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1 Introduction

This chapter reviews the data mining methods recently developed to solve stan-
dard data problems in weak gravitational lensing. We detail the different steps
of the weak lensing data analysis along with the different techniques dedicated
to these applications. An overview of the different techniques currently used will
be given along with future prospects.

Until about thirty years ago astronomers thought that the Universe was
composed almost entirely of ordinary matter: protons, neutrons, electrons and
atoms. The field of weak lensing has been motivated by the observations made
in the last decades showing that visible matter represents only about 4-5% of
the Universe (see Fig. 1). Currently, the majority of the Universe is thought to
be dark, i.e. does not emit electromagnetic radiation. The Universe is thought to
be mostly composed of an invisible, pressureless matter - potentially relic from
higher energy theories - called “dark matter” (20-21%) and by an even more
mysterious term, described in Einstein equations as a vacuum energy density,
called “dark energy” (70%). This “dark” Universe is not well described or even
understood; its presence is inferred indirectly from its gravitational effects, both
on the motions of astronomical objects and on light propagation. So this point
could be the next breakthrough in cosmology.

Figure 1: Universe content

Today’s cosmology is based on a cosmological model that contains various
parameters that need to be determined precisely, such as the matter density
parameter Ωm or the dark energy density parameter ΩΛ. Weak gravitational
lensing is believed to be the most promising tool to understand the nature of
dark matter and to constrain the cosmological parameters used to describe the
Universe because it provides a method to map directly the distribution of dark
matter (see [6, 61, 70, 1, 64]). From this dark matter distribution, the nature
of dark matter can be better understood and better constraints can be placed
on dark energy, which affects the evolution of structures. Gravitational lensing
is the process by which light from distant galaxies is bent by the gravity of
intervening mass in the Universe as it travels towards us. This bending causes
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the images of background galaxies to appear slightly distorted, and can be used
to extract important cosmological information.

Figure 2: Strong Gravitational Lensing effect observed in the Abell 2218 cluster
(W. Couch et al, 1975 - HST). Photo used with permission from NASA, ESA
and the ERO team.

In the beginning of the twentieth century, A. Einstein predicted that massive
bodies could be seen as gravitational lenses that bend the path of light rays
by creating a local curvature in space-time. One of the first confirmations of
Einstein’s new theory was the observation during the 1919 solar eclipse of the
deflection of light from distant stars by the sun. Since then, a wide range of
lensing phenomena have been detected. The gravitational deflection of light by
mass concentrations along light paths produces magnification, multiplication,
and distortion of images. These lensing effects are illustrated by Fig. 2, which
shows one of the strongest lens observed: Abell 2218, a very massive and distant
cluster of galaxies in the constellation Draco. The observed gravitational arcs
are actually the magnified and strongly distorted images of galaxies that are
about 10 times more distant than the cluster itself.

These strong gravitational lensing effects are very impressive but they are
very rare. Far more prevalent are weak gravitational lensing effects, which we
consider in this chapter, and in which the induced distortion in galaxy images
is much weaker. These gravitational lensing effects are now widely used, but
the amplitude of the weak lensing signal is so weak that its detection relies on
the accuracy of the techniques used to analyze the data. Future weak lensing
surveys are already planned in order to cover a large fraction of the sky with
high accuracy, such as Euclid. However improving accuracy also places greater
demands on the methods used to extract the available information.

2 Weak Lensing theory

A gravitational lens is formed when the light from a very distant galaxy is
deflected around a massive object between the source and the observer. The
properties of the gravitational lensing effect depend on the projected mass den-
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sity integrated along the line of sight and on the cosmological angular distances
between the observer, the lens and the source (see Fig. 3). The bending of light
rays around massive objects makes the images of distant galaxies appear de-
formed. The gravitational lensing causes a tangential alignment of the source.
From the measurement of these distortions, the distribution of the intervening
mass can be inferred.

Figure 3: Illustration of the gravitational lensing effect by large scale structures:
the light coming from distant galaxies (on the right) traveling toward the ob-
server (on the left) is bent by the structures (in the middle). This bending causes
the image of background galaxies to appear slightly distorted. The structures
causing the deformations are called gravitational lenses by analogy with classical
optics.

The deflection angle
Light rays propagate along null geodesics, which correspond to the shortest path
between two points in a curved spacetime. Therefore, to exactly compute the
deflection of light rays around a massive object, it is necessary to determine
the geometry of the Universe around that object by solving General-Relativistic
equations. However, the problem can be simplified by making use of Fermat’s
principle, which states that light rays propagate along the path that minimises
the light travel time between to points. Even though, according to the formalism
of General Relativity, the path followed by light rays is an intrinsic property of
space-time, while the travel time is an observer-dependent notion, the motion
of light rays in a curved space time can still be described by this principle. A
possible interpretation is to consider that light slows down in a gravitational
field. The refractive index n in a gravitational field Φ is given by:

n = 1 +
2

c2
|Φ| (1)

where c is the speed of light and Φ the 3D Newtonian potential, supposed to be
weak (Φ� c2).

Although the light speed in a vacuum is a constant c in General Relativity,
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we assume that the speed of light in this disturbed region becomes:

c′ =
c

n
=

c

1 + 2
c2 |Φ|

(2)

Then, the light ray is bent and the deflection angle α can be obtained by
integrating the (perpendicular component of the) refractive index along the light
path:

~α(~ξ) = −
∫
∇⊥n(~r)dz (3)

where ~ξ is the impact parameter in the lens plane (see Fig. 4) and ∇⊥ is the
perpendicular component of the gradient operator.

