro

• test mrs mask.pro

These scripts use the data files and masks provided with the package in $MRS/data.
These scripts use a procedure called test data sph.pro to generate synthetic noisy mixtures
of the available component maps on the sphere.

8.8 Statistics

8.8.1 Compute several statistics : get stat

Return statistical information relative to a given data set. The return value is an IDL
array of 9 elements.

Tab[0] = standard deviation

Tab[1] = skewness

Tab[2] = Kurtosis

Tab[3] = Min

Tab[4] = Max

Tab[5] = HC

Tab[6] = HC^+

Tab[7] = Cumulant of order 5

Tab[8] = Cumulant of order 6

If the keyword norm is set, the data are first normalized.
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USAGE: TabStat = get stat( Data, HCIma=HCIma, norm=norm,
TabStatName=TabStatName, qpplot=qpplot, verb=verb,

zeromean=zeromean, TabCumulant=TabCumulant )

where

• Data : IDL array. Input data to analyze.

• Norm : scalar, if set, the input data are normalized and centered (i.e. Data =
(Data-Mean)/Sigma).

• qpplot : scalar, if set, plot the qpplot of the data.

• verb : scalar, if set, the calculated statistics are printed on the screen.

• zeromean : scalar, if set, the input data are supposed to have a zero mean and are
not centered, it is ignored if keyword norm is set.

• TabStatName : Output IDL table of string = [ ”Sigma”, ”Skewness”, ”Kurtosis”,
”Min”, ”Max”, ”HC1”, ”HC2”, ”CUMULANT ORDER 5”, ”CUMULANT ORDER
6” ]

• TabCumulant : IDL double array [0:5]: 6 first cumulants of Data ( TabCumulant[c]
= cumulant of order c+1 )

Examples:

• TabStat = get stat( Data, /verb )
Compute statistical information about the data set Data.

8.8.2 Compute several statistics on the wavelet coefficients : mrs wtstat

Return statistical information relative to the wavelet transform of a given data set.
The return value is a 2D IDL array of 9 elements × Number of scales. For each scale j,
we have:

Tab[0,j] = standard deviation

Tab[1,j] = skewness

Tab[2,j] = Kurtosis

Tab[3,j] = Min

Tab[4,j] = Max

Tab[5,j] = HC

Tab[6,j] = HC^+

Tab[7,j] = Cumulant of order 5

Tab[8,j] = Cumulant of order 6

If TabFile is set, then the statistic is computed on a set of images.

Tab[*,*,f] will be the statistic related to the file TabFile[f]
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USAGE: TabStat = mrs wtstat( Imag, NbrScale=NbrScale, undec=undec,
TabAllSurvStat=TabAllSurvStat, wt=wt, TabStatName=TabStatName,

TabSurvNu=TabSurvNu, survival=survival, verb=verb, TabFile=TabFile,
TabSurvStat=TabSurvStat )

where

• Imag : IDL array of Healpix map. Input image to analyze.

• NbrScale : int = Number of scales. Default is 4.

• undec : scalar, if set, use an undecimated WT instead of the pyramidal WT.

• verb : scalar, if set, the calculated statistics are printed on the screen.

• TabFile : Input IDL table of string, list of file where the function read the maps to
be analized, in that case, on output, Imag is the last map that had been proceed
and the return value is a 3D array:
Tab[i,j,f] statistic i for scale j and map TabFile[f].

• survival : scalar, if set, use the survival function and activate the keywords param-
eters TabSurvStat, TabAllSurvStat and TabSurvNu for the results.

• TabStatName : Output IDL table of string, TabStatName = [ ”Sigma”, ”Skewness”,
”Kurtosis”, ”Min”, ”Max”, ”HC1”, ”HC2”, ”CUMULANT ORDER 5”, ”CUMU-
LANT ORDER 6” ]

• wt : Output IDL structure, wavelet transform of the data (see mrs wttrans mrs pwttrans),
if TabFile keyword is used, the last map proceed.

• TabSurvStat : Output 2D float array [*,j] survival value at scale j.

• TabAllSurvStat : Output 3D double array, use together with TabFile keyword, Ta-
bAllSurvStat[*,*,f] is TabSurvStat parameter for map TabFile[f].

• TabSurvNu : Output 2D float array [*,j] nu survival value at scale j.

Examples:

• TabStat = mrs wtstat( Imag, NbrScale=5, /verb )
Compute the pyramidal wavelet transform with 5 scales and compute statistical
information relative to each scale of the wavelet transform.

8.8.3 Compute several statistics on the wavelet coefficients : mrs owtstat

Return statistical information relative to the bi-orthogonal wavelet transform of a
given data set. The return value is a 2D IDL array of 9 elements × ( Number of scales -
1 )*( d + 1 ) with d = 0, 1, 2 for the 3 directions or only d = 0 if the keyword isotropic
is set. The coarserst scale is not used. For each scale j, we have:
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Tab[0,j*(d+1)] = standard deviation

Tab[1,j*(d+1)] = skewness

Tab[2,j*(d+1)] = Kurtosis

Tab[3,j*(d+1)] = Min

Tab[4,j*(d+1)] = Max

Tab[5,j*(d+1)] = HC

Tab[6,j*(d+1)] = HC^+

Tab[7,j*(d+1)] = Cumulant order 5

Tab[8,j*(d+1)] = Cumulant order 6

with : d = 0 : horizontal band, d = 1 : vertical band, d = 2 : diagonal band

If TabFile is set, then the statistic is computed on a set of images.

Tab[*,*,f] will be the statistic related to the file TabFile[f]

USAGE: TabStat = mrs owtstat( Imag, TabStatName=TabStatName,
NbrScale=NbrScale, verb=verb, TabFile=TabFile, isotropic=isotropic,

TabAllSurvStat=TabAllSurvStat, TabSurvStat=TabSurvStat,
TabSurvNu=TabSurvNu, survival=survival )

where

• Imag : IDL array of Healpix map. Input image to analyze.

• NbrScale : int = Number of scales. Default is 4.

• verb : scalar, if set, the calculated statistics are printed on the screen.

• isotropic : scalar, if set, directional information is not taken into account.

• TabFile : Input IDL table of string, list of file where the function read the maps to
be analized, in that case, on output, Imag is the last map that had been proceed
and the return value is a 3D array:
Tab[i,j,f] statistic i for scale j and map TabFile[f].

• survival : scalar, if set, use the survival function and activate the keywords param-
eters TabSurvStat, TabAllSurvStat and TabSurvNu for the results.

• TabStatName : Output IDL table of string, TabStatName = [ ”Sigma”, ”Skewness”,
”Kurtosis”, ”Min”, ”Max”, ”HC1”, ”HC2”, ”CUMULANT ORDER 5”, ”CUMU-
LANT ORDER 6” ]

• TabSurvStat : Output 2D float array [*,j] survival value at scale j.

• TabAllSurvStat : Output 3D double array, use together with TabFile keyword, Ta-
bAllSurvStat[*,*,f] is TabSurvStat parameter for map TabFile[f].

• TabSurvNu : Output 2D float array [*,j] nu survival value at scale j.
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Examples:

• TabStat = mrs owtstat( Data, NbrScale=5, /verb )
Compute the bi-orthogonal wavelet transform with 5 scales and compute statistical
information relative to each scale and each direction of the wavelet transform.

8.8.4 Compute several statistics on the ridgelet coefficients : mrs ridstat

Return statistical information relative to the ridgelet transform of a given data set.
The return value is a 2D IDL array of 9 elements × Number of scales. For each scale j,
we have:

Tab[0,j] = standard deviation

Tab[1,j] = skewness

Tab[2,j] = Kurtosis

Tab[3,j] = Min

Tab[4,j] = Max

Tab[5,j] = HC

Tab[6,j] = HC^+

Tab[7,j] = Cumulant of order 5

Tab[8,j] = Cumulant of order 6

If TabFile is set, then the statistic is computed on a set of images.

Tab[*,*,f] will be the statistic related to the file TabFile[f]

If the keyword NormMad is set, the ridgelet coefficients are first normalized (see mrs ridget).

USAGE: TabStat = mrs ridstat( Data, TabStatName=TabStatName,
NbrScale=NbrScale, BlockSize=BlockSize, NormMad=NormMad,

verb=verb, Ridtrans=Ridtrans, survival=survival, TabFile=TabFile,
TabSurvStat=TabSurvStat, TabAllSurvStat=TabAllSurvStat,

TabSurvNu=TabSurvNu )

where

• Data : IDL array of Healpix map = Input data to analyze.

• NbrScale : int = Number of scales. Default value is automatically calculated.

• BlockSize : int = Block size used in the ridgelet transform. By default, Block-
Size=nside/2.

• verb : scalar, if set, the calculated statistics are printed on the screen.

• NormMad : scalar, if set, a normalization is applied to the curvelet coefficient.

• TabFile : Input IDL table of string, list of file where the function read the maps to
be analized, in that case, on output, Imag is the last map that had been proceed
and the return value is a 3D array:
Tab[i,j,f] statistic i for scale j and map TabFile[f].
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• Ridtrans : IDL structure containing the ridgelet transform of Data.

• survival : scalar, if set, use the survival function and activate the keywords param-
eters TabSurvStat, TabAllSurvStat and TabSurvNu for the results.

• TabStatName : Output IDL table of string, TabStatName = [ ”Sigma”, ”Skewness”,
”Kurtosis”, ”Min”, ”Max”, ”HC1”, ”HC2”, ”CUMULANT ORDER 5”, ”CUMU-
LANT ORDER 6” ]

• TabSurvStat : Output 2D float array [*,j] survival value at scale j.

• TabAllSurvStat : Output 3D double array, use together with TabFile keyword, Ta-
bAllSurvStat[*,*,f] is TabSurvStat parameter for map TabFile[f].

• TabSurvNu : Output 2D float array [*,j] nu survival value at scale j.

Examples:

• TabStat = mrs ridstat( Data, NbrScale=4, /verb )
Compute the ridgelet transform with 4 scales and compute statistical information
relative to each scale of the wavelet transform.

8.8.5 Compute several statistics on the curvelet coefficients : mrs curstat

Return statistical information relative to the pyramidal curvelet transform of a given
data set. The return value is a 2D IDL array of 9 elements × Number of scales. For each
scale j, we have:

Tab[0,j] = standard deviation

Tab[1,j] = skewness

Tab[2,j] = Kurtosis

Tab[3,j] = Min

Tab[4,j] = Max

Tab[5,j] = HC

Tab[6,j] = HC^+

Tab[7,j] = Cumulant of order 5

Tab[8,j] = Cumulant of order 6

If TabFile is set, then the statistic is computed on a set of images.

Tab[*,*,f] will be the statistic related to the file TabFile[f]

If the keyword NormMad is set, the curvelet coefficients are first normalized (see mrs ridget).

USAGE: TabStat = mrs curstat( Data, NbrScale=NbrScale, verb=verb,
Firstblocksize=Firstblocksize, NbrScale=NbrScale, normMad=normMad,

TabFile=TabFile, TabStatName=TabStatName, survival=survival,
TabSurvStat=TabSurvStat, TabAllSurvStat=TabAllSurvStat,

TabSurvNu=TabSurvNu )
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where

• Data : IDL array of Healpix map, Input data to analyze.

• NbrScale : int = Number of scales. Default is 4.

• verb : scalar, if set, the calculated statistics are printed on the screen.

• NormMad : scalar, if set, a normalization is applied to the curvelet coefficient.

• Firstblocksize: : int, First block size used in the curvelet transform.

• TabFile : Input IDL table of string, list of file where the function read the maps to
be analized, in that case, on output, Imag is the last map that had been proceed
and the return value is a 3D array:
Tab[i,j,f] statistic i for scale j and map TabFile[f].

• survival : scalar, if set, use the survival function and activate the keywords param-
eters TabSurvStat, TabAllSurvStat and TabSurvNu for the results.

• TabStatName : Output IDL table of string, TabStatName = [ ”Sigma”, ”Skewness”,
”Kurtosis”, ”Min”, ”Max”, ”HC1”, ”HC2”, ”CUMULANT ORDER 5”, ”CUMU-
LANT ORDER 6” ]

• TabSurvStat : Output 2D float array [*,j] survival value at scale j.

• TabAllSurvStat : Output 3D double array, use together with TabFile keyword, Ta-
bAllSurvStat[*,*,f] is TabSurvStat parameter for map TabFile[f].

• TabSurvNu : Output 2D float array [*,j] nu survival value at scale j.

Examples:

• TabStat = mrs curstat( Data, NbrScale=4, /verb )
Compute the pyramidal curvelet transform with 4 scales and compute statistical
information relative to each scale of the wavelet transform.

8.8.6 Compute several statistics on wavelet, ridgelet and curvelet coefficients
: mrs allstat

Return statistical information relative to several multiscales transforms of a given
data set. The six used multiscale transforms are: the pyramidal wavelet transform, the
isotropic undecimated wavelet transform, the ridgelet transform with a block size equals
to 8, the ridgelet transform with a block size equals to 16, the ridgelet transform with a
block size equals to 32 and the pyramidal curvelet transform.

All statistical informations are computed with the survival option. The return value
is a IDL structure with several fields for six transforms statistics:

Each of the statistics fields is a 2D IDL array of 9 elements × Number of scales and
for each scale j, we have:
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Tab[0,j] = standard deviation

Tab[1,j] = skewness

Tab[2,j] = Kurtosis

Tab[3,j] = Min

Tab[4,j] = Max

Tab[5,j] = HC

Tab[6,j] = HC^+

Tab[7,j] = Cumulant of order 5

Tab[8,j] = Cumulant of order 6

If TabFile is set, then the statistic is computed on a set of images.

Tab[*,*,f] will be the statistic related to the file TabFile[f]

USAGE: StatData = mrs allstat( Imag, NbrScale2D=NbrScale2D,
TabFile=TabFile, TabStatName=TabStatName, normMad=normMad,
verb=verb, iwt=iwt, owt=owt, rid8=rid8, rid16=rid16, rid32=rid32,

cur=cur, all=all, save=save, TabTransformName=TabTransformName )

where

• StatData : IDL structure with the following fields:

– OWT : IDL float array [ 9, NbrScale ], statistics of the Orthogonal Wavelet
Transform.

– OWTSurv : TabSurvStat parameter for Orthogonal Wavelet Transform.

– OWTSurvNu : TabSurvNu parameter for Orthogonal Wavelet Transform.

– IWT : IDL float array [ 9, NbrScale ], statistics of the Isotropic Undecimated
Wavelet Transform.

– IWTSurv : TabSurvStat parameter for Isotropic Undecimated Wavelet Trans-
form.

– IWTSurvNu : TabSurvNu parameter for Isotropic Undecimated Wavelet Trans-
form.

– Rid8 : IDL float array [ 9, NbrScale ], statistics of the Ridgelet Transform
(Length=8).

– Rid8Surv : TabSurvStat parameter for Ridgelet Transform (Length=8).

– Rid8SurvNu : TabSurvNu parameter for Ridgelet Transform (Length=8).

– Rid16 : IDL float array [ 9, NbrScale ], statistics of the Ridgelet Transform
(Length=16).

– Rid16Surv : TabSurvStat parameter for Ridgelet Transform (Length=16).

– Rid16SurvNu : TabSurvNu parameter for Ridgelet Transform (Length=16).

– Rid32 : IDL float array [ 9, NbrScale ], statistics of the Ridgelet Transform
(Length=32).

– Rid32Surv : TabSurvStat parameter for Ridgelet Transform (Length=32).

– Rid32SurvNu : TabSurvNu parameter for Ridgelet Transform (Length=32).
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– Cur : IDL float array [ 9, NbrScale ], statistics of the Curvelet Transform.

– CurSurv : TabSurvStat parameter for Curvelet Transform.

– CurSurvNu : TabSurvNu parameter for Curvelet Transform.

– TabStatName : IDL table of string: TabStatName = [ ”Sigma”, ”Skewness”,
”Kurtosis”, ”Min”, ”Max”, ”HC1”, ”HC2”, ”CUMULANT ORDER 5”, ”CU-
MULANT ORDER 6” ]

– TabTransformName : IDL table of string: TabTransformName=[’Orthogonal
Wavelet’, ’Isotropic Undecimated Wavelet’, ’Ridgelet Transform (Length=8)’,
’Ridgelet Transform (Length=16)’, ’Ridgelet Transform (Length=32)’, ’Curvelet’]

– If a transform is not chosen, the three corresponding parameters fields are set
to 0.

• Imag : IDL array of Healpix map. Input image to analyze.

• NbrScale2D : int = Number of scales. Default is 4.

• verb : scalar, if set, the calculated statistics are printed on the screen.

• NormMad : scalar, if set, a normalization is applied to the ridgelet and curvelet
coefficients.

• TabFile : Input IDL table of string, list of file where the function read the maps to
be analized, in that case, on output, Imag is the last map that had been proceed
and the return value is a 3D array:
Tab[i,j,f] statistic i for scale j and map TabFile[f].

• iwt : scalar, if set, the statistics of the Isotropic Undecimated Wavelet Transform
are computed.

• owt : scalar, if set, the statistics of the Orthogonal Wavelet Transform are computed.

• rid8 : scalar, if set, the statistics of the Ridgelet Transform (Length=8) are com-
puted.

• rid16 : scalar, if set, the statistics of the Ridgelet Transform (Length=16) are com-
puted.

• rid32 : scalar, if set, the statistics of the Ridgelet Transform (Length=32) are com-
puted.

• cur : scalar, if set, the statistics of the Curvelet Transform are computed.

• all : scalar, if set, the statistics of all the 6 transforms are computed.

• save : scalar, if set, the results are saved in separate files.