The lens equation
In theory, light rays are bent by all the matter encountered along the light path
between the source and the observer. Given that mass concentrations tend to be
localised within the Universe, we may use the so-called thin lens approximation
to simplify the problem. In this approximation, the lensing effect is supposed to
come from a single matter inhomogeneity located on a plane between the source
and the observer. This approximation is valid as long as the physical extent
of the mass concentration is small compared to the lens-source, lens-observer
and source-observer distances. The system is then divided into three planes: the
source plane, the lens plane and the observer plane. The light ray is assumed
to travel without deflection between these planes with just a slight deflection
α while crossing the lens plane (see Fig. 4). In the limit of a thin lens, all the
physics of the gravitational lensing effect is contained in the lens equation, which
relates the true position of the source θS to its observed position(s) on the sky
θI :

~θS = ~θI −
DLS

DOS
~α(~ξ), (4)

where ~ξ = DOL
~θI and DOL, DLS and DOS are the distance from the observer

to the lens, the lens to the source, and the observer to the source, respectively.
From equation 3, the deflection angle α is related to the projected gravitational
potential φ obtained by the integration of the 3D Newtonian potential Φ(~r)
along the line of sight:

~α(~ξ) =
2

c2

∫
∇⊥Φ(~r)dz = ∇⊥

(
2

c2

∫
Φ(~r)dz,

)
︸ ︷︷ ︸

φ

. (5)

We can distinguish two regimes of gravitational lensing. In most cases, the
bending of light is small and the background galaxies are just slightly distorted.
This corresponds to the weak lensing effect. Occasionally (as seen previously)
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Figure 4: The thin lens approximation.

the bending of light is so extreme that the light travels along several different
paths to the observer, and multiple images of one single source appear on the
sky. Such effects are collectively termed strong lensing, and are typically seen
where the angular position of the source is closely aligned with that of the centre
of the mass concentration. In this chapter, we address only the weak gravita-
tional lensing regime, in which sources are singly imaged and weakly distorted.

The distortion matrix A
The weak gravitational lensing effect results in both an isotropic dilation (the
convergence, κ) and an anisotropic distortion (the shear, γ) of the source. To
quantify this effect, the lens equation has to be solved. Assuming θI is small,
we may approximate the lens equation by a first order Taylor series expansion:

θS,i = AijθI,j , (6)

where

Ai,j =
∂θS,i
∂θI,j

= δi,j −
∂αi(θI,i)

∂θI,j
= δi,j −

∂2φ(θI,i)

∂θI,i∂θI,j
, (7)

Ai,j are the elements of the matrix A and δi,j is the Kronecker delta. The first
order lensing effects (the convergence κ and the shear γ) can be described by
the Jacobian matrix A, called the distortion matrix:

A = (1− κ)

(
1 0
0 1

)
− γ

(
cos 2ϕ sin 2ϕ
sin 2ϕ − cos 2ϕ

)
, (8)

where γ1 = γ cos 2ϕ and γ2 = γ sin 2ϕ are the two components of the gravita-
tional shear γ.
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The convergence term κ magnifies the images of background objects, and
the shear term γ stretches them tangentially around the foreground mass.

The gravitational shear γ
The gravitational shear γ describes the anisotropic distortions of background
galaxy images. It corresponds to a two component field, γ1 and γ2, that can be
derived from the shape of observed galaxies: γ1 describes the shear in the x and
y directions and γ2 describes the shear in the x = y and x = −y directions.
Using the lens equation, the two shear components γ1 and γ2 can be related to
the gravitational potential φ by:

γ1 =
1

2

[
∂2φ(~θI)

∂θ2
I,1

− ∂2φ(~θI)

∂θ2
I,2

]

γ2 =
∂2φ(~θI)

∂θI,1∂θI,2
. (9)

If a galaxy is initially circular with a diameter equal to 1, the gravitational shear
will transform the galaxy image to an ellipsoid with a major axis a = 1

1−κ−|γ|
and a minor axis b = 1

1−κ+|γ| . The eigenvalues of the amplification matrix (cor-

responding to the inverse of the distortion matrix A) provide the elongation
and the orientation produced on the images of lensed sources [61]. The shear γ
is frequently represented by a line segment representing the amplitude and the
direction of the distortion (see Fig. 5).

The convergence κ
The convergence κ, corresponding to the isotropic distortion of background
galaxy images, is related to the trace of the distortion matrix A by:

tr(A) = δ1,1 + δ2,2 −
∂2φ(~θI)

∂θ2
I,1

− ∂2φ(~θI)

∂θ2
I,2

,

tr(A) = 2−∆φ(~θI) = 2(1− κ). (10)

κ =
1

2

(
∂2φ(~θI)

∂θ2
I,1

+
∂2φ(~θI)

∂θ2
I,2

)
(11)

The convergence κ is defined as half the Laplacian of the projected gravita-
tional potential ∆φ, and is directly proportional to the projected matter density
of the lens (see Fig. 5). For this reason, κ is often referred to as the mass distri-
bution of the lens.

The dilation and distortion of images of distant galaxies are directly related
to the distribution of the (dark) matter and thus to the geometry and the
dynamics of the Universe. As a consequence, weak gravitational lensing offers
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Figure 5: Simulated convergence map by [93] covering a 2◦ x 2◦ field with 1024
x 1024 pixels. The shear map is superimposed to the convergence map. The size
and the direction of the line segments represent the amplitude and the direction
of the deformation locally.

unique possibilities for probing the statistical properties of dark matter and dark
energy in the Universe. The weak lensing effect is typically very small, therefore
the constraints that can be obtained on cosmology from the weak lensing effect
rely strongly on the quality of the techniques used to analyze the data. In the
following, an overview of the different techniques currently used to process weak
lensing data will be presented.

3 Shear estimation

As described previously, the weak gravitational lensing effect distorts the images
of background galaxies. The deformations can be split into two terms, the shear
γ and the convergence κ. The shear term stretches the background galaxies
tangentially around the foreground mass and the convergence term magnifies
(or demagnifies) them by increasing (or decreasing) their size.

In this section, we describe the methods used to measure the shear field γ.
In the next section, we will explain how the convergence field κ is derived from
the shear field. Either the shear field or the convergence field can be used to
constrain the cosmological model (see §6), but whatever the method used, the
constraints on the cosmological model will depend on the shear measurement
accuracy.
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3.1 Basics

To first approximation, the gravitational shear γ can be traced from the el-
lipticity of the galaxies that can be expressed as a function of the quadrupole
moments of the light distribution of the galaxy image Mi,j :

ε1 =
M1,1 −M2,2

M1,1 +M2,2
, (12)

ε2 =
2M1,2

M1,1 +M2,2
. (13)

where Mi,j are defined by:

Mi,j =

∫
d2θW (θ)I(θ)θiθj∫
d2θW (θ)I(θ)

, (14)

where W is a Gaussian function of scale length r estimated from the object size,
I is the surface brightness of the object and θ is the angular distance from the
object center.

The induced shear is small, typically around an order of magnitude smaller
than the RMS ellipticity seen in background galaxies, therefore the weak lens-
ing effect cannot be measured on a single galaxy. To measure the shear field,
it is necessary to measure the ellipticities of many background galaxies and
construct a statistical estimate of their systematic alignment. The fundamental
problem is that galaxies are not intrinsically circular, so the measured elliptic-
ity is a combination of their intrinsic ellipticity and the gravitational shear. By
assuming that the orientations of the intrinsic ellipticities of galaxies is random,
any systematic alignment between multiple galaxies is assumed to be caused by
gravitational lensing.

The amplitude of the cosmic shear can be quantified statistically by com-
puting the two-point correlation functions of the shear :

ξi,j(θ) = 〈γi(~θ′)γj(~θ′ + ~θ)〉, (15)

where i, j = 1, 2 correspond repectively to the tangential and radial component
of the shear and the averaging is done over pairs of galaxies separated by angle

θ = |~θ|. By isotropy ξ1,1 and ξ2,2 are functions only of θ and ξ1,2 = ξ2,1 = 0 is
due to the scalar origin of the gravitational lensing effect and to the fact that
galaxy ellipticity components are uncorrelated. This measurement demonstrates
that the component of the galaxy ellipticities of well separated galaxies are
uncorrelated, and it is in some sense a strong indication that our signal at small
scales is of cosmological origin.

However, the weak lensing effect is so small that it requires the control of
any systematic error that can mimic the lensing signal.

9



3.2 Biases

Instrumental and atmospheric bias
A major source of systematic errors in surveys of weak gravitational lensing
comes from the point spread function (PSF) due to instrumental and atmo-
spheric effects, which causes the observed images to be smeared. Each back-
ground galaxy image is convolved by the PSF of the imagery system H to pro-
duce the image that is seen by the instrument. The point spread function (PSF)
describes the response of an imaging system to a point source. For ground-based
observations, atmospheric turbulence dominates the contribution to the PSF.
For space-based observations, the PSF is essentially dependent on the quality of
the imaging system. An ideal PSF for weak lensing observations should be small
and isotropic. A large PSF tends to make small objects appear more isotropic,
destroying some of the information about their true ellipticity. An anisotropic
PSF adds a small level of ellipticity to observed background galaxies that can
mimic a true lensing signal. Even for the most modern telescopes, the anisotropy
of the PSF is usually at least of the same order of magnitude as the weak grav-
itational shear, and is often much larger.

PSF debiasing requires to have an estimation of the PSF at the location of
each galaxy in the field. Stars present in the field (which correspond to point
sources) provide a direct measurement of the PSF, and they can be used to
model the variation of the PSF across the field, as long as a sufficient number
of stellar images are present in the field.

Broadly, there are four groups of methods to correct for instrumental and
atmospheric distortions [56] distinguished by their solution to the two most
important tasks in shear estimation. The first task is how to correct for the
PSF. Some methods subtract the ellipticity of the PSF from the ellipticity of
each galaxy, while other methods attempt to deconvolve each galaxy from the
PSF before measuring the ellipticity. The second task is how to measure the
shear. Some methods do a direct measurement of the shear while others shear
a model until it closely resembles the observed galaxy.

The most widely adopted method belongs to the first category, and is the
result of a series of successive improvements of the original KSB method pro-
posed by Kaiser, Squires & Broadhurst [42]. The core of the method is based
on the measurement of the weighted ellipticity of the background galaxies and
stars from equation 13. The PSF correction is obtained by subtracting the star
weighted ellipticity ε∗i from the observed galaxy weighted ellipticity εobsi . The
corrected galaxy ellipticity εi is given by:

εi = εobsi − P sm(P sm∗)−1ε∗i , (16)

where i=1,2 and P sm and P sm∗ are the smear susceptibility tensors for the
galaxy and star given by [42], which can be derived from higher-order moments
of the images [50, 31]. This method has been used by many authors, although
different interpretations of the method have introduced differences between the
various implementations. One drawback of the KSB method is that for non-
Gaussian PSFs, the PSF correction is poorly-defined, mathematically. In [44],
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the authors propose a method to better account for realistic PSF by convolving
images with an additional kernel to eliminate the anisotropic component of the
PSF. Nevertheless, KSB method is thought to have reached its limits and it
has been superseded by new competitive methods.

On the recent methods, some methods attempt a direct deconvolution of
each galaxy from the PSF. The deconvolution requires a matrix inversion, and
becomes an ill-posed inverse problem if the matrix H describing the PSF is
singular (i.e. can not be inverted). The [57] shear-measurement method that
belongs to a second class of methods is attempting a full deconvolution by de-
composing each galaxy in shapelet basis functions convolved by the PSF. Some
other methods belonging to a third class, such as [11, 49], have been devel-
oped to correct for the PSF without a direct deconvolution. These methods try
to reproduce the observed galaxies by modeling each unconvolved background
galaxy (the background galaxy as it would be seen without a PSF). The model
galaxy is then convolved by the PSF estimated from the stars present in the
field and the galaxy model tuned in such way that the convolved model re-
produces the observed galaxy. Following a similar approach, the lensfit method
[62, 47] measures the shear by fitting realistic galaxy profiles in a fully Bayesian
way. There is a last class of methods [12] where the PSF correction is obtained
by subtraction after the images have been convolved with an additional kernel
to eliminate the anisotropic component of the PSF. The shear is obtained by
decomposing each galaxy in a distorted shapelet basis functions.