• TabStatName : Output IDL table of string, TabStatName = [ ”Sigma”, ”Skewness”,
”Kurtosis”, ”Min”, ”Max”, ”HC1”, ”HC2”, ”CUMULANT ORDER 5”, ”CUMU-
LANT ORDER 6” ]

• TabTransformName : Output IDL table of string: TabTransformName=[ ’Orthog-
onal Wavelet’, ’Isotropic Undecimated Wavelet’, ’Ridgelet Transform (Length=8)’,
’Ridgelet Transform (Length=16)’, ’Ridgelet Transform (Length=32)’, ’Curvelet’ ]



148 IDL Routines

Examples:

• TabStat = mrs allstat( Data, NbrScale2D=4, /verb, /all)
Compute the six transforms with 4 scales and compute statistical information rela-
tive to each scale and transform.

8.9 Tutorial

8.9.1 Undecimated Wavelet Transform on the Sphere

The code to generate the undecimated wavelet transform of the Mars image of Fig. 3.8
is as follows.

; read the data

m = mrs_read(’mars_topo_mola_hpx_128.fits’)

; compute the undecimated wavelet transform with 5 scales

mrs_wttrans, m, w,nbrscale=5

; Display and write the figures to the disk

tvs, m, tit=’Mars topographic map’, png=’fig_mars.png’

tvs, w.coef[*,0], tit=’Mars topographic map: scale 1’, $

png=’fig_mars_scale1.png’

tvs, w.coef[*,1], tit=’Mars topographic map: scale 2’, $

png=’fig_mars_scale2.png’

tvs, w.coef[*,2], tit=’Mars topographic map: scale 3’, $

png=’fig_mars_scale3.png’

tvs, w.coef[*,3], tit=’Mars topographic map: scale 4’, $

png=’fig_mars_scale4.png’

tvs, w.coef[*,4], tit=’Mars topographic map: scale 5’, $

png=’fig_mars_scale5.png’

8.9.2 Pyramidal Wavelet Transform on the Sphere

The code to generate the pyramidal wavelet transform of the Mars image of Fig. 3.11
is as follows.

; read the data

e = mrs_read(’earth_healpix_128.fits’)

; compute the pyramidal wavelet transform with 5 scales

mrs_pwttrans, e, we, nbrscale=5

; Display and write the figures to the disk

mrs_wttv, we, write=’fig_earth’
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Denoising

In the denoising experiment of Fig. 4.1 and Fig. 4.2, we have added Gaussian noise to
the astronomical simulated synchrotron emission map. The code to generate the figures
is as follows.

; read the image

s = rims(’sync_res128.fits’)

; add Gaussian noise

n = randomn(seed, N_ELEMENTS(s))

SigmaNoise = 5.

s1 = s + n* SigmaNoise

; Denoising using the undecimated WT on the sphere at 4sigma

Nsig = 4.

mrs_wtfilter, s1, fwt4, nsigma= Nsig, nbrscale=5, SigmaNoise=SigmaNoise

; Denoising using the curvelet transform

mrs_curfilter, s1, fct4, nsigma= Nsig, nbrscale=5, SigmaNoise=SigmaNoise

; Denoising using the combined denoising

mrs_cbfilter, s1, fcb4, nsigma= Nsig, nbrscale=5, SigmaNoise=SigmaNoise

; Display and write the figure to the disk

tvs, s, /log, tit=’Synchrotron emission’, png=’fig_sync.png’

tvs, s1 > 30, /log, tit=’Synchrotron emission + noise’, $

png=’fig_sync_noise5.png’

tvs , fwt4 > 30, /log, title=’Undecimated Wavelet Denoising (4sigma)’, $

png=’fig_sync_wtfilter5.png’

tvs , fct4 > 30, /log, title=’Curvelet Denoising (4sigma)’, $

png=’fig_sync_curfilter5.png’

tvs , fcb4 > 30, /log, title=’Combined Filtering (4sigma)’,

png=’fig_sync_cbfilter5.png’

tvs , s1- fwt4, title=’Residual undecimated Wavelet Denoising (4sigma)’, $

png=’fig_sync_resi_wtfilter5.png’

tvs , s1 - fct4, title=’Residual curvelet Denoising (4sigma)’, $

png=’fig_sync_resi_curfilter5.png’

tvs , s1 - fcb4, title=’Residual combined Filtering (4sigma)’, $

png=’fig_sync_resi_cbfilter5.png’

; Print the standard deviation (error) between the true image

; and the denoised images

print, ’Err WT = ’, sigma(s-fwt4) , ’, Err Cur = ’, sigma(s-fct4), ’, $

Err Comb = ’, sigma(s-fcb4)



150 IDL Routines

We find the outcome here to be:

==> Err WT = 1.25, Err Cur = 1.07, Err Combined = 0.86



Part II

SparsePOL/V1.1 : Polarized
Spherical Wavelets and Curvelets





Chapter 9

Polarized Data

9.1 Introduction

Polarized maps are a special kind of multi-dimentionnal data with strong links between
their components. The polarization is of great importance in physics or astrophysics as it’s
analysis denotes fundamentals characteristics of the observed object or phenomenum. An
example of great interest is today the cosmic microwave background (Zaldarriaga 1998;
Kovac et al. 2002).

The statistical analysis of the slight intensity fluctuations in the primordial cosmic
microwave background radiation field, for which evidence was found for the first time in
the early 1990’s in the observations made by COBE (Smoot et al. 1992), is a major issue
in modern cosmology as these are strongly related to the cosmological scenarios describing
the properties and evolution of our Universe. In the Big Bang model, the observed CMB
anisotropies are an imprint of primordial fluctuations in baryon-photon density from a
time when the temperature of the Universe was high enough above 3000 K for matter
and radiation to be tightly coupled. At that time, the attraction of gravity and the repul-
sive radiation pressure were opposed, thus generating so-called acoustic oscillations in the
baryon-photon fluid, causing peaks and troughs to appear in the power spectrum of the
spatial anisotropies of the CMB. With the Universe cooling down as it expanded, matter
and radiation finally decoupled. Photons were set free in a nearly transparent Universe,
while the density fluctuations collapsed under the effect of gravity into large scale struc-
tures such as galaxies or clusters of galaxies. Due to the expansion of the Universe, the
CMB photons are now observed in the microwave range but are still distributed according
to an almost perfect black body emission law. Another major result was the measure-
ment of the polarization state and anisotropies of the CMB radiation field by DASI (Kovac
et al. 2002). Only a fraction of the total CMB radiation is polarized so that extremely
sensitive instruments are needed. Polarization of the CMB radiation is a consequence
of the Thomson scattering of photons on electrons. But for the outgoing population of
photons to be polarized, the radiation incident on the scatterer needs to be anisotropic
and have a quadrupole moment. The statistics of the CMB polarization anisotropies are
also a source of information for cosmology. Inference of cosmological parameters from the
joint statistics of the CMB anisotropies should benefit from both the complementarity
and the redundancy of the information carried by the additional measurement of CMB
polarization. Hence the full-sky maps with unprecedented sensitivity and angular reso-
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lution of both temperature and polarization anisotropies of the CMB to be delivered by
the upcoming Planck Surveyor satellite experiment are awaited with excitement.

9.2 Representation of polarized data

Figure 9.1: Simulated CMB map, temperature and polarization.

Full-sky CMB polarization data consists of measurements of the Stokes parameters
so that in addition to the temperature T map, Q and U maps are given as well. The
fourth Stokes parameter commonly denoted V is a measure of circular polarization. In the
case of CMB which is not expected to have circularly polarized anisotropies, V vanishes.
The former three quantities, T , Q and U then fully describe the linear polarization state
of the CMB radiation incident along some radial line of sight : T is the total incoming
intensity, Q is the difference between the intensities transmitted by two perfect orthogonal
polarizers the directions of which define a reference frame in the tangent plane, and U is
the same as Q but with polarizers rotated 45 degrees in that tangent plane. Clearly, Q
and U are not invariant through a rotation of angle φ of the local reference frame around
the line of sight. In fact, it is easily shown that :

Q′ = cos(2φ)Q+ sin(2φ)U (9.1)

U ′ = cos(2φ)U − sin(2φ)Q

which can also be written Q′ ± iU ′ = e∓iφ(Q± iU) which by definition expresses the fact
that the quantities Q± iU are spin-2 fields on the sphere. The suitable generalization of
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the Fourier representation for such fields is the spin-2 spherical harmonics basis denoted

±2Y`m, in which we can expand :

Q± iU =
∑
`,m

±2a`m±2Y`m (9.2)

Fig. 9.1 show an example of CMB polarized map.
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Chapter 10

Multiscale Methods for polarized
maps on the Sphere

10.1 Multiscale Representation

The easiest way to build a multiscale transform for polarized data is to use the Healpix1

representation (Górski et al. 2005), and to apply a bi-orthogonal wavelet transform on each
face of the Healpix map, separately for Q and U (Starck et al. 2009b). Fig. 10.1 shows
the flow-graph of this Q-U orthogonal wavelet transform (QU-OWT). Recall that the
base resolution of the Healpix representation divides the sphere into twelve curvilinear
quadrilateral faces of equal area placed on three rings around the poles and equator.
Each face is subsequently divided into nside2 pixels of exactly equal surface but with
varying shape. It follows that Q and U are reconstructed at position k from their wavelet
coefficients wQj,p, w

U
j,p, c

Q
J,p and cUJ,p according to :

Qk =
∑
p

cQJ,pφj,k(p) +
∑
p

J∑
j=1

ψj,k(p)w
Q
j,p (10.1)

Uk =
∑
p

cUJ,pφj,k(p) +
∑
p

J∑
j=1

ψj,k(p)w
U
j,p

which can also be written as:

(Q± iU)k =
∑
p

(cQJ,p ± ic
U
J,p)φj,k(p) +

∑
p

J∑
j=1

ψj,k(p)(w
Q
j,p ± iwUj,p) (10.2)

This wavelet transform is not redundant i.e. the decomposition has the same number
of coefficients as the input data, and it is invertible so that the Q and U maps can be
reconstructed exactly.

1http://healpix.jpl.nasa.gov
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Figure 10.1: Q-U orthogonal Wavelet Transform.

When we apply such a decomposition, we implicitly use a dictionary Φ on which we
project the data. As discussed previously, the shape of the dictionary elements, also
called atoms, is very important to have an efficient analysis of the data. In the case of
polarized data, it is not straightforward to imagine these shapes from Eq. (10.2). In order
to visualize them, we can perform a backprojection i.e. we apply the inverse wavelet
transform to sets of wavelet coefficients where only one coefficient is different from zero.
Repeating the same experiment, changing only the scale and position of the non-zero
coefficient allows us to view the different atoms in the dictionary related to the QU-
OWT transform that we use. Fig. 10.2 shows examples of backprojections of Q wavelet
coefficients (top) and backprojections of U wavelet coefficients (bottom). The shapes of
the individual atoms do not look close to the astronomical patterns we would expect in our
data. Therefore, this decomposition may not be optimal to analyze polarized astronomical
data, although this would need to be confirmed in practice. The following sections describe
other polarized wavelet transforms with different morphological properties.
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Figure 10.2: Top : examples of backprojections of Q-wavelet coefficients. Bottom : examples of
backprojections of U-wavelet coefficients.

10.2 Module-phase non linear multiscale transform

10.2.1 Introduction

Given a polarized map in the standard Q-U representation, consider a different point
of view and define the modulus M and phase P maps as follows :

∀k, Mk =
√
Q2
k + U2

k (10.3)

∀k, Pk = exp(iθk) where tan(θk) = Uk/Qk (10.4)

Because the smoothness of the Q and U maps should result in some smoothness of the
modulus map M and the phase map P , one may consider devising a multiscale modu-
lus/phase decomposition of the spin 2 field V = [QU ].

The specificity of the modulus/phase decomposition of V is twofold : i) the modulus
field is non-negative and ii) the phase field takes its values on the unit circle S1. Recently,
(Rahman et al. 2005) introduced a multiscale analysis technique for manifold valued data
that will be described in the following paragraph. We then define the modulus/phase
(MP) multiscale transform as follows (Starck et al. 2009b):

1. Apply a classical multiscale transform (i.e. wavelets) to the modulus map M .

2. Apply the multiscale analysis technique for manifold valued data described in (Rahman
et al. 2005) to the phase map P .
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10.2.2 Decimated MP-multiscale transform

Figure 10.3: Examples of MP-multiscale coefficients backprojection.

Let us provide some essential notation : we assume that the entries of the phase map P
lie in a manifoldM (e.g. M≡ S1). According to (Rahman et al. 2005), take p0, p1 ∈M
and define Logp0(p1) as the log-map of p1 onto the tangent space Tp0 of M at p0. The
back-projection is obtained using the inverse of the log-map Expp0 .

2

For instance, if we chooseM≡ S1 then p0 = exp(iθ0) and p1 = exp(iθ1). The Expp0 and
Logp0 maps are then defined as follows :

∀p1 ∈ S, Logp0(p1) = θ1 − θ0 (10.5)

∀s ∈ R Expp0(s) = exp(i(θ0 + s)) (10.6)

2In differential geometry, the Exp map and Log map are generalizations of the usual exponential and logarithm
function. Here the manifold M is a Riemannian manifold. In that case, the Exp map at point p0, Expp0(s) is
the map which takes a vector s of the tangent space ofM at p0 and provides the point p1 by travelling along the
geodesic starting at p0 in the direction s.
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The multiscale transform for manifold valued data introduced in (Rahman et al. 2005)
is equivalent to a two-step interpolation-refinement scheme similar to the lifting scheme
described in (Daubechies and Sweldens 1998). The wavelet coefficients and low pass
approximation pixels are then computed as follows at each scale j and pixel k :

wPj+1,k = LogcPj,2k+1

(
P(cPj,2k)

)
(10.7)

cPj+1,k = ExpcPj,2k(−U(wPj+1,k)) (10.8)

The wavelet coefficient wPj+1,k at pixel k and scale j is the projection of its predic-

tion/interpolation P(cPj,2k) onto the tangent space TcPj,2k+1
of M at cPj,2k+1. The low pass

approximation cPj+1,k at scale j + 1 is computed by updating cPj,2k from the wavelet coeffi-

cient wPj+1,k.
The main advantage of this scheme is its ability to capture local regularities while

guaranteeing the low pass approximation to belong to the manifold M. Indeed, the
wavelet coefficient wPj+1,k at pixel k and scale j+ 1 is computed as the Exp map at cPj,2k+1

of an approximation P(cPj,2k) of cPj,2k.
Note also that even if the definitions of the Expp0 and Logp0 maps involve the abso-

lute phase θ(k) (i.e. tan(θ(k)) = Uk/Qk), at least they only require the computation of
differences of phases values thus avoiding the explicit manipulation of an absolute phase.
However the non-linearity of the proposed transform is a major drawback when consider-
ing denoising and restoration applications.

Illustration :

In the case of polarized data, the entries of the phase map P lie in M ≡ S1. In the
following experiments, P and U are chosen such that :

wPj+1 = LogcPj,2k+1
(cPj,2k) (10.9)

cPj+1,k = ExpcPj,2k

(
−
wPj+1

2

)
(10.10)

This multiscale transform is invertible and its inverse is computed as follows :

cPj,2k = ExpcPj+1,k

(
wPj+1

2

)
(10.11)

cPj,2k+1 = ExpcPj,2k

(
wPj+1

)
(10.12)

The picture in Figure 10.3 features some examples of backprojections of MP-multiscale
coefficients.

10.2.3 Undecimated MP-multiscale transform

For image restoration purposes, the use of undecimated multiscale transforms has
been shown to provide better results than decimated transforms (Starck et al. 1998;
Starck and Murtagh 2006). The aforementioned modulus/phase multiscale analysis can
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be extended to an undecimated scheme consisting in : i) applying an undecimated wavelet
transform to the modulus map, ii) analyzing the phase map P using an extension to the
undecimated case of the multiscale transform described in (Rahman et al. 2005). In that
case, Equations (10.7) and (10.8) are replaced with the following equations :

cPj+1,k = ExpcPj,k(F(cPj,.)) (10.13)

wPj+1 = LogcPj+1,k

(
cPj,k
)

(10.14)

where F(cPj,.) =
∑

l hlLogcj,k
(
cj,k−2j l

)
with

∑
l hl = 1 and hl > 0. The low pass approxi-

mation cPj+1,k is then computed from a linear combination (linear filter) of a neighborhood
{cj,k−2j l}l of cj,k weighted by the positive scalars {hl}l. Note that from scale j to scale
j + 1, the spatial size of the neighborhood increases by a factor 2 which would be equiva-
lent to downsize by a factor 2 the band pass filter of the classical wavelet decomposition
scheme.

10.2.4 Example

In the case of polarized data, the entries of the phase map P lie in M ≡ S1. In the
following experiments, F is chosen such that :

cPj+1,k = ExpcPj,k

(∑
l

hlLogcj,k
(
cPj,k−2j l

))
(10.15)

wPj+1,k = ExpcPj,k

(
cPj+1,k

)
(10.16)

where :

hl =


0 if l < −2 or l > 2

1/16 if l = −2 or l = 2
1/4 if l = −1 or l = 1
3/8 if l = 0

(10.17)

This multiscale transform is invertible and its inverse is computed as follows :

cPj,k = ExpcPj+1,k

(
−wPj+1,k

)
(10.18)

Fig. 10.4 top shows a simulated polarized field of the synchrotron emission and its noisy
version. We have applied the MP-multiscale transform and we remove the first three scales
(i.e. we put all coefficients to zero) before reconstructing. The resulting image is shown
on the bottom left of Fig. 10.4. The bottom right of Fig. 10.4 corresponds to the same
experiment, but by removing the five first scales. We can see that the field is smoother
and smoother, but respecting the large scale structure of the field. This transform will
be very well suited to CMB studies where the phase is analyzed independently of the
modulus, such as in (Dineen et al. 2005; Naselsky et al. 2005).
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Figure 10.4: Polarized field smoothing - top left : simulated synchroton emission. top right :
same field corrupted by additive noise. bottom left : MP-multiscale reconstruction after setting
to zero all coefficients from the three first scales. bottom right : MP-multiscale reconstruction
after setting to zero all coefficients from the five first scales.