Further improvements of these methods will be required to ensure high ac-
curacy and reliability in a the future weak lensing studies.

Intrinsic alignments and correlations
The intrinsic alignment of galaxies constitutes the major astrophysical source of
systematic errors in surveys of weak gravitational lensing. Usually, the measure-
ment of the gravitational shear is obtained by averaging the ellipticity of several
nearby galaxies by assuming that the mean intrinsic ellipticity tend to zero. But
in practice, the assumption of randomly distributed galaxy shapes is unrealistic.
Nearby galaxies are expected to have experienced the same tidal gravitational
forces, which is likely to cause a radial alignment of their intrinsic ellipticities,
and therefore correlations in their observed shapes and orientations.

There are two types of intrinsic alignments. The first type of alignment
appears adjacent background galaxies that form in the same large-scale grav-
itational potential, and which therefore share a preferred intrinsic ellipticity
orientation. This is the so-called Intrinsic-Intrinsic (II) correlation (see Fig. 6).

The second type corresponds to the case where a matter structure causes
a radial alignment of a foreground galaxy and contributes at the same time
to the lensing signal of a background galaxy causing a tangential alignment of
this background galaxy. In this case, there is an anti-correlation between the
foreground intrinsic ellipticity and the background galaxy shear, known as the
Gravitational-Intrinsic (GI) alignment (see Fig. 7).

Intrinsic alignments are believed to introduce a significant bias in high-
precision weak lensing surveys that leads to a bias on cosmological parameters.
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Figure 6: Intrinsic-Intrinsic alignment: When a large cloud of dark matter,
gas and dust is collapsing, the surrounding matter falls in to form a disc. The
resulting galaxy becomes aligned in the direction of the tidal field. Consequently,
the intrinsic ellipticity of nearby galaxies will be aligned with the local tidal field
like the two galaxies in green.

For example, the shear power spectrum Pγ(l) which is the most common method
for constraining cosmological parameters, is biased by the previously described
intrinsic alignments:

Pγ(l) = PGGγ (l) + P IIγ (l) + PGIγ (l) (17)

where the first term is the usual gravitational lensing contribution, the second
term arises from the intrinsic alignment of physically close galaxies and the last
term arises from Gravitational-Intrinsic alignments.

The shear power spectrum Pγ(l) is the Fourier transform of the shear two-
point correlation ξi,j(θ) defined in the previous section.

The use of galaxy distance information, obtained from either photometric or
spectroscopic redshifts1, can be used to reduce these systematic errors. In stud-
ies [56, 75], the signal is evaluated as a function of the galaxy redshift, thanks to
the photometric redshift information. But the cosmological constraints in these
recent papers have been calculated assuming there are no intrinsic alignments,
although the bias is non-negligible. To increase the precision of future surveys, it
is essential to eliminate intrinsic alignments. It has been shown [28, 45, 46, 88]
that the Intrinsic-Intrinsic correlations can be almost completely removed by
identifying physically close pairs of galaxies and applying a weighting scheme
based on photometric redshifts. The Gravitational-Intrinsic effect is more prob-
lematic as it affects pairs of galaxies which are not physically close. There are
two main approaches to deal with GI alignments. The first approach is model-
independent; it is a purely geometrical method that removes the GI effect by
using a particular linear combination of tomographic shear power spectra, as-
suming the redshifts of the galaxies are known [40, 41]. The other approach

1Photometric and spectroscopic redshifts are estimates for the distance of an astronomical
object such as a galaxy. The photometric redshift measurement uses the brightness of the
object viewed through various standard filters while the spectroscopic redshift measurement
is obtained from the spectroscopic observation of an astronomical object.
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Figure 7: Gravitational-Intrinsic alignment: When the tidal field generated by
a (dark) matter structure aligns a foreground galaxy (in green) and at the same
time generates a gravitational shear on a background galaxy (in blue), there is
an anti-correlation between the intrinsic ellipticity of a foreground galaxy (in
green, in the screen) and the gravitational shear of a background galaxy (in
blue, in the screen).

tries to model the expected intrinsic alignment contribution for a particular
survey. The parameters of the model can thus be varied and marginalized over
to constrain cosmological parameters [13, 10, 39].

3.3 Challenges

All methods involve estimating an ellipticity εi for each galaxy, whose definition
can vary between the different methods. The accuracy of the shear measurement
method depends on the technique used to estimate the ellipticity of the galaxies
in the presence of observational and cosmological effects. In the KSB method
[42], the ellipticity is derived from quadrupole moments weighted by a Gaussian
function. This method has been used by many authors but it is not sufficiently
accurate for future surveys. The extension of KSB to higher-order moments
has been done to allow more complex galaxy and PSF shapes [14, 11, 49]. The
shapelets (see [58]) can be seen as an extension of KSB to higher-order; the first
few shapelet basis functions are precisely the weighted functions used in KSB.
However, shapelet basis functions are constructed from Hermite polynomials
weighted by a Gaussian function and are not optimal to represent galaxy shapes
that are closer to exponential functions. By consequence, in the presence of noise,
shear measurement methods based on a shapelet decomposition are not optimal.