10.3 Polarized Wavelet Transform using Spherical Harmonics

10.3.1 Isotropic Undecimated Wavelet Transform on the Sphere (UWTS)

The undecimated isotropic transform on the sphere described in (Starck et al. 2006)
is similar in many respects to the usual “à trous” isotropic wavelet transform. It is
obtained using a zonal scaling function φlc(ϑ, ϕ) which depends only on colatitude ϑ and
is invariant with respect to a change in longitude ϕ. It follows that the spherical harmonic
coefficients φ̂lc(l,m) of φlc vanish when m 6= 0 which makes it simple to compute those
spherical harmonic coefficients ĉ0(l,m) of c0 = φlc ∗ f where ∗ stands for convolution :

ĉ0(l,m) = φ̂lc ∗ f(l,m) =

√
4π

2l + 1
φ̂lc(l, 0)f̂(l,m) (10.19)

A possible scaling function (Starck et al. 1998), defined in the spherical harmonics rep-
resentation, is φlc(l,m) = 2

3
B3(

2l
lc

) where B3 is the cubic B-spline compactly supported

over [−2, 2]. Denoting φ2−j lc a rescaled version of φlc with cut-off frequency 2−jlc, a
multi-resolution decomposition of f on a dyadic scale is obtained recursively :

c0 = φlc ∗ f
cj = φ2−j lc ∗ f = cj−1 ∗ hj−1

(10.20)
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Figure 10.5: Q-isotropic wavelet transform backprojection (left) and U-isotropic wavelet back-
projection (right).

where the zonal low pass filters hj are defined by

Ĥj(l,m) =

√
4π

2l + 1
ĥj(l,m)

=


φ̂ lc

2j+1
(l,m)

φ̂ lc
2j

(l,m)
if l < lc

2j+1 and m = 0

0 otherwise

(10.21)

The cut-off frequency is reduced by a factor of 2 at each step so that in applications where
this is useful such as compression, the number of samples could be reduced adequately.
Using a pixelization scheme such as Healpix (Górski et al. 2005), this can easily be done by
dividing by 2 the Healpix nside parameter when computing the inverse spherical harmonics
transform. As in the “à trous” algorithm, the wavelet coefficients can be defined as the
difference between two consecutive resolutions, wj+1(ϑ, ϕ) = cj(ϑ, ϕ) − cj+1(ϑ, ϕ). This
defines a zonal wavelet function ψlc as

ψ̂ lc
2j

(l,m) = φ̂ lc
2j−1

(l,m)− φ̂ lc
2j

(l,m) (10.22)

With this particular choice of wavelet function, the decomposition is readily inverted
by summing the coefficient maps on all wavelet scales

f(ϑ, ϕ) = cJ(ϑ, ϕ) +
J∑
j=1

wj(ϑ, ϕ) (10.23)

where we have made the simplifying assumption that f is equal to c0. Obviously, other
wavelet functions ψ could be used just as well, such as the needlet function (Marinucci
et al. 2008).
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Figure 10.6: Simulated observations on the sphere of the polarized galactic dust emission.

10.3.2 Extension to Polarized Data

By applying the above scalar isotropic wavelet transform to each component T , Q, U
of a polarized map on the sphere, we have (Starck et al. 2009b) :

T (ϑ, ϕ) = cTJ (ϑ, ϕ) +
∑J

j=1w
T
j (ϑ, ϕ) (10.24)

Q(ϑ, ϕ) = cQJ (ϑ, ϕ) +
∑J

j=1w
Q
j (ϑ, ϕ)

U(ϑ, ϕ) = cUJ (ϑ, ϕ) +
∑J

j=1w
U
j (ϑ, ϕ)

where cXJ stands for the low resolution approximation to component X and wXj is the
map of wavelet coefficients of that component on scale j. This leads to the following
decomposition :

(Q± iU)[k] = (cQJ ± c
U
J,p)[k] +

J∑
j=1

(wQj ± wUj )[k] (10.25)

Fig.10.5 shows the backprojection of a Q-wavelet coefficient (left) and a U -wavelet coef-
ficient (right). Fig. 10.7 shows the undecimated isotropic polarized wavelet transform of
the dust image shown on Fig. 10.6 using six scales, i.e. five wavelet scales and the coarse
approximation.

10.4 Polarized Curvelet Transform

The 2D ridgelet transform (Candès and Donoho 1999b) was developed in an attempt
to overcome some limitations inherent in former multiscale methods e.g. the 2D wavelet,
when handling smooth images with edges i.e. singularities along smooth curves. Ridgelets
are translation invariant ridge functions with a wavelet profile in the normal direction.
Although ridgelets provide sparse representations of smooth images with straight edges,
they fail to efficiently handle edges along curved lines. This is the framework for curvelets
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Figure 10.7: QU-Undecimated Wavelet Transform of the simulated polarized map of galactic
dust emission shown in figure (10.6).

which were given a first mathematical description in (Candès and Donoho 1999a). Ba-
sically, the curvelet dictionary is a multiscale pyramid of localized directional functions
with anisotropic support obeying a specific parabolic scaling such that at scale 2−j, its
length is 2−j/2 and its width is 2−j. This is motivated by the parabolic scaling property of
smooth curves. Other properties of the curvelet transform as well as decisive optimality
results in approximation theory are reported in (Candès and Donoho 1999a). Notably,
curvelets provide optimally sparse representations of manifolds which are smooth away
from edge singularities along smooth curves. Several digital curvelet transforms (Donoho
and Duncan 2000; Starck et al. 2002a; Candès et al. 2006) have been proposed which at-
tempt to preserve the essential properties of the continuous curvelet transform and many
papers (Starck et al. 2004b; Herrmann et al. 2008; Starck et al. 2004b) report on their
successful application in image processing experiments. The so-called first generation dis-
crete curvelet described in (Donoho and Duncan 2000; Starck et al. 2002a) consists in
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Figure 10.8: Top, Q-curvelet backprojection (left) and zoom (right). Bottom, U-curvelet back-
projection (left) and zoom.

applying the ridgelet transform to sub-images of a wavelet decomposition of the original
image. By construction, the sub-images are well localized in space and frequency and the
subsequent ridgelet transform provides the necessary directional sensitivity. This latter
implementation in combination with the good geometric properties of the Healpix pix-
elization scheme, inspired the digital curvelet transform on the sphere (Starck et al. 2006).
The digital curvelet transform on the sphere is clearly invertible in the sense that each
step of the overall transform is itself invertible. The curvelet transform on the sphere has a
redundancy factor of 16J+1 when J scales are used, which may be a problem for handling
huge data sets such as from the future Planck-Surveyor experiment. This can be reduced
by substituting the pyramidal wavelet transform to the undecimated wavelet transform
in the above algorithm. More details on the wavelet, ridgelet, curvelet algorithms on the
sphere can be found in (Starck et al. 2006). As for the isotropic wavelet on the sphere,
a straightforward extension to polarized data will consist in applying successively the
curvelet transform on the sphere to the three components T , Q and U . Figure 10.8 shows
the backprojection of a Q-curvelet coefficient and U-curvelet coefficient. Clearly, the
shapes of these polarized curvelet functions are very different from the polarized wavelet
functions.
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10.5 Polarized E/B Wavelet and E/B Curvelet

10.5.1 Introduction

We have seen that the generalization of the Fourier representation for polarized data
on the sphere is the spin-2 spherical harmonics basis denoted ±2Y`m:

Q± iU =
∑
`,m

±2a`m±2Y`m (10.26)

At this point, it is convenient (Zaldarriaga 1998) to introduce the two quantities de-
noted E and B which are defined on the sphere by

E =
∑

`,m a
E
`mY`m =

∑
`,m−

1
2
(2a`m + −2a`m)Y`m (10.27)

B =
∑

`,m a
B
`mY`m =

∑
`,m i

1
2
(2a`m − −2a`m)Y`m

where Y`m stands for the usual spin 0 spherical harmonics basis functions. The quanti-
ties E and B are derived by applying the spin lowering operator twice to Q + iU and
the spin raising operator twice to Q − iU so that E and B are real scalar fields on the
sphere, invariant through rotations of the local reference frame. The normalization of
aE`m and aB`m chosen in the latter definition is purely conventional but it appears to be
rather popular (Zaldarriaga and Seljak 1997; Bunn et al. 2003). Still, we could multiply
aE`m and aB`m by some A` and we would have just as good a representation of the initial
polarization maps. Through a change of parity E will remain invariant whereas the sign
of pseudo-scalar B will change. The E and B modes defined here are not so different from
the gradient (i.e. curl free) and curl (i.e. divergence free) components encountered in the
analysis of vector fields. Finally, the spatial anisotropies of the Gaussian CMB tempera-
ture and polarization fields are completely characterized in this new linear representation
by the power spectra and cross spectra of T , E and B. Thanks to the different parities of
T and E on one side and B on the other, the sufficient statistics reduce to only four spec-
tra namely CEE

` , CTE
` , CTT

` , CBB
` . For a given cosmological model, it is possible to give a

theoretical prediction of these spectra. Aiming at inverting the model and inferring the
cosmological parameters, an important goal of CMB temperature and polarization data
analysis is then to estimate the latter power spectra, based on sampled, noisy sometimes
incomplete T , Q and U spherical maps.

10.5.2 E/B Isotropic Wavelet

Following the above idea of representing CMB polarization maps by means of E and
B modes, we propose a formal extension of the previous undecimated isotropic wavelet
transform that will allow us to handle linear polarization data maps T , Q and U on the
sphere. Practically, the maps we consider are pixelized using for instance the Healpix
pixelization scheme. In fact, we are not concerned at this point with the recovery of E
and B modes from pixelized or incomplete data maps which itself is not a trivial task. The
extension of the wavelet transform on the sphere we describe here makes use of the E and
B representation of polarized maps described above in a formal way. Given polarization
data maps T , Q and U , Starck et al. (2009b) proposed a wavelet transform algorithm
consisting of the following steps :
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1. Apply the spin ±2 spherical harmonics transform to Q + iU and Q − iU . Practically,
the Healpix software package provides an implementation of this transform for maps that
use this pixelization scheme. Otherwise, a fast implementation was recently proposed by
(Wiaux et al. 2007).

2. Combine the decomposition coefficients 2a`m and −2a`m from the first step into aE`m and
aB`m and build formal E and B maps associated with Q and U by applying the usual inverse
spherical harmonics transform, as in equation (10.27). For numerical and algorithmic
purposes, it may be efficient to stay with the spherical harmonics representation of E and
B.

3. Apply the undecimated isotropic transform on the sphere described above to map T and
to the E, B representation of the polarization maps.

The wavelet coefficient maps wTj , wEj , wBj and the low resolution approximation maps cTJ ,

cEJ , cBJ are obtained by applying the isotropic undecimated wavelet transform described
in section 10.3.1 to the T , E, B representation of the polarized data. Figure 10.9 shows
the result of applying the proposed transform to the polarized CMB data map Ka 3 from
the WMAP experiment. The top two images show the initial Q and U maps while the
subsequent maps are the low pass and wavelet coefficients’maps in a four scale decompo-
sition. The scaling function we used is a cubic box spline as proposed in section 10.3.1.
The wavelet coefficients were obtained as the difference between two successive low pass
approximations of the multiresolution decomposition of the E and B maps. The proper
choice for the scaling and wavelet functions will depend on the application and the exis-
tence of constraints to be enforced.

Reconstruction

Obviously, the transform described above is invertible and the inverse transform is
readily obtained by applying the inverse of each of the three steps in reverse order. If,
as in the example decomposition above, we take the wavelet function to be the difference
between two successive low pass approximations, the third step is inverted by simply
summing the last low pass approximation with the maps of wavelet coefficients from all
scales as in equation (10.23) :

T = cTJ +
J∑
j=1

wTj

E = cEJ +
J∑
j=1

wEj

B = cBJ +
J∑
j=1

wBj (10.28)

3available at http://lambda.gsfc.nasa.gov/product/map/current/
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Figure 10.9: top : Q and U CMB polarization data maps from channel Ka of the WMAP
experiment. left : low pass and wavelet coefficients in three scales of the formal E mode.
right : low pass and wavelet coefficients in three scales of the formal B mode.
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Figure 10.10: E-isotropic wavelet transform backprojection (left) and B-isotropic wavelet back-
projection (right).

where cXJ stands for the low resolution approximation to component X and wXj is the
map of wavelet coefficients of that component on scale j. Finally, noting that :

Q = −1

2

∑
`,m

aE`m(2Y `m + −2Y `m) + iaB`m(2Y `m − −2Y `m)

=
∑
`,m

aE`mZ
+
`m + iaB`mZ

−
`m (10.29)

U = −1

2

∑
`,m

aB`m(2Y `m + −2Y `m)− iaE`m(2Y `m − −2Y `m)

=
∑
`,m

aB`mZ
+
`m − ia

E
`mZ

−
`m (10.30)
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the initial representation of the polarized data in terms of T , Q and U maps is recon-
structed from its wavelet coefficients using the following equations :

T = cTJ +
∑J

j=1w
T
j (10.31)

Q = cE,+J + icB,−J +
∑J

j=1

{
wE,+j + iwB,−j

}
U = cB,+J − icE,−J +

∑J
j=1

{
wB,+j − iwE,−j

}
where

cX,+J = cXJ
∑
`,m

Y †`mZ
+
`m and cX,−J = cXJ

∑
`,m

Y †`mZ
−
`m (10.32)

with W † denoting the transpose conjugate of W so that W̃W † is the scalar dot product
of W̃ and W while W †W̃ is an operator (or matrix) acting on its left hand side as a
projection along W and reconstruction along W̃ . In practice, the Healpix software package
provides us with an implementation of the forward and inverse spin 0 and spin 2 spherical
harmonics transforms which we need to implement the proposed inverse transform given
by equations (10.31) and (10.32). Clearly, as mentioned earlier in section 10.3.1, we
could have chosen some other wavelet function than merely the difference between two
consecutive scaling functions, and the transformation would still be nearly as simple to
invert. Figure 10.10 shows, on the left, backprojections of E-wavelet coefficients, and,
on the right, backprojections of B-wavelet coefficients on the right hand side at different
scales.

E-B Curvelet

Figure 10.11: E-curvelet coefficient backprojection.

Similarly to the EB-wavelet constructions, we can easily construct an EB-curvelet
transform by first computing the E and B components using the spin ±2 spherical har-
monics transform, and then applying a curvelet transform on the sphere separately on



10.6 Experiments : Application to denoising 173

Figure 10.12: B-curvelet coefficient backprojection.

each of these two components Starck et al. (2009b). Figure 10.11 shows the backprojec-
tion of an E-curvelet coefficient and Figure 10.12 shows the backprojectionof a B-curvelet
coefficient.

10.6 Experiments : Application to denoising

Thanks to the invertibility of the different proposed transforms for polarization maps
on the sphere, it is possible to use these transformations for restoration applications. The
denoising algorithm we use here consists in three consecutive steps :

1. Apply the chosen polarized multiscale transform.

2. Set to zero those coefficients whose absolute values are below a given threshold. We
have used a threshold equal to five times the noise standard deviation.

3. Reconstruct the denoised field using the inverse transform.

More sophisticated thresholding strategies exist (Starck and Murtagh 2006) which can
be used just as well on coefficients of polarized wavelets and curvelets.

Figure 10.13 illustrates the results of a simple denoising experiment. Noise was added
to a simulated dust image (see Figure 10.13 top left and right), and the noisy QU-field
was filtered by thresholding either the EB-isotropic wavelet coefficients of the polarized
dust map (Figure 10.13 bottom left) or the EB-isotropic curvelet coefficients (Figure 10.13
bottom right). Both decompositions produce nice visual results.

In order to be more quantitative, we used two test images (synchrotron and dust) with
different noise levels. The noise levels were taken equal to 0.1, 0.2, 0.5, 1. and 2 times the
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Table 10.1: Error (in dB) for both the Q and U components between the original dust image
and respectively its noisy version and the results obtained by hard thresholding representations
of the noisy data in different dictionaries.
Q Component

Noisy image 20.01 13.98 6.03 −0.007 −6.02

QU-UWT 34.91 32.41 28.88 26.41 23.68
EB-UWT 33.52 30.63 27.83 25.86 23.91
QU-CUR 34.14 31.12 28.56 26.58 24.56
EB-CUR 33.36 30.60 28.17 26.30 23.99
OWT 34.07 30.77 27.08 24.57 21.33
Mod-Phase 30.51 26.42 20.97 16.25 11.05

U Component

Noisy image 19.99 13.97 6.01 −0.001 −6.01

QU-UWT 40.88 39.22 36.77 35.50 31.90
EB-UWT 38.80 36.71 35.41 34.67 32.23
QU-CUR 39.54 37.85 36.68 35.83 32.38
EB-CUR 39.64 37.72 35.33 33.51 29.30
OWT 39.18 37.29 33.30 29.06 23.56
Mod-Phase 30.76 26.81 21.31 16.83 11.36

Table 10.2: Error (in dB) for both the Q and U components between the original synchrotron
image and respectively its noisy version and the results obtained by the hard thresholding using
different dictionaries.
Q Component

Noisy image 19.99 13.98 6.02 −0.005 −6.02

QU-UWT 33.40 31.27 27.78 24.71 21.16
EB-UWT 33.03 30.53 26.79 23.86 20.76
QU-CUR 35.04 32.92 29.19 26.19 22.37
EB-CUR 34.83 32.09 27.89 24.81 21.06
OWT 33.20 30.10 25.72 22.62 19.39
MP-UWT 26.76 23.05 17.85 13.69 8.97

U Component

Noisy image 19.99 13.97 6.01 −0.007 −6.01

QU-UWT 32.90 31.25 29.04 27.51 25.27
EB-UWT 33.22 31.43 29.11 26.99 24.35
QU-CUR 33.79 31.75 29.28 27.71 25.46
EB-CUR 34.05 31.98 29.38 27.17 24.07
OWT 32.69 30.49 27.87 25.49 21.87
MP-UWT 26.76 22.76 17.85 13.86 9.41
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Figure 10.13: Top, simulated input polarized image (left) and noisy polarized field (right) Bot-
tom, denoising of the polarized field using the EB-isotropic undecimated wavelets (left) and the
EB-curvelets (right).

standard deviation of the noise-free image. On each noisy image, we applied six different
transformations, thresholded the coefficients and reconstructed the filtered images. The
transforms we used are the QU-wavelets (QU-UWT), the EB-wavelets (EB-UWT), the
QU-curvelet (QU-CUR), the EB-curvelet (EB-CUR), the biorthogonal wavelet transform
(OWT) and the modulus-phase undecimated multiscale transform (MP-UWT). For each
filtered image Q (resp. U), we computed the Signal-to-Noise Ratio (SNR) in dB :

E = 10 log10(σ
2
I/σ

2
e) (10.33)

where σI is the standard deviation of the noise free original image component Q (resp.
U) and σe is the standard deviation of the error image i.e. the difference between the
noise-free component Q (resp. U) and the filtered component Q (resp. U). These errors
are given in Table (10.1) for the dust image and in Table (10.2) for the synchrotron image.

It is clear from the above results that the different transforms described here do not
perform as well on this specific numerical experiment. For the dust, QU-wavelets are
better when the noise level is not so high, while curvelets do better when the noise and
signal levels are of the same order. This can be explained by the fact that structures on
small scales are more or less isotropic, and therefore better represented by wavelets, while
large scale structures are anisotropic and therefore better analyzed using curvelets. When
increasing the noise level, structures on the smallest scales are no longer detected by either
of the two dictionaries. Only large scale features are detectable, and curvelets do this job
better. Dealing with the polarized synchrotron map, curvelets do better than wavelets in
all cases experimented with here. Although the bi-orthogonal wavelet transform is clearly
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not as good as the others in these experiments, it could nevertheless be very useful in
situations where computation time is an important issue. Indeed, since it doesn’t make
use of the spherical harmonics transform and also because it is not redundant, it is a
very fast transform. Finally the worse results were obtained using the Modulus-Phase
multiscale transform. This can be explained by the fact that the Gaussian approximation
we made for the noise in the wavelet transform of the modulus is not accurate enough.
Furthermore, it is not clear what is the best way to correct the phase wavelet coefficients
from the noise. A better understanding of the noise behavior after transformation is
clearly required before the Mod-Phase multiscale transform can be used for restoration
purposes. However, for other applications such as non-Gaussianity studies, the latter
transform could prove an interesting tool to use as well.



Chapter 11

IDL Routines

11.1 Introduction

A set of routines has been developed in IDL. Starting IDL using the script program
isap.pro allows the user to get the interactive sparse data analysis environment, and all
routines described in the following can be called. An online help facility is also available
by invoking the isaph program under IDL. See Chapter 1 for more details on the software
installation.

11.2 Functions for polarized spherical maps

11.2.1 Reading a polarized spherical map from a file : mrsp read

Read a polarized spherical map in Healpix format.

USAGE: map = mrsp read( file, noverb=noverb )

where

• file : Input string, name of the file to be read. The pathname can be included in the
string, by default ’file.fits’ is equivalemt to ’./file.fits’

• noverb : scalar, prevent the printing on the screen of the format (RING or NESTED)
of the read map and the number of pixels.

• map : Output 3D IDL array of Healpix map read. The map is setted to the NESTED
format after reading.

Examples:

• map = mrsp read( ’my file healpix pola.fits’, noverb=noverb )
Read the map stored into the file ’my file healpix pola.fits’ and load it into map.
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11.2.2 Writing a polarized spherical map into a file : mrsp write

Write a polarized spherical map in Healpix format.

USAGE: mrsp write, file, map, ring=ring

where

• file : Input string, name of the file to be writen. The pathname can be included in
the string, by default ’file.fits’ is equivalemt to ’./file.fits’

• map : Input 3D IDL array of Healpix map to be writen. The map is assumed to be
in the NESTED format.

• ring : scalar, if set convert the Healpix map data to the RING format for the writing.

11.2.3 Conversion of a polarized spherical map from TQU scheme to TEB
scheme : mrsp tqu2teb

Convert a polarized map in Healpix nested format from TQU scheme to TEB scheme.

USAGE: mrsp tqu2teb, map tqu, map teb

where

• map tqu : Input 3D IDL array of healpix polarized map in TQU scheme.

• map teb : Output 3D IDL array of healpix polarized map in TEB scheme.

11.2.4 Conversion of a polarized spherical map from TEB scheme to TQU
scheme : mrsp teb2tqu

Convert a polarized map in Healpix nested format from TEB scheme to TQU scheme.

USAGE: mrsp teb2tqu, map teb, map tqu

where

• map teb : Input 3D IDL array of healpix polarized map in TEB scheme.

• map tqu : Output 3D IDL array of healpix polarized map in TQU scheme.

11.2.5 Resizing a polarized spherical map: mrsp resize

Resize a polarized map in Healpix nested format.

USAGE: resize map = mrsp resize( map, nside=nside, ViaAlm=ViaAlm,
teb=teb )

where

• map : Input 3D IDL array of healpix polarized map in TQU scheme to be trans-
formed.
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• resize map : Output 3D IDL array of healpix polarized map in TQU scheme. Healpix
input map and output resized map are in nested format.

• nside : int, the new nside parameter of the output healpix resized map.

• ViaAlm : scalar, if set use alm transform for the resizing, otherwise, use interpola-
tion. Ignored if nside keyword value is lower than imag nside.

• teb : scalar, if set specifies that the input and output images are in TEB scheme.

Examples:

• map2 = mrsp resize( map, nside = 256, /ViaAlm )
resize an Healpix map.

11.3 General transform/reconstruction routines

11.3.1 Transformations of a polarized spherical map : mrsp trans

Compute a transform (E-B mode decomposition, wavelet with spline, Meyer or needelet
filters, curvelet, . . . ) on a polarized map on the sphere in the Healpix representation
(nested data representation) in TQU scheme.

The transform can be:

1. A E/B decomposition using the spin 2 transform.

2. An orthogonal wavelet on each T,Q,U component.

3. A pyramidal isotropic wavelet on each T,Q,U component.

4. An undecimated wavelet transform on each component.

5. A decimated modulus-Phase wavelet transform.

6. A undecimated modulus-Phase wavelet transform.

7. A curvelet transform.

USAGE: mrsp trans, Imag, Trans, NbrScale=NbrScale, lmax=lmax,
MeyerWave=MeyerWave, ebdec=ebdec, Cur=Cur, uwt=uwt, owt=owt,
mpdwt=mpdwt, mpuwt=mpuwt, PyrWT=PyrWT, DifInSH=DifInSH,

Overlap=Overlap, FirstBlockSize=FirstBlockSize

where

• Imag : Input 3D IDL array of healpix polarized map in TQU scheme. Input image
to be transformed.

• Trans : Output IDL structure with the following fields:
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– NbrScale : int, number of scales.

– nside : int, Healpix nside parameter.

– lmax : int, maximum l value in the Spherical Harmonic Space.

– npix : long, number of pixels of the input image.

– MeyerWave : int, 1 if the keyword MeyerWave used, otherwise 0.

– DifInSH : int, 1 if the keyword DifInSH used, otherwise 0.

– pyrtrans : int, 1 if a pyramidal decomposition has been applied, otherwise 0.

– ebdec : int, 1 if an EB decomposiiton has been applied, otherwise 0.

– DEC1 : IDL structure, first component transformation (depends on the chosen
transform).

– DEC2 : IDL structure, second component transformation (depends on the cho-
sen transform).

– DEC3 : IDL structure, third component transformation (depends on the chosen
transform).

– TransChoice : string, code of the chosen transform.

– TabCodeTransform : string array, array of transforms codes. TabCodeTrans-
form = [’T EBDEC’, ’T OWT’, ’T PyrWT’, ’T UWT’, ’T MPDWT’, ’T MPUWT’,
’T CUR’]

– TransName : string, transform’s name.

– TransTypeName : string array, array of transforms names. TransTypeName =
[’EBDEC’,’Bi-Orthogonal WT’, ’Pyramidal WT’, ’Undecimated WT’, ’Module-
Phase Decimated Transform’, ’Module-Phase Undecimated Transform’, ’Curvelet’]

• NbrScale : int, number of scales of the wavelet transforms.

• ebdec : scalar, if set an E/B decomposition is applied before the chosen multiscale
decomposition. If no transform is selected, it will be the default transformation.

• Cur : scalar, if set perform a curvelet transform.

• uwt : scalar, if set perform an undecimated isotropic wavelet transform.

• PyrWT : scalar, if set perform a pyramidal isotropic wavelet transform.

• owt : scalar, if set perform a bi-orthogonal wavelet transform on each face.

• mpdwt : scalar, if set perform a decimated module-phase wavelet transform.

• mpuwt : scalar, if set perform a undecimated module-phase wavelet transform.

• Overlap : int, if equal to 1 if blocks are overlapping, only used with curvelet trans-
form.

• FirstBlockSize : int, block size in the ridgelet transform at the finest scale (default
is 16), only used with curvelet transform.

• lmax : int, maximum l value in the Spherical Harmonic Space (for isoptropic wavelet
transform only).
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• DifInSH : Input keyword parameter. If set, the wavelet coefficients are computed
as the difference between two resolutions in the spherical harmonics representation.
Otherwise, the wavelet coefficients are computed as the difference between two res-
olutions in direct space. Only used with keyword uwt or PyrWT.

• MeyerWave : If set, use Meyer wavelets and set the keyword DifInSH. Only used
with keyword uwt or PyrWT.

Examples:

• mrsp trans, Imag, WT, NbrScale=5, /uwt
Compute the undecimated wavelet transform of the map Imag with five scales. The
result is stored in WT.

11.3.2 Reconstructions of a polarized spherical map : mrsp rec

Compute a inverse transform (wavelet, curvelet, . . . ) to get a polarized map on the
sphere in the Healpix representation (nested data representation) in TQU scheme from
its decomposition obtained by mrsp trans.

The transform can be:

1. A E/B decomposition using the spin 2 transform.

2. An orthogonal wavelet on each T,Q,U component.

3. A pyramidal isotropic wavelet on each T,Q,U component.

4. An undecimated wavelet transform on each component.

5. A decimated modulus-Phase wavelet transform.

6. A undecimated modulus-Phase wavelet transform.

7. A curvelet transform.

USAGE: mrsp rec, Trans, Rec

where

• Trans : Input IDL structure, see mrsp trans for more details.

• Rec : Output 3D IDL array of healpix polarized map in TQU scheme. Reconstructed
image.

Examples:

• mrsp trans, Imag, WT, NbrScale=5, /uwt
Compute the undecimated wavelet transform of the map Imag with five scales. The
result is stored in WT.

• mrsp rec, WT, RecIma
Reconstruct the image.
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11.4 Spin-2 spherical harmonic transform

11.4.1 ALM transform of a polarized spherical map : mrsp almtrans

Computes the spherical harmonic transform of a polarized TQU map using the Healpix
representation (nested data).

USAGE: mrsp almtrans, Imag, Trans, lmax=lmax, tab=tab,
complex=complex, norm=norm, fast=fast

where

• Imag : Input 3D IDL array of healpix polarized map in TQU scheme to be trans-
formed.

• Trans : Output IDL structure with the following fields:

– ALM : array of the ALM coefficients

ALM = fltarray[*,2,3] list of the real part (ALM[*,0,*]) and imaginary part
(ALM[*,1,*]) of the ALM. This is the default storage, ALM[*,*,0] is ALM T,

ALM[*,*,1] is ALM E and ALM[*,*,2] is ALM B
ALM = cfarr[*,3] list of the ALM in complex values format if the keyword
complex is set. ALM[*,0] is ALM T, ALM[*,1] is ALM E and ALM[*,2] is

ALM B
ALM = fltarray[NbrMaxM, NbrMaxL, 2, 3] table of the real part

(ALM[*,*,0,*]) and imaginary part (ALM[*,*,1,*]) of the ALM if the keyword
tab is set. ALM[*,*,*,0] is ALM T, ALM[*,*,*,1] is ALM E and ALM[*,*,*,2]

is ALM B
ALM = cfarr[NbrMaxM, NbrMaxL, 3] table of the ALM in complex values

format if the keywords complex and tab are both setted. ALM[*,*,0] is ALM
T, ALM[*,*,1] is ALM E and ALM[*,*,2] is ALM B

By default, NbrMaxM = NbrMaxL = lmax+1

– complex alm : int, 0 (default value) if ALM array contains real and imaginary
part separated. 1 if ALM is a complex array.

– PixelType : int, 0 for a Healpix input map (1 for GLESP but not used).

– tab : int, 0 for default ALM representation as a list (i.e. 1D IDL array) and
1 for 2D representation as a table (i.e. l for the first dimension and m for the
second).

– nside : int, Healpix nside parameter.

– lmax : int, maximum l value in the Spherical Harmonic Space.

– npix : long, number of pixels of the input image.

– TabNbrM : int array[NbrMaxL], max number of m value for a given l, only used
if keyword tab is set otherwise, 0.

– index : long array, indicies of the ALM coefficients, used only if keyword tab is
not set.

– NormVal : float, normalization value applied to the alm coefficients (only if
keyword norm used).



11.4 Spin-2 spherical harmonic transform 183

– norm : int, 0 if no normalization has been aplied, else 1.

• lmax : int, Number of spherical harmonics computed in the decomposition. For a
Healpix map, default is 3*nside and should be between 2*nside and 4*nside.

• tab : scalar, if set, ALM coefficients in Trans.alm are stored in a 2D array: Trans.alm[m,l]
where m = 0..Trans.TabNbrM[l]-1 and l = 0..lmax-1

• complex : scalar, if set Trans.alm will contain complex values instead of the real and
imaginary parts.

• norm : scalar, if set, a normalization is performed to the alm coefficients.

Example:

• mrsp almtrans, Imag, Output
Compute the spherical harmonics transform of a polarized image, the result is stored
in Output.

11.4.2 ALM inverse transform of a polarized spherical map : mrsp almrec

Computes the inverse spherical harmonic transform of a polarized TQU map using
using the Healpix representation (nested data).

USAGE: mrsp almrec, Trans, imag, pixel window=pixel window

where

• Trans : Input IDL structure of ALM coefficients, see mrsp almtrans above for details.

• Imag : Output 3D IDL array of healpix polarized map in TQU scheme. Image
reconstructed in Healpix nested representation.

• pixel window : scalar, if set the image is convolved by the healpix pixel window (only
for Healpix map).

Example:

• mrsp almtrans, PolaImag, Output
Compute the spherical harmonics transform of a polarized image, the result is stored
in Output.

• mrsp almrec, Output, PolaRec
Reconstruct the image.
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11.4.3 Power spectrum and cross spectrum exctraction from polarized ALM :
mrsp alm2spec

Computes the power spectrums and cross spectrums of a polarized map from the
polarized ALM coefficients.

USAGE: spec = mrsp alm2spec( ALM, StdPS=StdPS )

where

• ALM : Input IDL structure of ALM polarized coefficients, see mrsp almtrans above
for details.

• spec : Output 2D IDL float array[ALM.lmax+1,6], the TT, EE, BB, TE, TB, EB
spectrums. P[k,i] = Mean( SPECTRUM[*,l,i] ) i=0...5.

• StdPS : Output 2D IDL float array[ALM.lmax+1,6]: estimated standard deviation
of the spectrums coefficients.

Example:

• mrsp almtrans, Imag, Output
Compute the spherical harmonics transform of a polarized image, the result is stored
in Output.

• spec = mrsp alm2spec( Output, StdPS=StdPS )
Compute the spectrums of the image and it’s associated standard deviation.

11.4.4 Power spectrum and cross spectrum exctraction from a polarized im-
age : mrsp spec

Computes the power spectrums and cross spectrums of a polarized map, using the
HEALPix representation (nested data representation by default). By default a normali-
sation is applied on the ALM coefficents.

USAGE: spec = mrsp spec( Imag, nonorm=nonorm, teb=teb,
NormVal=NormVal, StdPS=StdPS, lmax=lmax )

where

• Imag : Input 3D IDL array of healpix polarized map in TQU scheme. Input image
whose power spectrum will be extracted.

• spec : Output 2D IDL float array[ALM.lmax+1,6], the TT, EE, BB, TE, TB, EB
spectrums. P[k,i] = Mean( SPECTRUM[*,l,i] ) i=0...5.

• Lmax : int, number of spherical harmonics computed in the decomposition and size
of the computed spectrum (Lmax+1). Default is 3*nside and should be between
2*nside and 4*nside.

• nonorm : scalar, if set no normalisation is applied on the ALM computed.
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• StdPS : Output 2D IDL float array[ALM.lmax+1,6]: estimated standard deviation
of the spectrums coefficients.

• NormVal : float, normalization value applied to the alm coefficients.

• teb : scalar, if set specifies that the input map is in TEB scheme.

Example:

• P = mrsp spec( Imag )
Compute the spectrum of the polarized image.

11.5 Polarized Wavelets

11.5.1 Undecimated Isotropic Wavelet Transform of a polarized spherical
map : mrsp wttrans

Computes the undecimated isotropic wavelet transform of polarized maps on the sphere
in TQU scheme, using the Healpix representation (nested data representation). The
wavelet function is zonal and its spherical harmonics coefficients al,0 follow a cubic box-
spline profile. If the keyword DifInSH is set, the wavelet coefficients are derived in the
Spherical Harmonic Space, otherwise (default) they are derived in the direct space.