Many other methods have been developed to address the global problem of
the shear estimation. To prepare for the next generation of wide-field surveys,
a wide range of shear estimation methods have been compared blindly in the
Shear Testing Program (STEP) ([29, 56]). Several methods have achieved an
accuracy of a few percent. However, the accuracy required for future surveys is
of the order of 0.1%. Another challenge, called GREAT08 ([15]), has been set
outside the weak lensing community as an effort to spur further developments.
The primary goal was to stimulate new ideas by presenting the problem to

13



researchers outside the shear measurement community. A number of fresh ideas
have emerged, especially to reduce the dependence on realistic galaxy modelling.
The most successful astronomical algorithm has been found to be the lensfit
method [62, 47]. In the upcoming GREAT10 challenge, the image simulations
will become more sophisticated and complex, in order to further improve the
accuracy of the methods.

4 2D mapping of the dark matter

The problem of mass reconstruction has become a central topic in weak lensing
since the very first maps have demonstrated that this method can be used to vi-
sualize the dark side of the Universe. Indeed, weak gravitational lensing provides
a unique way to map directly the distribution of dark matter in the Universe.
This is done by estimating the convergence κ, which is directly proportional to
the projected matter distribution along the line of sight.

4.1 Inversion problem

The convergence, which corresponds to the isotropic distortion of background
galaxies images, is not easy to estimate directly because the initial size of
galaxies is not known. However, the convergence κ can be derived by inversion
of the shear field. In order to do this, a shear field averaged on a regular grid
is required. The grid needs to be sufficiently coarse that several galaxies fall in
each cell of the grid, otherwise the shear field is only defined on an irregular
grid defined by the galaxy positions, yet not so coarse that the shear changes
sufficiently across the grid cell.

Global inversion
A global relation between κ and γ can be derived from the relations (9) and
(10). Indeed, it has been shown by [43] that the least square estimator ˆ̃κn of the
convergence κ̂ in the Fourier domain is:

ˆ̃κn(k1, k2) = P̂1(k1, k2)γ̂obs1 (k1, k2) + P̂2(k1, k2)γ̂obs2 (k1, k2), (18)

where γobs1 and γobs2 represent the noisy shear components. The hat symbols
denote the Fourier transform and:

P̂1(k1, k2) =
k2

1 − k2
2

k2
1 + k2

2

(19)

P̂2(k1, k2) =
2k1k2

k2
1 + k2

2

,

with P̂1(k1, k2) ≡ 0 when k2
1 = k2

2, and P̂2(k1, k2) ≡ 0 when k1 = 0 or k2 = 0.
The most important drawback of this method is that it requires a convolution of
shears to be performed over the entire sky. As a result, if the observed shear field
has a finite size or a complex geometry, the method can produce artifacts on
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the reconstructed convergence distribution near the boundaries of the observed
field. Masking out the bright stars in the field is common practice in weak lens-
ing analysis, therefore the global inversion requires to proper treatment of the
gaps in the shear map.

Local inversion
There exist local inversions, which have the advantage to address the problems
encountered by global relations: the missing data problem and the finite size of
the field. A relation between the gradient of K = log(1 − κ) and combinations
of first derivatives of g = γ

1−κ have been derived by [42] :

∇K ≡ u
−1

1− |g|2

(
1− g1 −g2

−g2 1 + g1

)(
g1,1 + g2,2

g2,1 − g1,2

)
≡ u (20)

This equation can be solved by line integration and there exist an infinite number
of local inverse formulae which are exact for ideal data on a finite-size field, but
which differ in their sensitivity to observational effects such as noise. The reason
why different schemes yield different results can be understood by noting that
the vector field u (the right-hand side of equation 20) contains a rotational
component due to noise because it comes from observational estimates. In [79],
the authors have split the vector field u into a gradient part and a rotational part
and they derive the best formula that minimizes the sensitivity to observational
effects by convolving the gradient part of the vector field u with a given kernel.

The local inversions reduce the unwanted boundary effects but whichever the
formula is used, the reconstructed field will be more noisy than that obtained
with a global inversion. Note also that the reconstructed dark matter mass map
still has a complex geometry that will complicate the later analysis.

4.2 E and B modes decomposition

Just as a vector field can be decomposed into a gradient or electric (E) com-
ponent, and a curl or magnetic (B) component, the shear field γi(θ) can be
decomposed into two components which for convenience we also call (E) and
(B). The decomposition of the shear field into each of these components can be
easily performed by noticing that a pure E mode can be transformed into a pure
B mode by a rotation of the shear by 45◦: γ1 → −γ2, γ2 → γ1.

Because the weak lensing arises from a scalar potential (the Newtonian po-
tential Φ), it can be shown that weak lensing only produces E modes. As a
result, the least square estimator of the E mode convergence field is simply:

κ̃(E) =
∂2

1 − ∂2
2

∂2
1 + ∂2

2

γ1 +
2∂1∂2

∂2
1 + ∂2

2

γ2, (21)

On the other hand, residual systematics arising from imperfect correction
of the instrumental PSF, telescope aberrations or complex geometry, generally
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generates both E and B modes. The presence of B modes can thus be used
to test for the presence of residual systematic effects in current weak lensing
surveys.

4.3 Missing data

As mentioned previously, analyzing an image for weak lensing inevitably involves
the masking out of regions to remove bright stars from the field. The measured
shear field is then incomplete. Although the masking out of the stars is common
practice , depending on the tools used to analyze this incomplete field, the gaps
present in the field will require proper handling.

At present, the majority of lensing analyses use the two-point statistics of
the cosmic shear field introduced §3.1 because this method is not biased by
missing data. However, this method is computationally intensive and could not
be used for future ultra wide lensing surveys. Measuring the power spectrum is
significantly less demanding computationally, but is strongly affected by missing
data. Higher-order statistical measures of the cosmic shear field, such as three
or four-point correlation functions have been studied and have shown to provide
additional constraints on cosmological parameters but could not be reasonably
estimated in future survey.