USAGE: mrsp wttrans, Imag, Trans, NbrScale=NbrScale, lmax=lmax,
DifInSH=DifInSH, MeyerWave=MeyerWave

where

• Imag : Input 3D IDL array of healpix polarized map in TQU scheme. Input image
to be transformed.

• Trans : Output IDL structure with the following fields:

– NbrScale : int, number of scales.

– nside : int, Healpix nside parameter.

– lmax : int, maximum l value in the Spherical Harmonic Space.

– npix : long, number of pixels of the input image.

– MeyerWave : int, 1 if the keyword MeyerWave used, otherwise 0

– DifInSH : int, 1 if the keyword DifInSH used, otherwise 0

– Coef : fltarr[npix,NbrScale,3] wavelet transform of the data. Coef[*,*,0] =
wavelet transform on T, Coef[*,*,1] = wavelet transform on E, Coef[*,*,2] =
wavelet transform on B

Coef[*,0,*] = wavelet coefficients of the finest scale (highest frequencies).
Coef[*,NbrScale-1,*] = coarsest scale (lowest frequencies).

• NbrScale : int, optional input parameter specifying the number of scales (default is
4).
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• Lmax : int, optional input parameter specifying the maximum multipole number l
in the spherical harmonics decomposition (default is 3 × nside, should be between
2× nside and 4× nside).

• DifInSH : Input keyword parameter. If set, the wavelet coefficients are computed
as the difference between two resolutions in the spherical harmonics representation.
Otherwise, the wavelet coefficients are computed as the difference between two res-
olutions in direct space.

• MeyerWave : If set, use Meyer wavelets and set the keyword DifInSH.

Example:

• mrsp wttrans, Imag, Output, NbrScale=5
Compute the isotropic wavelet transform of the map Imag with five scales. The
result is stored in Output.

11.5.2 Undecimated Isotropic Wavelet Reconstruction of a polarized spher-
ical map : mrsp wtrec

Reconstructs a polarized maps on the sphere in TQU scheme using the Healpix rep-
resentation (nested data representation) from its wavelet coefficients obtained with the
undecimated isotropic wavelet transform on the sphere, described right above.

USAGE: mrsp wtrec, Trans, Rec, filter=filter

where

• Trans: Input IDL structures with the following fields:

– NbrScale : int, number of scales.

– nside : int, Healpix nside parameter.

– lmax : int, maximum l value in the Spherical Harmonic Space.

– npix : long, number of pixels of the input image.

– MeyerWave : int, 1 if the keyword MeyerWave used, otherwise 0

– DifInSH : int, 1 if the keyword DifInSH used, otherwise 0

– Coef : fltarr[npix,NbrScale,3] wavelet transform of the data. Coef[*,*,0] =
wavelet transform on T, Coef[*,*,1] = wavelet transform on E, Coef[*,*,2] =
wavelet transform on B

Coef[*,0,*] = wavelet coefficients of the finest scale (highest frequencies).
Coef[*,NbrScale-1,*] = coarsest scale (lowest frequencies).

• Rec : Output 3D IDL array of healpix polarized map in TQU scheme. Reconstructed
image from the wavelet coefficients.

• filter : Input keyword parameter. Use filters for the reconstructions. If this keyword
is not set, the reconstructed image is obtained by a simple addition of all wavelet
scales. Automaticaly applied if keyword MeyerWave or DifInSH were set at the
wavelet decomposition.



11.5 Polarized Wavelets 187

Examples:

• mrsp wttrans, Imag, Output, NbrScale=5
Compute the isotropic wavelet transform of the map Imag with five scales. The
result is stored in Output.

• mrsp wtrec, Output, map
Reconstruct the map.

11.5.3 Extract a scale from a polar decomposition : mrsp wtget

Return a band of a transform for Healpix polarized map (wavelet, curvelet. . . ) ob-
tained by the command mrsp trans.

USAGE: Scale = mrsp wtget( Trans, Component, ScaleNumber,
BandNumber=BandNumber, NormVal=NormVal )

where

• Trans : Input IDL structure, see mrsp trans for more details.

• ScaleNumber : int, scale number of the band to be extracted. The scale number
must be between 0 and Trans.NbrScale-1.

• Component : int, choice of the component, 0 is for T, 1 for E and 2 for B.

• NormVal : float, optional normalization value of the band (for isotropic wavelet
transform).

• BandNumber : int, ridgelet band number (for curvelet transform).

• Scale : return value IDL array of the band extracted. See more details on the 1D
versions of the functions. No band is extracted from Modulus-Phases transforms
(return 0). For a E/B decomposition, it will be either the T map, the E map or the
B map.

11.5.4 Put a scale into a polar decomposition : mrsp wtput

Put a band into a transform for Healpix polarized map (wavelet, curvelet. . . ) obtained
by the command mrsp trans.

USAGE: mrsp wtput, Trans, Scale, Component, ScaleNumber,
BandNumber=BandNumber

where

• Trans : Input IDL structure, see mrsp trans for more details.

• Scale : Input IDL array of the band inserted. See more details on the 1D versions
of the functions. No band is inserted into Modulus-Phases transforms. For a E/B
decomposition, it will be either the T map, the E map or the B map.



188 IDL Routines

• ScaleNumber : int, scale number of the band to be extracted. The scale number
must be between 0 and Trans.NbrScale-1.

• Component : int, choice of the component, 0 is for T, 1 for E and 2 for B.

• BandNumber : int, ridgelet band number (for curvelet transform).

11.6 Denoising

11.6.1 Wavelet filtering of a polarized spherical map : mrsp wtfilter

Wavelet denoising of a polarized image on the sphere using Healpix representation in
TQU scheme (nested pixel representation). By default Gaussian noise is considered. If
the keyword SigmaNoise is not set, then the noise standard deviation is automatically
estimated. If the keyword MAD is set, then a correlated Gaussian noise is considered
and the noise level at each scale is derived from the Median Absolution Deviation (MAD)
method. If the keyword KillLastScale is set, the coarsest resolution is set to zero. The
thresholded wavelet coefficients can be obtained using the keyword Trans. If the input
keyword niter is set, then an iterative algorithm is applied and if the pos keyword is also
set, then a positivity constraint is added.

USAGE: mrsp wtfilter, Imag, Filter, NbrScale=NbrScale, NSigma=NSigma,
SigmaNoise=SigmaNoise, KillLastScale=KillLastScale, pos=pos, mad=mad,
Trans=Trans, niter=niter, FirstScale=FirstScale, Use FdrAll=Use FdrAll,

soft=soft, fdr=fdr, lmax=lmax, FilterLast=FilterLast, mask=mask

where

• Imag : Input 3D IDL array of healpix polarized map in TQU scheme. Input image
to be filtered.

• Filter : Output 3D IDL array of healpix polarized map in TQU scheme containing
the filtered map.

• NbrScale : int, number of scales (default is 4).

• NSigma : float, level of thresholding (default is 3).

• SigmaNoise : float, noise standard deviation. Default is automatically estimated.

• mad : scalar, if set the noise level is derived at each scale using the MAD of the
wavelet coefficient.

• KillLastScale : scalar, if set the last scale is set to zero.

• niter : int, number of iterations used in the reconstruction.

• pos : scalar, if set the solution is assumed to be positive.

• FirstScale : int, consider only scales larger than FirstScale. Default is 1 (i.e. all
scales are used).
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• Soft : scalar, if set use soft thresholding instead of hard thresholding.

• fdr : float between 0 (default) and 1 (max, if greater or equal to 1, set to 0.05), used
to estimate a threshold level instead of a NSigma threshold, threshold is applied
from scale j=FirstScale to the last.

• Use FdrAll : same as fdr but applied to all scales.

• FilterLast : scalar, if set the last scale is filtered.

• mask : IDL array of healpix map, input mask applied.

• lmax : int, maximum l value in the Spherical Harmonic Space.

• Trans : IDL structure: Thresholded wavelet decomposition of the input image.

Example:

• mrsp wtfilter, Imag, Filter, NbrScale=5, Nsigma=5
Wavelet filtering with five scales and a 5 sigma threshold.

11.6.2 Thresholding in polarized wavelet or curvelet space : mrsp threshold

Threshold the decomposition coefficients of a polarized healpix map. This routine
works with several decompositions (see mrsp trans).

USAGE: mrsp threshold, Trans, NSigma=Nsigma, Mad=Mad,
KillLastScale=KillLastScale

where where

• Trans : IDL structures obtained from the mrsp trans routine.

• Nsigma: Level of thresholding (default is 3)

• KillLastScale: if set, the last scale is set to zero

Examples:

Compute the undecimated wavelet transform of a vector field I with five scales (needlet
filters). The result is stored in WT, then wavelet coefficients are threshold at 2 sigma,
and the filtered polarized map is reconstructed.

• mrsp trans, I, WT, NbrScale=5, /UWT, /NeedletWave

• mrsp threshold, WT, NSigma=2

• mrsp rec, WT, RecPola

Compute the curvelet transform of a vector field I with five scales. The result is stored
in C, then curvelet coefficients are threshold at 5 sigma, and the filtered polarized map is
reconstructed.



190 IDL Routines

• mrsp trans, I, C, NbrScale=5, /Cur

• mrsp threshold, C, NSigma=5

• mrsp rec, C, RecPola



Part III
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Chapter 12

Introduction

Several techniques have been proposed in the literature to estimate Poisson intensity in
2D. A major class of methods adopt a multiscale bayesian framework specifically tailored
for Poisson data (Nowak and Kolaczyk 2000), independently initiated by Timmermann
and Nowak (1999) and Kolaczyk (1999). Lefkimmiaits et al. (2009) proposed an improved
bayesian framework for analyzing Poisson processes, based on a multiscale representation
of the Poisson process in which the ratios of the underlying Poisson intensities in adjacent
scales are modeled as mixtures of conjugate parametric distributions. Another approach
includes preprocessing the count data by a variance stabilizing transform (VST) such as
the Anscombe (Anscombe 1948) and the Fisz (Fryźlewicz and Nason 2004b) transforms,
applied respectively in the spatial (Donoho 1993) or in the wavelet domain (Fryźlewicz
and Nason 2004a). The transform reforms the data so that the noise approximately be-
comes Gaussian with a constant variance. Standard techniques for independant identically
distributed Gaussian noise are then used for denoising. Zhang et al. (2008) proposed a
powerful method called Multi-Scale Variance Stabilizing Tranform (MS-VST). It consists
in combining a VST with a multiscale transform (wavelets, ridgelets or curvelets), yield-
ing asymptotically normally distributed coefficients with known variances. The choice of
the multi-scale method depends on the morphology of the data. Wavelets represent more
efficiently regular structures and isotropic singularities, whereas ridgelets are designed to
represent global lines in an image, and curvelets represent efficiently curvilinear contours.
Significant coefficients are then detected with binary hypothesis testing, and the final
estimate is reconstructed with an iterative scheme. In Starck et al. (2009a), it was shown
that sources can be detected in 3D FERMI LAT data (2D+time or 2D+energy) using a
specific 3D extension of the MS-VST. Schmitt et al. (2010) proposed a method for Poisson
intensity estimation on spherical data called Multi-Scale Variance Stabilizing Transform
on the Sphere (MS-VSTS). This MS-VSTS (Multi-Scale Variance Stabilizing Transform
on the Sphere) package offers a Poisson denoising method on the sphere, designed for
Fermi photon counts maps. This method is based on the MS-VST (Zhang et al. 2008)
and on multi-scale transforms on the sphere (Starck et al. 2007b; Abrial et al. 2007; Abrial
et al. 2008). Chapter 13 introduces the MS-VSTS. Chapter 14 applies the MS-VSTS to
spherical data restoration. Chapter 15 applies the MS-VSTS to inpainting. Chapter 16
applies the MS-VSTS to background extraction. An accurate description of the IDL rou-
tines that makeup this package is given in Chapter 18. An extension to multichannel
denoising and deconvolution is given in Chapter 17 Conclusions are drawn in Chapter 19.
All experiments were performed on HEALPix maps with nside = 128 (Górski et al. 2005),
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which corresponds to a good pixelisation choice for data such as the GLAST/FERMI res-
olution. The performance of the method is not dependent on the nside parameter. For a
given data set, if nside is small, it just means that we don’t want to investigate the finest
scales. If nside is large, the number of counts per pixel will be very small, and we may
not have enough statistics to get any information at the finest resolution levels. But it
will not have any bad effect on the solution. Indeed, the finest scales will be smoothed,
since our algorithm will not detect any significant wavelet coefficients in the finest scales.
Hence, starting with a fine pixelisation (i.e. large nside), our method will provide a kind of
automatic binning, by thresholding wavelets coefficients at scales and at spatial positions
where the number of counts is not sufficient.



Chapter 13

Multi-Scale Variance Stabilizing
Transform on the Sphere
(MS-VSTS)

13.1 Principle of VST

13.1.1 VST of a Poisson process

Given Poisson data Y := (Yi)i, each sample Yi ∼ P(λi) has a variance Var[Yi] = λi.
Thus, the variance of Y is signal-dependant. The aim of a VST T is to stabilize the
data such that each coefficient of T(Y) has an (asymptotically) constant variance, say
1, irrespective of the value of λi. In addition, for the VST used in this study, T (Y) is
asymptotically normally distributed. Thus, the VST-transformed data are asymptotically
stationary and gaussian.

The Anscombe transform (Anscombe 1948) is a widely used VST which has a simple
square-root form

T(Y ) := 2
√
Y + 3/8. (13.1)

We can show that T(Y ) is asymptotically normal as the intensity increases.

T(Y )− 2
√
λ

D
GGGGGGGGA

λ→ +∞
N (0, 1) (13.2)

It can be shown that the Anscombe VST requires a high underlying intensity to well
stabilize the data (typically for λ > 10) (Zhang et al. 2008).

13.1.2 VST of a filtered Poisson process

Let Zj :=
∑

i h[i]Yj−i be the filtered process obtained by convolving (Yi)i with a
discrete filter h. We will use Z to denote any of the Zj’s. Let us define τk :=

∑
i(h[i])k for

k = 1, 2, · · · . In addition, we adopt a local homogeneity assumption stating that λj−i = λ
for all i within the support of h.

We define the square-root transform T as follows:

T (Z) := b · sign(Z + c)|Z + c|1/2, (13.3)
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where b is a normalizing factor.
(Square root as VST) If τ1 6= 0, ‖h‖2, ‖h‖3 <∞, then we have :

sign(Z + c)
√
|Z + c| − sign(τ1)

√
|τ1|λ

D
GGGGGGGGA

λ→ +∞
N
(

0,
τ2

4|τ1|

)
.

(13.4)

This proves that T is a VST for a filtered Poisson process (with a nonzero-mean filter) in
that T (Y ) is asymptotically normally distributed with a stabilized variance as λ becomes
large (see Zhang et al. (2008) for a proof).

13.2 MS-VSTS

The MS-VSTS (Schmitt et al. 2010) consists in combining the square-root VST with
a multi-scale transform on the sphere.

13.2.1 MS-VSTS + IUWT

This section describes the MS-VSTS + IUWT, which is a combination of a square-root
VST with the IUWT. The recursive scheme is:

IUWT

{
aj = hj−1 ∗ aj−1
dj = aj−1 − aj

=⇒
MS-VSTS

+ IUWT

{
aj = hj−1 ∗ aj−1
dj = Tj−1(aj−1)− Tj(aj)

.

(13.5)

In (13.5), the filtering on aj−1 can be rewritten as a filtering on a0 := Y, i.e., aj =
h(j) ∗ a0, where h(j) = hj−1 ∗ · · · ∗h1 ∗h0 for j > 1 and h(0) = δ, where δ is the Dirac pulse
(δ = 1 on a single pixel and 0 everywhere else). Tj is the VST operator at scale j:

Tj(aj) = b(j)sign(aj + c(j))
√
|aj + c(j)|. (13.6)

Let us define τ
(j)
k :=

∑
i(h

(j)[i])k. In Zhang et al. (2008), it has ben shown that, to have
an optimal convergence rate for the VST, the constant c(j) associated to h(j) should be
set to:

c(j) :=
7τ

(j)
2

8τ
(j)
1

− τ
(j)
3

2τ
(j)
2

. (13.7)

The MS-VSTS+IUWT procedure is directly invertible as we have:

a0(θ, ϕ) = T−10

[
TJ(aJ) +

J∑
j=1

dj

]
(θ, ϕ). (13.8)

Setting b(j) := sgn(τ
(j)
1 )/

√
|τ (j)1 |, if λ is constant within the support of the filter. h(j), then
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we have (Zhang et al. 2008):

dj(θ, ϕ)
D

GGGGGGGGA

λ→ +∞
N

(
0,

τ
(j−1)
2

4τ
(j−1)2
1

+

τ
(j)
2

4τ
(j)2

1

− 〈h
(j−1), h(j)〉

2τ
(j−1)
1 τ

(j)
1

)
,

(13.9)

where 〈., .〉 denotes inner product.
It means that the detail coefficients issued from locally homogeneous parts of the signal

follow asymptotically a central normal distribution with an intensity-independant variance
which relies solely on the filter h and the current scale for a given filter h. Consequently,

the stabilized variances and the constants b(j),c(j),τ
(j)
k can all be pre-computed. Let us

define σ2
(j) the stabilized variance at scale j for a locally homogeneous part of the signal:

σ2
(j) =

τ
(j−1)
2

4τ
(j−1)2
1

+
τ
(j)
2

4τ
(j)2

1

− 〈h
(j−1), h(j)〉

2τ
(j−1)
1 τ

(j)
1

. (13.10)

To compute the σ(j), b
(j),c(j),τ

(j)
k , we only have to know the filters h(j). We compute

these filters thanks to the formula aj = h(j) ∗ a0, by applying the IUWT to a Dirac pulse
a0 = δ. Then, the h(j) are the scaling coefficients of the IUWT. The σ(j) have been
precomputed for a 6-scaled IUWT (Table 13.1).

Table 13.1: Precomputed values of the variances σj of the wavelet coefficients.

Wavelet scale j Value of σj
1 0.484704
2 0.0552595
3 0.0236458
4 0.0114056
5 0.00567026

We have simulated Poisson images of different constant intensities λ, computed the
IUWT with MS-VSTS on each image and observed the variation of the normalized value
of σ(j) ((σ(j))simulated/(σ(j))theoretical) as a function of λ for each scale j (Fig. 13.1). We
see that the wavelet coefficients are stabilized when λ & 0.1 except for the first wavelet
scale, which is mostly constituted of noise. On Fig. 13.2, we compare the result of MS-
VSTS with Anscombe + wavelet shrinkage, on sources of varying intensities. We see that
MS-VSTS works well on sources of very low intensities, whereas Anscombe doesn’t work
when the intensity is too low.

13.2.2 MS-VSTS + Curvelets

As the first step of the algorithm is an IUWT, we can stabilize each resolution level as
in Equation (13.5). We then apply the local ridgelet transform on each stabilized wavelet
band.

It is not as straightforward as with the IUWT to derive the asymptotic noise variance
in the stabilized curvelet domain. In our experiments, we derived them using simulated
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Poisson data of stationary intensity level λ. After having checked that the standard
deviation in the curvelet bands becomes stabilized as the intensity level increases (which
means that the stabilization is working properly), we stored the standard deviation σj,l
for each wavelet scale j and each ridgelet band l (Table 13.2).

Table 13.2: Asymptotic values of the variances σj,k of the curvelet coefficients.

j l = 1 l = 2 l = 3 l = 4

1 1.74550 0.348175
2 0.230621 0.248233 0.196981
3 0.0548140 0.0989918 0.219056
4 0.0212912 0.0417454 0.0875663 0.20375
5 0.00989616 0.0158273 0.0352021 0.163248
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Figure 13.1: Normalized value ((σ(j))simulated/(σ(j))theoretical) of the stabilized variances at each
scale j as a function of λ.
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Figure 13.2: Comparison of MS-VSTS with Anscombe + wavelet shrinkage on a single HEALPix
face. Top Left : Sources of varying intensity. Top Right : Sources of varying intensity with
Poisson noise. Bottom Left : Poisson sources of varying intensity reconstructed with Anscombe
+ wavelet shrinkage. Bottom Right : Poisson sources of varying intensity reconstructed with
MS-VSTS.



Chapter 14

Poisson denoising

14.1 MS-VST + IUWT

Under the hypothesis of homogeneous Poisson intensity, the stabilized wavelet coef-
ficients dj behave like centered Gaussian variables of standard deviation σ(j). We can
detect significant coefficients with binary hypothesis testing as in Gaussian denoising.

Under the null hypothesis H0 of homogeneous Poisson intensity, the distribution of
the stabilized wavelet coefficient dj[k] at scale j and location index k can be written as:

p(dj[k]) =
1√

2πσj
exp(−dj[k]2/2σ2

j ). (14.1)

The rejection of the hypothesis H0 depends on the double-sided p-value:

pj[k] = 2
1√

2πσj

+∞∫
|dj [k]|

exp(−x2/2σ2
j )dx. (14.2)

Consequently, to accept or reject H0, we compare each |dj[k]| with a critical threshold
κσj, κ = 3, 4 or 5 corresponding respectively to significance levels. This amounts to
deciding that:

• if |dj[k]| > κσj, dj[k] is significant.

• if |dj[k]| < κσj, dj[k] is not significant.

Then we have to invert the MS-VSTS scheme to reconstruct the estimate. However,
although the direct inversion is possible (Eq. (13.8)), it can not guarantee a positive
intensity estimate, while the Poisson intensity is always nonnegative. A positivity projec-
tion can be applied, but important structures could be lost in the estimate. To tackle this
problem, we reformulate the reconstruction as a convex optimisation problem and solve it
iteratively with an algorithm based on Hybrid Steepest Descent (HSD) (Yamada 2001).

We define the multiresolution support M, which is determined by the set of detected
significant coefficients after hypothesis testing:

M := {(j, k)|if dj[k] is declared significant}. (14.3)
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We formulate the reconstruction problem as a convex constrained minimization prob-
lem:

Arg min
X
‖ΦTX‖1, s.t.{

X > 0,
∀(j, k) ∈M, (ΦTX)j[k] = (ΦTY)j[k],

(14.4)

where Φ denotes the IUWT synthesis operator.
This problem is solved with the following iterative scheme: the image is initialised by

X(0) = 0, and the iteration scheme is, for n = 0 to Nmax − 1:

X̃ = P+[X(n) + ΦPMΦT (Y −X(n))] (14.5)

X(n+1) = ΦSTλn [ΦT X̃] (14.6)

where P+ denotes the projection on the positive orthant, PM denotes the projection on
the multiresolution support M:

PMdj[k] =

{
dj[k] if (j, k) ∈M,

0 otherwise
. (14.7)

and STλn the soft-thresholding with threshold λn:

STλn [d] =

{
sign(d)(|d| − λn) if |d| > λn,

0 otherwise
. (14.8)

We chose a decreasing threshold λn = Nmax−n
Nmax−1 , n = 1, 2, · · · , Nmax.

The final estimate of the Poisson intensity is: Λ̂ = X(Nmax). Algorithm 12 summarizes
the main steps of the MS-VSTS + IUWT denoising algorithm.

Algorithm 12 MS-VSTS + IUWT Denoising

Require: data a0 := Y, number of iterations Nmax, threshold κ
Detection

1: for j = 1 to J do
2: Compute aj and dj using (13.5).
3: Hard threshold |dj [k]| with threshold κσj and update M.
4: end for

Estimation

5: Initialize X(0) = 0, λ0 = 1.
6: for n = 0 to Nmax − 1 do
7: X̃ = P+[X(n) + ΦPMΦT (Y −X(n))].
8: X(n+1) = ΦSTλn [ΦT X̃].

9: λn+1 = Nmax−(n+1)
Nmax−1 .

10: end for
11: Get the estimate Λ̂ = X(Nmax).
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14.2 Multi-resolution support adaptation

When two sources are too close, the less intense source may not be detected because
of the negative wavelet coefficients of the brightest source. To avoid such a drawback, we
may update the multi-resolution support at each iteration. The idea is to withdraw the
detected sources and to make a detection on the remaining residual, so as to detect the
sources which may have been missed at the first detection.

At each iteration n, we compute the MS-VSTS of X(n). We denote d
(n)
j [k] the stabilised

coefficients of X(n). We make a hard thresholding on (dj[k] − d
(n)
j [k]) with the same

thresholds as in the detection step. Significant coefficients are added to the multiresolution
support M.

Algorithm 13 MS-VSTS + IUWT Denoising + Multiresolution Support Adaptation

Require: data a0 := Y, number of iterations Nmax, threshold κ
Detection

1: for j = 1 to J do
2: Compute aj and dj using (13.5).
3: Hard threshold |dj [k]| with threshold κσj and update M.
4: end for

Estimation

5: Initialize X(0) = 0, λ0 = 1.
6: for n = 0 to Nmax − 1 do
7: X̃ = P+[X(n) + ΦPMΦT (Y −X(n))].
8: X(n+1) = ΦSTλn [ΦT X̃].

9: Compute the MS-VSTS on X(n) to get the stabilised coeffcients d
(n)
j .

10: Hard threshold |dj [k]− d(n)j [k]| and update M.

11: λn+1 = Nmax−(n+1)
Nmax−1 .

12: end for
13: Get the estimate Λ̂ = X(Nmax).

The main steps of the algorithm are summarized in Algorithm 13. In practice, we use
Algorithm 13 instead of Algorithm 12 in our experiments.

14.3 MS-VST + Curvelets

Insignificant coefficients are zeroed by using the same hypothesis testing framework
as in the wavelet scale. At each wavelet scale j and ridgelet band k, we make a hard
thresholding on curvelet coefficients with threshold κσj,k, κ = 3, 4 or 5. Finally, a direct
reconstruction can be performed by first inverting the local ridgelet transforms and then
inverting the MS-VST + IUWT (Equation (13.8)). An iterative reconstruction may also
be performed.

Algorithm 14 summarizes the main steps of the MS-VSTS + Curvelets denoising
algorithm.
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Algorithm 14 MS-VSTS + Curvelets Denoising

1: Apply the MS-VST + IUWT with J scales to get the stabilized wavelet subbands dj .
2: Set B1 = Bmin.
3: for j = 1 to J do
4: Partition the subband dj with blocks of side-length Bj and apply the digital ridgelet

transform to each block to obtain the stabilized curvelets coefficients.
5: if j modulo 2 = 1 then
6: Bj+1 = 2Bj
7: else
8: Bj+1 = Bj
9: end if

10: HTs on the stabilized curvelet coefficients.
11: end for
12: Invert the ridgelet transform in each block before inverting the MS-VST + IUWT.

14.4 Experiments

The method was tested on simulated Fermi data. The simulated data are the sum of
a Milky Way diffuse background model and 1000 gamma ray point sources. We based our
Galactic diffuse emission model intensity on the model gll iem v02 obtained at the Fermi
Science Support Center (Myers 2009) . This model results from a fit of the LAT photons
with various gas templates as well as inverse Compton in several energy bands. We used
a realistic point-spread function for the sources, based on Monte Carlo simulations of the
LAT and accelerator tests, that scale approximately as 0.8(E/1GeV )−0.8 degrees. The
position of the 205 brightest sources were taken from the Fermi 3-month source list (Abdo
et al. 2009). The position of the 795 remaining sources follow the LAT 1-year Point Source
Catalog (Myers 2010) sources distribution: each simulated source was randomly sorted
in a box of ∆l=5o and ∆b=1o around a LAT 1-year catalog source. We simulated each
source assuming a power-law dependence with its spectral index given by the 3-month
source list and the first year catalog. We used an exposure of 3.1010s.cm2 corresponding
approximatively to one year of Fermi all-sky survey around 1 GeV. The simulated counts
map shown here correspond to photons energy from 150 MeV to 20 GeV.

Fig. 14.1 compares the result of denoising with MS-VST + IUWT (Algorithm 12),
MS-VST + curvelets (Algorithm 14) and Anscombe VST + wavelet shrinkage on a sim-
ulated Fermi map. Fig. 14.2 shows one HEALPix face of the results. As expected from
theory, the Anscombe method produces poor results to denoise Fermi data, because the
underlyning intensity is too weak. Both wavelet and curvelet denoising on the sphere
perform much better. For this application, wavelets are slightly better than curvelets
(SNRwavelets = 65.8dB, SNRcurvelets = 37.3dB, SNR(dB) = 20 log(σsignal/σnoise)). As
this image contains many point sources, thisresult is expected. Indeed wavelet are better
than curvelets to represent isotropic objects.
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Figure 14.1: Top Left: Fermi simulated map without noise. Top Right: Fermi simulated map
with Poisson noise. Middle Left: Fermi simulated map denoised with Anscombe VST + wavelet
shrinkage. Middle Right: Fermi simulated map denoised with MS-VSTS + curvelets (Algo-
rithm 14). Bottom Left: Fermi simulated map denoised with MS-VSTS + IUWT (Algorithm 12)
with threshold 5σj . Bottom Right: Fermi simulated map denoised with MS-VSTS + IUWT (Al-
gorithm 12) with threshold 3σj . Pictures are in logarithmic scale.
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Figure 14.2: View of a single HEALPix face from the results of Figure 14.1. Top Left: Fermi
simulated map without noise. Top Right: Fermi simulated map with Poisson noise. Middle
Left: Fermi simulated map denoised with Anscombe VST + wavelet shrinkage. Middle Right:
Fermi simulated map denoised with MS-VSTS + curvelets (Algorithm 14). Bottom Left: Fermi
simulated map denoised with MS-VSTS + IUWT (Algorithm 12) with threshold 5σj . Bottom
Right: Fermi simulated map denoised with MS-VSTS + IUWT (Algorithm 12) with threshold
3σj . Pictures are in logarithmic scale.



Chapter 15

Milky Way diffuse background
study: denoising and inpainting

In order to extract a diffuse emission, we want to remove the point sources from the
data. As our HSD algorithm is very close to the MCA algorithm (Starck et al. 2004b),
an idea is to mask the most intense sources and to modify our algorithm in order to
interpolate through the gaps exactly as in the MCA-Inpainting algorithm (Abrial et al.
2007). This modified algorithm can be called MS-VSTS-Inpainting algorithm.

The problem can be reformulated as a convex constrained minimization problem:

Arg min
X
‖ΦTX‖1, s.t.{

X > 0,
∀(j, k) ∈M, (ΦTΠX)j[k] = (ΦTY)j[k],

(15.1)

where Π is a binary mask (1 on valid data and 0 on invalid data).
The iterative scheme can be adapted to cope with a binary mask, which gives:

X̃ = P+[X(n) + ΦPMΦTΠ(Y −X(n))], (15.2)

X(n+1) = ΦSTλn [ΦX̃]. (15.3)

The thresholding strategy has to be adapted. Indeed, for the impainting task we need
to have a very large initial threshold in order to have a very smooth image in the beginning
and to refine the details progressively. We chose an exponentially decreasing threshold:

λn = λmax(2
(Nmax−n
Nmax−1

) − 1), n = 1, 2, · · · , Nmax, (15.4)

where λmax = max(ΦTX).

Experiment

We applied this method on simulated Fermi data where we masked the most luminous
sources.

The results are on Figure 15.1. The MS-VST + IUWT + Inpainting method (Algo-
rithm 15) interpolates the missing data very well. Indeed, the missing part can not be
seen anymore in the inpainted map, which shows that the diffuse emission component has
been correctly reconstructed.
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Algorithm 15 MS-VST + IUWT Denoising + Inpainting

Require: data a0 := Y, mask Π, number of iterations Nmax, threshold κ.
Detection

1: for j = 1 to J do
2: Compute aj and dj using (13.5).
3: Hard threshold |dj [k]| with threshold κσj and update M.
4: end for

Estimation

5: Initialize X(0) = 0, λ0 = λmax.
6: for n = 0 to Nmax − 1 do
7: X̃ = P+[X(n) + ΦPMΦTΠ(Y −X(n))].
8: X(n+1) = ΦST

λn
[ΦT X̃].

9: λn+1 = λmax(2(
Nmax−(n+1)
Nmax−1

) − 1)
10: end for
11: Get the estimate Λ̂ = X(Nmax).
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Figure 15.1: MS-VSTS - Inpainting. Top: Fermi simulated map with Poisson noise and the
most luminous sources masked. Bottomt: Fermi simulated map denoised and inpainted with
wavelets (Algorithm 15). Pictures are in logarithmic scale.
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Chapter 16

Source detection: denoising and
background modeling

16.1 Method

In some cases such as for Fermi data, the diffuse emission from the Milky Way makes
a relatively intense background. We have to extract this background in order to detect
point sources. This diffuse interstellar emission may be modeled, and we want to use such
a background model and incorporate a background removal in our denoising algorithm.

We note Y the data, B the background we want to remove, and d
(b)
j [k] the MS-VSTS

coefficients of B at scale j and position k. We determine the multi-resolution support by

comparing |dj[k]− d(b)j [k]| with κσj.
We formulate the reconstruction problem as a convex constrained minimization prob-

lem:

Arg min
X
‖ΦTX‖1, s.t.{

X > 0,
∀(j, k) ∈M, (ΦTX)j[k] = (ΦT (Y −B))j[k],

(16.1)

Then, the reconstruction algorithm scheme becomes:

X̃ = P+[X(n) + ΦPMΦT (Y −B−X(n))], (16.2)

X(n+1) = ΦSTλn [ΦT X̃]. (16.3)

The algorithm is illustrated by the theoretical study in Figure 16.1. We denoise Poisson
data while separating a single source, which is a Gaussian of standard deviation equal to
0.01, from a background, which is a sum of two Gaussians of standard deviation equal to
0.1 and 0.01 respectively.

Like Algorithm 12, Algorithm 16 can be adapted to make multiresolution support
adaptation.

16.2 Experiment
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Algorithm 16 MS-VSTS + IUWT Denoising + Background extraction

Require: data a0 := Y, background B, number of iterations Nmax, threshold κ.
Detection

1: for j = 1 to J do
2: Compute aj and dj using (13.5).

3: Hard threshold (dj [k]− d(b)j [k]) with threshold κσj and update M.
4: end for

Estimation

5: Initialize X(0) = 0, λ0 = 1.
6: for n = 0 to Nmax − 1 do
7: X̃ = P+[X(n) + ΦPMΦT (Y −B−X(n))].
8: X(n+1) = ΦSTλn [ΦT X̃].

9: λn+1 = Nmax−(n+1)
Nmax−1 .

10: end for
11: Get the estimate Λ̂ = X(Nmax).

Table 16.1: Percent of true and false detection and signal-noise ratio versus the standard devi-
ation of the Gaussian noise on the background model.

Model error std dev % of true detect % of false detect SNR (dB)

0 59.3% 7.1% 23.8
10 57.0% 11.0% 23.2
20 53.2% 18.9% 22.6
30 49.1% 43.5% 21.7
40 42.3% 44.3% 21.0
50 34.9% 39.0% 20.3
60 30.3% 37.5% 19.5
70 25.0% 34.6% 18.9
80 23.0% 28.5% 18.7
90 23.6% 27.1% 18.3

We applied Algorithms 16 on simulated Fermi data. To test the efficiency of our
method, we detect the sources with the SExtractor routine (Bertin and Arnouts 1996),
and compare the detected sources with the theoretical sources catalog to get the number
of true and false detections. Results are shown on Figures 16.2 and 16.3. The SExtractor
method was applied on the first wavelet scale of the reconstructed map, with a detection
threshold equal to 1. It has been chosen to optimise the number of true detections.
SExtractor makes 593 true detections and 71 false detections on the Fermi simulated map
restored with Algorithm 13 among the 1000 sources of the simulation. On noisy data,
many fluctuations due to Poisson noise are detected as sources by SExtractor, which leads
to a big number of false detections (more than 2000 in the case of Fermi data).