A solution that has been proposed by [67] to deal with missing data consists
in judiciously filling in the masked regions by using an “inpainting” method
simultaneously with a global inversion. Inpainting techniques are methods by
which an extrapolation of the missing information is carried out using some
priors on the solution. This new method uses a prior of sparsity in the solution
introduced by [22]. It assumes that there exists a dictionary ( i.e. a representa-
tion) D in which the complete data are sparse whilst the incomplete data are less
sparse. This means that we seek a dictionary α = ΦTX of the signal X in the
representation Φ where most coefficients αi are close to zero, while only a few
have a significant absolute value. If the signal is a sinusoid, its sparsest represen-
tation will be the Fourier representation because the signal can be represented
by a unique coefficient in the Fourier domain. In many applications - such as
compression, denoising, source separation and, of course, inpainting - a sparse
representation of the signal is necessary to improve the quality of the process-
ing. Over the past decade, traditional signal representations have been replaced
by a large number of new multiresolution representations. Instead of represent-
ing signals as a superposition of sinusoids using classical Fourier representation,
we now have many available alternative represnetations such as wavelets [53],
ridgelets [18] or curvelets [84, 17], most of which are overcomplete. This means
that some elements of the dictionary can be described in terms of other ones,
therefore a signal decomposition in such a dictionary is not unique. Although
this can increase the complexity of the signal analysis, it gives us the possibility
to select among many possible representations the one which gives the sparsest
representation of our data.

The weak lensing inpainting method consists in recovering a complete con-
vergence map κ from the incomplete measured shear field γobsi . The solution is
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obtained by minimizing:

min
κ
‖DTκ‖0 subject to

∑
i

‖ γobsi −M(Pi ∗ κ) ‖2≤ σ, (22)

where Pi is defined by the relation 20, DT is the DCT (Digital Cosine Trans-
form), σ stands for the noise standard deviation and M is the binary mask (i.e.
Mi = 1 if we have information at pixel i, Mi = 0 otherwise). We denote by ||z||0
the l0 pseudo-norm, i.e. the number of non-zero entries in z, and by ||z|| the
classical l2 norm (i.e. ||z||2 =

∑
k(zk)2).

If DTκ is sparse enough, the l0 pseudo-norm can be replaced by the con-
vex l1 norm (i.e. ||z||1 =

∑
k |zk|) [21]. The solution of such an optimization

task can be obtained through an iterative thresholding algorithm called MCA
(Morphological Component Analysis) [22]:

κn+1 = ∆D,λn

(
κn +M [P1 ∗ (γobs1 − P1 ∗ κn) + P2(γobs2 − P2 ∗ κn)]

)
, (23)

where the nonlinear operator ∆D,λ(Z) consists in:

- decomposing the signal Z on the dictionary D to derive the coefficients
α = DTZ.

- threshold the coefficients with a hard-thresholding (α̃ = αi if |αi| > λn
and 0 otherwise). The threshold parameter λn decreases with the iteration
number.

- reconstruct Z̃ from the thresholded coefficients α̃.

The MCA algorithm has been originally designed for the separation of lin-
early combined texture and cartoon layers in a given image. By incorporating
a binary mask in the model, it leads to an inpainting method. MCA relies on
an iterative thresholding algorithm, using a threshold which decreases linearly
towards zero along the iterations. This algorithm requires to perform at each
iteration a forward transform, a thresholding of the coefficients and an inverse
transform.

This method enables to reconstruct a complete convergence map κ that can
be used to perform further analyses of the field. The method can also be used to
reconstruct the dark matter distribution and do comparisons with other probes.
These comparisons are usually done after a filtering of the dark matter map,
whose quality is improved by the absence of missing data.

4.4 Filtering

The convergence map obtained by inversion of the shear field is very noisy (infi-
nite variance) [43] even with a global inversion. The noise comes from the shear
measurement errors and the residual intrinsic ellipticities present in the shear
maps that propagate during the weak lensing inversion. An efficient filtering is
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required to map the dark matter and to compare its distribution with other
probes.

Linear filters
Linear filters are often used to eliminate or attenuate unwanted frequencies.

• Gaussian filter:
The standard method [43] consists in convolving the noisy convergence
map κ with a Gaussian window G with standard deviation σG:

κG = G ∗ κn = G ∗ P1 ∗ γobs1 +G ∗ P2 ∗ γobs2 . (24)

The Gaussian filter is used to suppress the high frequencies of the signal.
However, a major drawback of this method is that the quality of the result
depends strongly on the value of the width σG of the Gaussian filter, which
controls the level of smoothing.

• Wiener filter:
An alternative to Gaussian filter is the Wiener filter [3, 92] obtained by
assigning the following weight to each k-mode:

w(k1, k2) =
|κ̂(k1, k2)|2

|κ̂(k1, k2)|2 + |N̂(k1, k2)|2
. (25)

In theory, if the noise and the signal follow a Gaussian distribution, the
Wiener filter provides the minimum variance estimator. However, the sig-
nal is not Gaussian. In fact, on small scales, the convergence map deviates
significantly from gaussianity. However, the Wiener filter leads to reason-
able results, with a better resolution than a simple Gaussian filter.

Linear filters are very common and easy to design, but improved results can be
obtained using non-linear filtering.

Bayesian methods

• Bayesian filters
Some recent filters are based on the Bayesian theory that considers that
some prior information can be used to improve the solution. Bayesian
filters search for a solution that maximizes the a posteriori probability
using Bayes’ theorem :

P (κ|κn) =
P (κn|κ)P (κ)

P (κn)
, (26)

where :

– P (κn|κ) is the likelihood of obtaining the data κn given a particular
convergence distribution κ.
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– P (κn) is the a priori probability of the data κn. This term, called
the evidence, is simply a constant that ensures that the a posteriori
probability is correctly normalized.