16.2.1 Sensitivity to model errors

As it is difficult to model the background precisely, it is important to study the sensitiv-
ity of the method to model errors. We add a stationary Gaussian noise to the background
model, we compute the MS-VSTS + IUWT with threshold 3σj on the simulated Fermi
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Poisson data with extraction of the noisy background, and we study the percent of true
and false detections with respect to the total number of sources of the simulation and the
signal-noise ratio (SNR(dB) = 20 log(σsignal/σnoise)) versus the standard deviation of the
Gaussian perturbation. Table 16.1 shows that, when the standard deviation of the noise
on the background model becomes of the same range as the mean of the Poisson intensity
distribution (λmean = 68.764), the number of false detections increases, the number of
true detections decreases and the signal noise ratio decreases. While the perturbation is
not too strong (standard deviation < 10), the effect of the model error remains low.
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Figure 16.1: Theoretical testing for MS-VSTS + IUWT denoising + background removal algo-
rithm (Algorithm 16). View on a single HEALPix face. Top Left: Simulated background : sum
of two Gaussians of standard deviation equal to 0.1 and 0.01 respectively. Top Right: Simulated
source: Gaussian of standard deviation equal to 0.01. Bottom Left: Simulated poisson data.
Bottom Right: Image denoised with MS-VSTS + IUWT and background removal.
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Figure 16.2: Top Left: Simulated background model. Top Right: Simulated Gamma Ray
sources. Middle Left: Simulated Fermi data with Poisson noise. Middle Right: Reconstructed
Gamma Ray Sources with MS-VSTS + IUWT + background removal (Algorithm 16) with
threshold 5σj . Bottom: Reconstructed Gamma Ray Sources with MS-VSTS + IUWT + back-
ground removal (Algorithm 16) with threshold 3σj . Pictures are in logarithmic scale.
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Figure 16.3: View of a single HEALPix face from the results of Figure 16.2.Top Left: Simulated
background model. Top Right: Simulated Gamma Ray sources. Middle Left: Simulated Fermi
data with Poisson noise. Middle Right: Reconstructed Gamma Ray Sources with MS-VSTS
+ IUWT + background removal (Algorithm 16) with threshold 5σj . Bottom: Reconstructed
Gamma Ray Sources with MS-VSTS + IUWT + background removal (Algorithm 16) with
threshold 3σj . Pictures are in logarithmic scale.



Chapter 17

Multichannel Denoising and
Deconvolution on the Sphere

17.1 Introduction

This chapter describes how to remove Poisson noise while deconvolving the effect of
the PSF, and presents an multichannel extension of the restoration process. Indeed, some
instruments such as FERMI-LAT produce 2D-1D data where the two first dimensions are
spatial (longitude and latitude) and the third dimension is either the time or the energy.
We present here a multichannel sparse representation for Poisson data combining the MS-
VSTS with a spherical 2D-1D wavelet-based deconvolution algorithm. This multiscale
representation is used in a wavelet-regularized Richardson-Lucy deconvolution algorithm
to remove the effect of the PSF. This method has the advantage to take into account the
strong energy dependence of PSF, and the recovering of the spectral information of point
sources.

Section 2 proposes a multichannel representation of spherical Poisson data based on the
MS-VSTS and a 2D-1D spherical wavelet transform. Section 3 applies the multichannel
MS-VSTS to Poisson denoising. Section 4 applies the multichannel MS-VSTS to Poisson
deconvolution.

Experiments are based on simulated Fermi HEALPix cubes (nside = 256) with 14
energy bands between 50 MeV and 50 GeV.

17.2 Sparse Representation for Multichannel Spherical Data with
Poisson Noise

17.2.1 Fast Undecimated 2D-1D Wavelet Decomposition/Reconstruction on
the Sphere

We propose a denoising method for 2D - 1D data on the sphere, where the two first
dimensions are spatial (longitude and latitude) and the third dimension is either the time
or the energy. We need to analyze the data with a non-isotropic wavelet, where the time
or energy scale is not connected to the spatial scale. We use a spherical extension of the
Fast Undecimated 2D-1D Wavelet Transform proposed in Starck et al. (2009a).

For a given data set D(kθ, kϕ, kt) (kθ and kϕ are spatial index and kz a time (or energy)
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index), the 2D-1D decomposition consists in applying first a IUWT on the sphere for each
frame kt. Using the spherical IUWT, we have the reconstruction formula:

D[kθ, kϕ, kt] = aJ1 [kθ, kϕ] +
J1∑
j1=1

wj1 [kθ, kϕ, kt],∀kt (17.1)

where J1 is the number of spatial scales. To have lighter notations, we replace the two
spatial indexes by a single index kr which corresponds to the pixel index:

D[kr, kt] = aJ1 [kr] +
J1∑
j1=1

wj1 [kr, kt],∀kt (17.2)

Then, for each spatial location kr and for each 2D wavelet scale j1, we apply a 1D wavelet
transform along t on the spatial wavelet coefficients wj1 [kr, kt] such that

wj1 [kr, kt] = wj1,J2 [kr, kt] +

J2∑
j2=1

wj1,j2 [kr, kt], ∀(kr, kt) (17.3)

where j2 is the number of scales along t.The same processing is also applied on the coarse
spatial scale aJ1 [kr, kt] and we have

aJ1 [kr, kt] = aJ1,J2 [kr, kt] +

J2∑
j2=1

wJ1,j2 [kr, kt],∀(kr, kt) (17.4)

Hence, we have a 2D-1D spherical undecimated wavelet representation of the input data
D:

D[kr, kt] = aJ1,J2 [kr, kt]+

J1∑
j1=1

wj1,J2 [kr, kt]+

J2∑
j2=1

wJ1,j2 [kr, kt]+

J1∑
j1=1

J2∑
j2=1

wj1,j2 [kr, kt] (17.5)

From this expression, we distinguish four kinds of coefficients:

• Detail-Detail coefficients (j1 6 J1 and j2 6 J2):

wj1,j2 [kr, kt] = (δ − h̄1D) ? (h̄
(j2−1)
1D ? aj1−1[kr, ·]− h

(j2−1)
1D ? aj1 [kr, ·]) (17.6)

• Approximation-Detail coefficients (j1 = J1 and j2 6 J2):

wJ1,j2 [kr, kt] = h
(j2−1)
1D ? aJ1 [kr, ·]− h

(j2)
1D ? aJ1 [kr, ·] (17.7)

• Detail-Approximation coefficients (j1 6 J1 and j2 = J2):

wj1,J2 [kr, kt] = h
(J2)
1D ? aj1−1[kr, ·]− h

(J2)
1D ? aj1 [kr, ·] (17.8)

• Approximation-Approximation coefficients (j1 = J1 and j2 = J2):

aJ1,J2 [kr, kt] = h
(J2)
1D ? aJ1 [kr, ·] (17.9)
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17.2.2 Poisson Noise

The Multi-Scale Variance Stabilizing Transform on the Sphere (MS-VSTS)

Schmitt et al. (2010) proposed a multiscale decomposition on the sphere adapted for
spherical data with Poisson noise, called Multi-Scale Variance Stabilizing Transform on
the Sphere (MS-VSTS) (see previous chapters). This method consists in mixing a multi-
scale transform (for instance the Isotropic Undecimated Wavelet Transform on the Sphere)
with a variance stabilizing transform (VST), in order to have ”Gaussianized” multiscale
coefficients.

The recursive scheme of the MS-VSTS with IUWT is: This section describes the
MS-VSTS + IUWT, which is a combination of a square-root VST with the IUWT. The
recursive scheme is:

IUWT

{
aj = hj−1 ∗ aj−1
dj = aj−1 − aj

=⇒
MS-VSTS

+ IUWT

{
aj = hj−1 ∗ aj−1
dj = Tj−1(aj−1)− Tj(aj)

.

(17.10)

where Tj is the VST operator at scale j:

Tj(aj) = b(j)sign(aj + c(j))
√
|aj + c(j)|. (17.11)

It has been shown that the detail coefficients dj issued from locally homogeneous parts of
the signal follow asymptotically a central normal distribution with an intensity-independant
variance which relies solely on the filter h and the current scale for a given filter h. Con-
sequently, the stabilized variances and the constants b(j) and c(j) can all be pre-computed
Schmitt et al. (2010).

Multichannel MS-VSTS

We propose a multichannel extension of the MS-VSTS method. We plug the VST into
the spherical 2D-1D undecimated wavelet transform. Again, we distinguish four kinds of
coefficients that take the following forms:

• Detail-Detail coefficients (j1 6 J1 and j2 6 J2):

wj1,j2 [kr, kt] = (δ− h̄1D) ? (Tj1−1,j2−1[h̄
(j2−1)
1D ? aj1−1[kr, ·]]− Tj1,j2−1[h

(j2−1)
1D ? aj1 [kr, ·]])

(17.12)

• Approximation-Detail coefficients (j1 = J1 and j2 6 J2):

wJ1,j2 [kr, kt] = TJ1,j2−1[h
(j2−1)
1D ? aJ1 [kr, ·]]− TJ1,j2 [h

(j2)
1D ? aJ1 [kr, ·]] (17.13)

• Detail-Approximation coefficients (j1 6 J1 and j2 = J2):

wj1,J2 [kr, kt] = Tj1−1,J2 [h
(J2)
1D ? aj1−1[kr, ·]]− Tj1,J2 [h

(J2)
1D ? aj1 [kr, ·]] (17.14)
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• Approximation-Approximation coefficients (j1 = J1 and j2 = J2):

aJ1,J2 [kr, kt] = h
(J2)
1D ? aJ1 [kr, ·] (17.15)

Hence, all 2D-1D wavelet coefficients wj1,j2 are now stabilized, and the noise on all
these wavelet coefficients is Gaussian with known scale-dependent variance that depends
solely on h.

17.3 Application to Multichannel Denoising

17.3.1 Gaussian Case

As the spherical 2D-1D undecimated wavelet transform described before is fully lin-
ear, a Gaussian noise remains Gaussian after transformation. Therefore, all thresholding
strategies which have been developed for wavelet Gaussian denoising are still valid with
the spherical 2D-1D wavelet transform. Denoting TH the thresholding operator, the
denoised cube in the case of additive white Gaussian noise is obtained by:

D̃[kr, kt] = aJ1,J2 [kr, kt]+

J1∑
j1=1

TH(wj1,J2 [kr, kt])+

J2∑
j2=1

TH(wJ1,j2 [kr, kt])+

J1∑
j1=1

J2∑
j2=1

TH(wj1,j2 [kr, kt])

(17.16)
A typical choice of TH is the hard thresholding operator, i.e.:

TH(x) =

{
0 if |x| < τ
x if |x| > τ

(17.17)

The threshold τ is generally chosen between 3 and 5 times the noise standard deviation.

17.3.2 Poisson Case

We perform a MS-VSTS transform on the data. As the noise on the stabilized coeffi-
cients is Gaussian, and without loss of generality, we let its standard deviation equal to
1, we consider that a wavelet coefficient wj1,j2 [kr, kt] is significant, i.e., not due to noise, if
its absolute value is larger than a critical threshold τ , where τ is typically between 3 and
5. Denoising is however not straightforward because there is no explicit reconstruction
formula available because of the form of the stabilization equations above. Formally, the
stabilizing operators Tj1,j2 and the convolution operators along the spatial and temporal
dimensions do not commute, even though the filter bank satisfies the exact reconstruction
formula. To circumvent this difficulty, we propose to solve this reconstruction problem
by using an iterative reconstruction scheme.

17.3.3 Iterative Reconstruction

We define a multiresolution support which is obtained by detecting at each scale the
significant coefficients. The multiresolution support for j1 6 J1 and j2 6 J2 is defined as:

Mj1,j2 [kr, kt] =

{
1 if wj1,j2 [kr, kt] is significant
0 otherwise

(17.18)
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We denote W the spherical 2D-1D undecimated wavelet transform described above,
and R the inverse wavelet transform. We want our solution X to preserve the significant
structures of the original data by reproducing exactly the same coefficients as the wavelet
coefficients of the input data Y , but only at scales and positions where significant signal
has been detected. At other scales and positions, we want the smoothest solution with
the lowest budget in terms of wavelet coefficients. Furthermore, as Poisson intensity
functions are positive by nature, a positivity constraint is imposed on the solution. It is
clear that there are many solutions satisfying the positivity and multiresolution support
consistency requirements, e.g. Y itself. Thus, our reconstruction problem based solely
on these constraints is an ill-posed inverse problem that must be regularized. Typically,
the solution in which we are interested must be sparse by involving the lowest budget of
wavelet coefficients. Therefore our reconstruction is formulated as a constrained sparsity-
promoting minimization problem that can be written as follows

min
X
‖WX‖1 subject to

{
MWX =MWY

X > 0
(17.19)

where ‖ · ‖ is the l1-norm playing the role of regularization and is well known to promote
sparsity (Donoho 2004). This problem can be solved efficiently using the hybrid steepest
descent algorithm (Yamada 2001; Zhang et al. 2008), and requires about 10 iterations in
practice. Transposed into our context, its main steps can be summarized as follows:

Require: Input noisy data Y, a low-pass filter h, multiresolution support M from the
detection step, number of iterations Nmax

1: Initialize X(0) =MWY =MwY ,
2: for n = 1 to Nmax do
3: d̃ =MwY + (1−M)WX(n−1),
4: X(n) = P+(RSTβn [d̃]),
5: Update the step βn = (Nmax − n)/(Nmax − 1)
6: end for

where P+ is the projector onto the positive orthant, i.e. P+(x) = max(x, 0), STβn is
the soft-thresholding operator with threshold βn, i.e. STβn [x] = x−βnsign(x) if |x| > βn,
and 0 otherwise.

The final spherical MS-VSTS 2D-1D wavelet denoising algorithm is the following:

Require: Input noisy data Y, a low-pass filter h, threshold level τ
1: Spherical 2D-1D MS-VST: Apply the spherical 2D-1D-MS-VST to the data using (17.12)-

(17.15).
2: Detection: Detect the significant wavelet coefficients that are above τ , and compute the

multiresolution support M.
3: Reconstruction: Reconstruct the denoised data using the algorithm above.

17.3.4 Experiments

The algorithm has been applied on our simulated Fermi data set, with 7 energy bands
between 50 MeV and 1.58 GeV. Figures 17.1 and 17.2 shows the result of the algorithm
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on 2 energy bands. The multichannel MS-VSTS provides a performant denoising on
each energy band and enables us to get the spectral information for each spatial position
(Figure 17.3).

17.4 Multichannel Sparse Deconvolution for Spherical Poisson
Data

17.4.1 Introduction

Many problems in signal and image processing can be cast as inverting the linear
system:

y = Hx+ ε (17.20)

where x ∈ RN is the data to recover, y ∈ Rm is the image of noisy observations,
and ε is an additive noise with bounded variance. The unknown error can be either a
stochastic measurement noise induced by the sensor, or a deterministic perturbation due
for example to an imperfect signal model. H : RN → Rm is a bounded linear operator
which is typically ill-behaved since it models an acquisition process that encounters loss
of information. Eq. (17.20) is usually an ill-posed problem. This means that there is no
unique and stable solution.

Our objective is to remove the effect of the instrument’s PSF. In our case, H is the
convolution by a blurring kernel (PSF) and y lacks the high frequency content of x and
the problem above is a deconvolution problem.

In order to regularize such an inversion problem and reduce the space of candidate
solutions, one has to add some prior knowledge on the typical structure of the original
image x. This prior information account for the smoothness of the solution and can range
from the uniform smoothness assumption to more complex knowledge of the geometrical
structures of x.

In our LAT realistic simulations, the point spread function width depends a lot on the
energy, from 6.9!‘ at 50 MeV to better than 0.1!‘ at 10 GeV and above. Figure 17.4 shows
the normalized profiles of the PSF for different energy bands.

17.4.2 Monochannel Deconvolution

For Poisson image deconvolution, several methods were proposed. Richardson-Lucy is
certainly the most famous in astrophysics. In this paper, we propose a new regularized
Richardon-Lucy algorithm for spherical Poisson data.

We denote Y the observed data, H the convolution kernel, and N (X) the additive
noise. The deconvolution consists in estimating X so that:

Y = H ?X +N (X) (17.21)

where ? denotes the convolution product.
An iterative deconvolution scheme is given by Richardson-Lucy method. We start

with n = 0 and X(0) = 1 and we iterate:

X(n+1) = P+

[
X(n)

(
HT ∗ Y

H ∗X(n)

)]
(17.22)
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Figure 17.1: Result of the multichannel Poisson denoising algorithm on simulated Fermi data on
energy band 220 MeV - 360 MeV (Top: Simulated intensity skymap. Middle: Simulated noisy
skymap. Bottom: denoised skymap). Pictures are in logarithmic scale.
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Figure 17.2: Result of the multichannel Poisson denoising algorithm on simulated Fermi data on
energy band 589 MeV - 965 MeV (Top: Simulated intensity skymap. Middle: Simulated noisy
skymap. Bottom: denoised skymap). Pictures are in logarithmic scale.
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Figure 17.3: Power spectrum of a single gamma ray point source recovered using the multichannel
MS-VSTS denoising algorithm. Top: Single gamma ray point source on simulated Fermi data
integrated along the energy axis (Left: Poisson Intensity. Middle: Noisy data. Right: Denoised
data.) Bottom: Power spectrum of the center of the denoised point source: intensity as a
function of the energy band (Black: Simulated Poisson intensity map. Blue: Denoised map.)
(14 energy bands between 50 MeV and 50 GeV)
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Figure 17.4: Normalized profile of the point spread function for different energy bands as a
function of the angle in degree. Black: 50 MeV - 82 MeV. Light Blue: 220 MeV - 360 MeV.
Orange: 960 MeV - 1.6 GeV. Dark Blue: 4.2 GeV - 6.9 GeV. Green: 19 GeV - 31 GeV.