– P (κ) is the a priori probability of the estimated convergence map κ.
This term codifies our expectations about the convergence distribu-
tion before acquisition of the data κn.

– P (κ|κn) is called the a posteriori probability.

Searching for a solution that maximizes P (κ|κn) is the same that searching
for a solution that minimizes the quantity Q :

Q = − log(P (κ|κn)), (27)

Q = − log(P (κn|κ))− log(P (κ)).

If the noise is uncorrelated and follows a Gaussian distribution, the likeli-
hood term P (κn|κ) can be written:

P (κn|κ) ∝ exp(−1

2
χ2), (28)

with :

χ2 =
∑
x,y

(κn(x, y)− κ(x, y))2

σ2
κn

. (29)

Equation (28) can then be expressed as follows:

Q =
1

2
χ2 − log(P (κ)) =

1

2
χ2 − βH, (30)

where β is a constant that can be seen as a parameter of regularization
and H represents the prior that is added to the solution.

If we have no expectations about the convergence distribution, the a priori
probability P (κ) is uniform and the maximum a posteriori is equivalent
to the well-known maximum likelihood. This maximum likelihood method
has been used by [5, 81] to reconstruct the weak lensing field, but the
solution needs to be regularized in some way to prevent overfitting the
data. This has been done via the a priori probability of the convergence
distribution. The choice of this prior is one of the most critical aspects
of the Bayesian analysis. An Entropic prior is frequently used but there
exists many definitions of the Entropy [25]. One that is currently used is
the Maximum Entropy Method (MEM) [16, 55].

Some authors [5, 80] have also suggested to reconstruct the gravitational
potential φ instead of the convergence distribution κ, still using a Bayesian
approach, but it is clearly better to reconstruct the mass distribution κ
directly because it allows a more straightforward evaluation of the uncer-
tainties in the reconstruction.
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• Multiscale Bayesian filters
A multiscale maximum entropy prior has been proposed by [55] which
uses the intrinsic correlation functions (ICF) with varying width. The
multichannel MEM-ICF method consists in assuming that the visible-
space image I is formed by a weighted sum of the visible-space image
channels Ij , I =

∑Nc

j=1 pjIj where Nc is the number of channels and Ij is
the result of the convolution between a hidden image hj with a low-pass
filter Cj , called the ICF (Intrinsic Correlation Function) (i.e. Ij = Cj ∗oj).
In practice, the ICF is a Gaussian. The MEM-ICF constraint is:

HICF =

Nc∑
j=1

| oj | −mj− | oj | log

(
| oj |
mj

)
. (31)

Another approach, based on the sparse representation of the data, has
been used by [65] that consists in replacing the standard Entropy prior
by a wavelet-based prior. Sparse representations of signals have received
a considerable interest in recent years. The problem solved by the sparse
representation is to search for the most compact representation of a signal
in terms of linear combination of atoms in an overcomplete dictionary.

The entropy is now defined as :

H(I) =

J−1∑
j=1

∑
k,l

h(wj,k,l). (32)

In this approach, the information content of an image I is viewed as the
sum of the information at different scales wj of a wavelet transform. The
function h defines the amount of information relative to a given wavelet
coefficient. Several functions have been proposed for h.

In [85], the most appropriate entropy for the weak lensing reconstruction
problem has been found to be the NOISE-MSE entropy:

h(wj,k,l) =
1

σ2
j

∫ |wj |

0

u erfc(
| wj,k,l | −u√

2σj
)du, (33)

where σj is the noise standard deviation at scale j. The NOISE-MSE
exhibits a quadratic behavior for small coefficients and is very close to
the l1 norm (i.e. the absolute value of the wavelet coefficient) when the
coefficient value is large, which is known to produce good results for the
analysis of piecewise smooth images.

A Multiscale Bayesian filter, called MRLens (Multi-Resolution for weak Lensing)
[85], based on the above method, has shown to outperform other techniques
(Gaussian, Wiener, MEM, MEM-ICF) in the reconstruction of dark matter. It
has been used to reconstruct the largest weak lensing survey ever undertaken
with the Hubble Space Telescope [59]. The result is shown Fig. 8, this map is
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Figure 8: Map of the dark matter distribution in the 2-square degrees COSMOS
field by [59]: the linear blue scale shows the convergence field κ, which is pro-
portional to the projected mass along the line of sight. Contours begin at 0.004
and are spaced by 0.005 in κ.

the most precise and detailed dark matter mass map, covering a large enough
area to see extended filamentary structures.

In the paper [92], a study using a simulated full-sky weak lensing map has
shown that the Wiener filter is optimal to filter the large-scale structures but not
the non-Gaussian structures such as the clusters. On the contrary, the MRLens
filter is very efficient to reconstruct the clusters but not the large-scale struc-
tures. From these results, the authors indicate that an optimal method could
be obtained by a smart combination of these two filters.

5 3D mapping of the dark matter

In this section, we will discuss methods to reconstruct the 3D dark matter field
from shear measurements.

5.1 Formalism

Following the flat-sky approach, the 3D convergence field can be reconstructed
by sorting the galaxies in several redshift bins. A convergence map can be com-

21



puted from the shear at each redshift bin using the relation 18. But, this
reconstruction is unsatisfactory because there are correlations between the con-
vergence maps reconstructed at different redshift bins. The reconstruction of a
3D dark matter map without correlations requires to estimate the 3D density
contrast δ or the 3D gravitational potential Φ, which is related to the density
contrast δ by Poisson’s equation:

∇2Φ = 4πGρmδa
2 =

3

2
λ−2
H Ωma

−1δ, (34)

where a is the cosmological scale factor, δ = (ρ − ρ̄)/ρ̄ is the density contrast,
λH = 1/H0 is the Hubble length and Ωm is the present-day mass-density pa-
rameter.