17.4 Multichannel Sparse Deconvolution for Spherical Poisson Data 227

where HT is the transpose of H, and P+ a positivity projection.
We define R(n) the residual at iteration n:

R(n) = Y − (H ∗X(n)) (17.23)

By using the Isotropic Undecimated Wavelet Transform on the sphere (IUWT), R(n)

can be defined as the sum of its J wavelet scales and the last smooth array, for a pixel k:

R(n)[k] = aJ [k] +
J∑
j=1

dj[k] (17.24)

where aJ denotes the last smoothed array, and dj denotes a wavelet scale.
The wavelet coefficients provide a mechanism to extract only the significant struc-

tures from the residual at each iteration. Normally, a large part of these residuals are
statistically non-significant. The significant residual is then, for a pixel k:

R̄(n)[k] = aJ [k] +
J∑
j=1

M(j, k)dj[k] (17.25)

whereM(j, k) is the multiresolution support. The regularized iterative scheme becomes:

X(n+1) = P+

[
X(n)

(
HT ∗ H ∗X(n) + R̄(n)

H ∗X(n)

)]
(17.26)

17.4.3 Multichannel Deconvolution

In this problem, the data can be viewed as a matrix Y = (Yt)t, where, for each channel
t, Yt = (yr,t)r is the vector corresponding to the spherical data at channel t, where r is the
index corresponding to the pixel. Each channel is convolved by a known blurring kernel
Ht : Yt = Ht ? Xt +N (Xt).

We compute the spherical 2D-1D MS-VSTS transform, and the multiresolution sup-
port Mj1,j2 [kr, kt] is obtained by hypothesis testings on coefficients.

We denote H the convolution by channel operator: HX means that each channel Xt

is convolved by the convolution kernel Ht. HTX means that each channel Xt is convolved
by the transposed convolution kernel HT

t . The regularized iterative scheme is then:

X(n+1) = P+

[
X(n)

(
HTHX(n) + R̄(n)

HX(n)

)]
(17.27)

with R̄(n)[kr, kt] the significant residual:

R̄(n)[kr, kt] = aJ1,J2 [kr, kt] +

J1∑
j1=1

Mj1,J2 [kr, kt]wj1,J2 [kr, kt]

+

J2∑
j2=1

MJ1,j2 [kr, kt]wJ1,j2 [kr, kt] +

J1∑
j1=1

J2∑
j2=1

Mj1,j2 [kr, kt]wj1,j2 [kr, kt]

(17.28)

where Mj1,j2 is the multiresolution support.
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17.4.4 Experiments

The algorithm is applied on the 7 energy bands of our simulated Fermi data set
(50MeV to 1.58GeV ). Figures 17.5 to 17.8 show the result of the deconvolution on 4
energy bands. Figure 17.9 shows the effect of the MS-VSTS deconvolution algorithm on a
single point source. The deconvolution gives a better spatial localisation for point sources.
Figure 17.10 shows the effect of the MS-VSTS deconvolution algorithm on the galactic
plan, where the effect of the deconvolution is particularly spectacular. Our MS-VSTS
multichannel deconvolution algorithm manages to remove a large part of the PSF effect.
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Figure 17.5: Result of the multichannel deconvolution algorithm on different energy bands (Top:
Simulated Intensity skymap. Middle: noisy skymap. Bottom: deconvolved skymap). Energy
band : 82 MeV - 134 MeV. Pictures are in logarithmic scale.
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Figure 17.6: Result of the multichannel deconvolution algorithm on different energy bands (Top:
Simulated Intensity skymap. Middle: noisy skymap. Bottom: deconvolved skymap). Energy
band : 220 MeV - 360 MeV. Pictures are in logarithmic scale.
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Figure 17.7: Result of the multichannel deconvolution algorithm on different energy bands (Top:
Simulated Intensity skymap. Middle: noisy skymap. Bottom: deconvolved skymap). Energy
band : 360 MeV - 589 MeV. Pictures are in logarithmic scale.
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Figure 17.8: Result of the multichannel deconvolution algorithm on different energy bands (Top:
Simulated Intensity skymap. Middle: noisy skymap. Bottom: deconvolved skymap). Energy
band : 589 MeV - 965 MeV. Pictures are in logarithmic scale.
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Figure 17.9: Effect of the multichannel deconvolution algorithm on a single gamma ray point
source. Top: Single gamma ray point source on simulated Fermi data (Energy band: 360 MeV
- 589 MeV) (Left: Intensity. Middle: Noisy data. Right: Deconvolved data.) Bottom: Profile
of the point source. In blue, the source from intensity map. In black, the deconvolved source.
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Figure 17.10: View on a single HEALPix face. Result of the deconvolution algorithm on the
galactic plan. Top Left: Simulated Fermi Poisson intensity. Top Right: Simulated Fermi noisy
data. Bottom: Fermi data deconvolved with multichannel MS-VSTS. Energy band: 360 MeV -
589 MeV. Pictures are in logarithmic scale.
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IDL Routines

18.1 Denoising using MS-VSTS + Isotropic Undecimated Wavelet
Transform

18.1.1 Main routine

I Starting from a photon counts map

# mrs msvsts IUWT denoising.pro : Compute Poisson denoising on spherical
HEALPix data with MS-VSTS + Isotropic Undecimated Wavelet Transform method.

USAGE : mrs msvsts IUWT denoising, image, image reconstruite,
NbrScale=NbrScale, niter=niter, HSD=HSD, coef seuil=coef seuil,

coef pos=coef pos, First Scale=First Scale, mask=mask, filter=filter,
pyr=pyr, background=background, expo=expo, alm=alm, curv=curv,

separation=separation, back reconstruit=back reconstruit,
update support=update support, split support=split support

INPUTS :

• Image = (IDL array) HEALPix data to be denoised

• (Optional) background = (IDL array) if set, substracts a background to the data

• (Optional) support = (IDL array) if set, use a given multi-resolution support instead
of computing it with the procedure mrs msvsts hypothesis testing

OUTPUTS :

• Image reconstruite = (IDL array) HEALPix denoised image

• (optional) Support = (IDL array) multi-resolution support of the image

• (optional) Back reconstruit = (IDL array) if set, returns the reconstructed back-
ground (need the keyword separation)

KEYWORD

• NbrScale : Number of scales (default is 4)
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• niter : Number of iterations

• HSD : if set, the denoised image will be recontructed using the Hybrid Steepest
Descent Method (soft thresholding at each iteration of the reconstruction)

• coef seuil : determines the threshold for the detection of significant coefficients. For
each scale i, the threshold is set to coef seuil ∗ σi (default is 5)

• coef pos : if set, negative wavelets coefficients are set to 0.

• First Scale : if > 2, finer wavelet scales are set to 0. (default is 1)

• mask : if set, enables impainting with the given mask

• filter : if set, the inverse wavelet transform will be computed using filters. Else, it
will be obtained by a simple addition of all wavelet scales.

• pyr : if set, use pyramidal wavelet transform for the soft thresholding

• expo : if set, decreases the thresold exponentially at each step of the HSD. Else,
decreases the threshold linearly

• alm : if set, thresholding is made on alm coefficients instead of wavelet coefficients

• curvelets : if set, thresholding is made on curvelets coefficients instead of wavelet
coefficients

• separation : if set, compute separately the sources and the background

• update support : if set, update the multi-resoluation support at each iteration

• split support : if set, splits the multi-resolution support

18.1.2 Subroutines

# mrs msvsts IUWT param computing.pro : For a given number of scales,
determines the VST operator at each scale for the MS-VST transform with spherical
isotropic Undecimated Wavelet Transform. At scale j, the VST operator is: Tj(aj) =

b(j) ∗ sgn(aj + c(j)) ∗
√

(|aj + c(j)|) where aj is the jth scale coefficient of the wavelet
transform.

USAGE :
mrs msvsts IUWT param computing,nbr,c,b,h,tau1,tau2,tau3,sigma

INPUTS :

• nbr = (int) number of scales for the MS-VST transform

OUTPUTS :

• c = (1D IDL array) vector of the c(j) coefficients for each scale j
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• b = (1D IDL array) vector of the b(j) coefficients for each scale j

• h = (IDL array) h[*,j] is the low pass filter which gives the jth scale from the original
image

• tau1 = (1D IDL array) vector of the 1st order moments of h[*,j] for each scale j

• tau2 = (1D IDL array) vector of the 2st order moments of h[*,j] for each scale j

• tau3 = (1D IDL array) vector of the 3rd order moments of h[*,j] for each scale j

• sigma = (1D IDL array) vector of the asymptotic standard deviations of detail
coefficients issued from locally homogeneous parts of a signal for each wavelet scale

# mrs msvsts IUWT transform.pro : Computes the multi-scale variance stabil-
ising transform on the sphere with undecimated isotropic wavelet transform, using the
HEALPix representation (nested data representation). The wavelet function is zonal and
its spherical harmonics coefficients al0 follow a cubic box-spline profile. If DifInSH is set,
wavelet coefficients are derived in the Spherical Harmonic Space, otherwise (default) they
are derived in the direct space.

USAGE : mrs msvsts IUWT transform, Imag, Trans, NbrScale=NbrScale,
lmax=lmax, DifInSH=DifInSH

INPUTS :

• Imag = (IDL array) HEALPix data

OUTPUTS :

• Trans = IDL structure with the following fields:

– NbrScale = (int) number of scales

– nside = (int) Healpix nside parameter

– lmax = (int) Maximum l value in the Spherical Harmonic Space (Healpix)

– npix = (int) Number of pixels of the input image (12*nside*nside)

– Coef = (IDL array) stabilised wavelet transform of the data

– Coef[*,0] = stabilised wavelet coefficients of the finest scale (highest frequen-
cies).

– Coef[*,NbrScale-1] = coarsest scale (lowest frequencies).

– lmax = (int) lmax parameter at the first scale

KEYWORDS :

• NbrScale = (int) Number of scales (default is 4)

• Lmax = (int) Number of spherical harmonics computed in the decomposition (de-
fault is 3*nside, should be between 2*nside and 4*nside)
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• DifInSH : If set, compute the wavelet coefficients as the difference between two reso-
lution in the spherical harmonics representation. Otherwise, the wavelet coefficients
are computed as the difference between two resolutions in the initial representation.

# mrs msvsts IUWT hypothesis testing.pro : Computes the MS-VSTS + Isotropic
Undecimate Wavelet Transform of a Poisson Image, perform hypothesis testing on coef-
ficients, returns the multi-resolution support and the denoised image using direct recon-
struction

USAGE : mrs msvsts IUWT hypothesis testing, image, image vst, support,
image rec, NbrScale=NbrScale, coef seuil=coef seuil,

First Scale=First Scale, background=background

INPUTS :

• Imag = (IDL array) HEALPix data

• (optional) background = (IDL array) if set, substracts a background to the image.

OUTPUTS :

• image vst = (IDL structure) MS-VSTS transform of the image computed with
mrs msvsts IUWT transform

• support = (IDL array) multi-resolution support

• image rec = (IDL array) directly reconstructed denoised image

KEYWORDS :

• NbrScale = (int) Number of scales (default is 4)

• coef seuil = (int) determines the threshold for the detection of significant coefficients.
For each scale i, the threshold is set to coef seuil ∗ σi (default is 5)

• First Scale = (int) if > 2, finer wavelet scales are set to 0. (default is 1)

18.2 Denoising using MS-VSTS + Curvelet Transform

18.2.1 Main routine

# mrs msvsts curv denoising.pro : Compute Poisson denoising on spherical HEALPix
data with MS-VSTS + Curvelet Transform method.

USAGE : mrs msvsts curv denoising, image, image reconstruite, support,
nbrscale=nbrscale, coef seuil=coef seuil, suppr scale1=suppr scale1,

hsd=hsd, niter=niter

INPUTS :

• Image = (IDL array) HEALPix data to be denoised
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OUTPUTS :

• Image reconstruite = (IDL array) HEALPix denoised image

• (optional) Support = (IDL array) multi-resolution support of the image

KEYWORD :

• NbrScale = Number of scales (default is 4)

• HSD = if set, the denoised estimate will be recontructed using the Hybrid Steepest
Descent Method (soft thresholding at each iteration of the reconstruction). If not
set, the estimate is direclty reconstructed.

• niter = Number of iterations

• coef seuil = determines the threshold for the detection of significant coefficients. For
each scale i, the threshold is set to coef seuil ∗ σi (default is 5)

• coef pos = if set, negative wavelets coefficients are set to 0.

• suppr scale1 = if set, remove the finest scale from the reconstructed estimate.

18.2.2 Subroutines

# mrs msvsts curv transform.pro : Compute the multi-scale variance stabilizing
transform on the sphere with standard undecimated curvelet transform on the sphere,
using the healPix pixel representation (nested data representation). A band of the curvelet
transform is defined by two number, the 2D WT scale number and the ridgelet scale
number. The output is a IDL structure.

USAGE : mrs msvsts curv transform, Imag, Trans, lmax=lmax,
NbrScale=NbrScale, FirstBlockSize=FirstBlockSize

INPUTS :

• Image = (IDL array) HEALPix data to be transformed

OUTPUTS :

• Trans = IDL structures with the following fields:

– NBRSCALE = (INT) Nbr of the scale in the 2D WT

– TABBLOCKSIZE = (INT) TABBLOCKSIZE[j], Block size in the ridgelet trans-
form at scale j. j = [0..NBRSCALE − 2]

– TABNBRSCALERID = (INT) TABNBRSCALERID[j], number of ridgelet band
at scale j

– TABNORM = (2D IDL ARRAY) Normalization array

– RIDSCALE1 = (IDL STRUCT) ridgelet transform of the first wavelet scale
(see mrs ridtrans.pro for details)
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– RIDSCALEj = (IDL STRUCT) ridgelet transform of the jth wavelet scale.
j = [0..NBRSCALE − 2]

– LASTSCALE = (IDL 1D array) Healpix image of the coarsest scale

– WT = (IDL STRUCT) Wavelet structure (for internal use only)

– PYRTRANS = (INT) equal to 1 for a pyramidal curvelet transform and 0
otherwise

KEYWORD :

• NbrScale = (INT) Number of scale in the 2D wavelet transform (defaut 4)

• Undec = (INT) if set, an undecimated curvelet transform is used instead of the
pyramidal curvelet transform

• FirstBlockSize = (INT) Block size in the ridgelet transform at the finest scale (de-
fault is 16)

• Lmax = (INT) Number of used spherical harmoniques used in the wavelet transform
(defaut = 3*nside, should be between 2*nside and 4*nside)

• Overlap = (LONG) is equal to 1 if blocks are overlapping

18.3 Multichannel Denoising using MS-VSTS + Multichannel
Wavelet Transform

I Starting from a set of photon counts maps

# mrs msvsts multichannel denoising.pro : Compute multichannel Poisson de-
noising on spherical 2D-1D HEALPix data with MS-VSTS + multichannel Wavelet Trans-
form method.

USAGE :
mrs msvsts multichannel denoising,input,solution,NbrScale1=NbrScale1,NbrScale2=NbrScale2,niter=niter

INPUT :

• Input = (IDL array) multichannel HEALPix data to be denoised

OUTPUT :

• Solution = (IDL array) multichannel HEALPix denoised image

KEYWORD

• NbrScale1 : Number of scales for the two spatial dimensions (default is 6)

• NbrScale2 : Number of scales for the non-spatial dimension (time or energy) (default
is 6)

• niter : Number of iterations
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18.4 Multichannel Deconvolution using MS-VSTS + Multichan-
nel Wavelet Transform

I Starting from a set of photon counts maps

# mrs msvsts multichannel deconvolution.pro : Compute multichannel Pois-
son deconvolution on spherical 2D-1D HEALPix data with MS-VSTS + multichannel
Wavelet Transform method.

USAGE :
mrs msvsts multichannel deconvolution,input,solution,NbrScale1=NbrScale1,NbrScale2=NbrScale2,niter=niter,beam=beam,regularization

INPUT :

• Input = (IDL array) multichannel HEALPix data to be denoised

• beam = (IDL array) set of convolution beams

OUTPUT :

• Solution = (IDL array) multichannel HEALPix denoised image

KEYWORD

• NbrScale1 : Number of scales for the two spatial dimensions (default is 6)

• NbrScale2 : Number of scales for the non-spatial dimension (time or energy) (default
is 6)

• niter : Number of iterations

• regularization : if set, uses a regularization parameter (set to 0.01) to improve the
convergence speed of the algorithm
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Chapter 19

Conclusion

We have presented recent methods for restoration of spherical data with noise following
a Poisson distribution. A denoising method was proposed, which used a variance stabi-
lization method and multiscale transforms on the sphere. Experiments have shown it is
very efficient for the denoising of astrophysical data set such as Fermi data. Two spherical
multiscale transforms, the wavelet and the curvelets, were used. Then, we have described
an extension of the denoising method in order to take into account missing data, and
we have shown that this inpainting method could be a useful tool to estimate the diffuse
emission. Then, we have introduced a new denoising method the sphere which takes into
account a background model. The simulated data have shown that it is relatively robust
to errors in the model, and can therefore be used for diffuse background modeling and
source detection. Finally, an extension to multichannel denoising and deconvolution has
been proposed, which proved very efficient on simulated data.
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Górski, K. M., and Hinshaw, G.: 2001a, Spherical Mexican hat wavelet: an application
to detect non-Gaussianity in the COBE-DMR maps, Monthly Notices of the Royal
Astronomical Society 326, 1243–1248
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