The 3D gravitational potential Φ can be reconstructed using the weak lensing
measurements together with the redshifts for all galaxies of the field [90, 89, 3,
27, 91]. Indeed, assuming the Born approximation (i.e. assuming the light path
is unperturbed), the lensing potential φ is given by :

φ(r) = 2

∫ r

0

dr′
(
fK(r)− fK(r′)

fK(r)fK(r′)

)
Φ(r′), (35)

where fK(r) is the angular diameter distance, which is a function of the co-
moving radial distance r and the curvature K. This relation may be inverted to
yield [90]:

Φ(r) =
1

2
∂rr

2∂rφ(r). (36)

But the lensing potential φ is not an observable. The observable is the

reduced shear gi(θ) = γi(θ)
1−κ(θ) . In the weak lensing regime, κ can be neglected

and the observable becomes the shear γi corresponding to the distortion of the
lensed images of background galaxies.

An estimate of the lensing potential φ̃ from the shear field is given by the
following relation [43]:

φ̃(r) = 2∂−4∂i∂jγij(r) (37)

with γij =

(
γ1 γ2

γ2 −γ1

)
= (∂i∂j − 1

2δij∂
2)φ is the shear matrix.

The lensing potential φ is related to the convergence field by the following
relation :

∇2φ = 2κ(θ) (38)

The density contrast δ is related to the convergence κ by a line of sight
integral over the lensing efficiency function W̄ :

[κi]k =
3H2

0

2c2
Ωm

∫ ∞
0

dr
W̄ i(r)fK(r)

a(r)
δ(fK(r)θk, r),
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W̄ i(r) =

∫ ∞
0

dr′
fK(r′ − r)
fK(r′)

[
p(i)
z (z)

dz

dr

]
z=z(r′)

, (39)

with piz represents the ith bin of the probability distribution of sources as a
function of redshift.

With these sets of equations the 3D lensing potential, the 3D gravitational
potential, the 3D convergence and the 3D matter density fields can all be gen-
erated from combined shear and redshift information.

Some authors have attempted reconstruct the 3D lensing potential or the
3D gravitational potential [3, 59] in order to reconstruct the 3D matter density
field. But in the majority of papers relating to 3D lens mapping [35, 83, 95], the
reconstruction of the 3D matter density field is derived from the convergence
tomography. It consists in two linear steps: a 3D convergence field is first derived
from the shear measurements sorted in several redshift bins using the relation
18; then, the 3D density contrast is obtained by inversion of the relation 39.
The resulting reconstruction is very noisy and requires a regularization of the
solution.

5.2 Filtering

Linear map-making can be expressed in terms of the general inverse problem:

db = Pbasa + nb (40)

where we seek an estimate ŝa from a data vector db that is a linear projection
Pba of the signal with measurement noise nb. sa can be the 3D density contrast
or the 3D gravitational potential and db can be the 3D shear field or the 3D
convergence field.

Linear filters
A first linear approach is the maximum likelihood that searches for an estimate
of the signal ŝa that minimizes χ2:

χ2 = (db − Pbaŝa)tN−1
bb (db − Pbaŝa), (41)

where Nbb is the noise covariance. Minimizing χ2 returns the linear estimator:

ŝa = Rabdb, (42)

where :

Rab = [P tbaN
−1
bb Pba]−1P tbaN

−1
bb . (43)

If Pba is invertible then Rab = P−1
ba and the estimator becomes independent

of both the signal and the noise. Note that minimizing χ2 is not the same as
minimizing the reconstruction noise Naa = 〈(ŝa − sa)(ŝa − sa)t〉. It minimizes
Naa subject to the constraint RabPba = I
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A Bayesian approach can be used to set a penalty function H on the solution
using prior knowledge of the statistical properties of the signal and the noise.
An estimate of the signal can then be sought by minimizing χ2 + H. Defining
the penalty function H = ŝtwS

−1
aa ŝw, the minimization of χ2 + H returns the

Wiener filtered estimate of the signal ŝw = Rwbdb, where:

Rwb =
[
S−1
aa + P tbaN

−1
bb Pba

]−1
P tbaN

−1
bb (44)

Rwb = SaaP
t
ba

[
PbaSaaP

t
ba +Nbb

]−1
.

The classical Wiener filter definition (see equation 25) can be recovered by
assuming the data may be expressed as db = Isa+nb. Equation 45 then becomes:

Rwb = Saa [Saa +Nbb]
−1
, (45)

where Saa = 〈sasta〉 and Nbb = 〈nbntb〉. The Wiener filter reduces the reconstruc-
tion noise Naa by using the expected noise properties as a prior on the solution
[35].

In the literature, no 3D Wiener filter have yet been proposed to process the
full 3D matter density field. In [35], the authors apply a Wiener filter along each
individual line-of-sight, ignoring the correlation between different line of sights
(radial Wiener filter). In [83], the authors use two types of pseudo-3D Wiener
filter: a “radial Wiener filter” and a “transverse Wiener filter”. Both filters are
well adapted to filter the large-scale regime because the signal is Gaussian, but
small scales require a more efficient filtering. Moreover, both filters show a sys-
tematic shift and stretch of the structures in the radial direction, and fail to
account for correlations either along the line of sight (transverse filter) or in the
transverse direction (radial filter).

Non-Linear filters

Several non-linear filters have been proposed to filter the 3D matter density
field. The MEM filter that has been presented in section 4.4 has been introduced
by [35] to reconstruct dark matter halos in 3D matter distribution. The MEM
filter that is based on the Bayesian theory has already been applied in 2D matter
distribution (see [16, 55]). In this filter the penalty function is an entropy that
is estimated from the full 3D weak lensing field. A fundamental problem with
the MEM filter is the difficulty in assessing the errors in the reconstruction.

Another non-linear approach that is a full-3D filter has been proposed by
[35, 95], and consists in expressing the data in a new set of uncorrelated orthog-
onal basis elements that are ranked by their signal-to-noise ratio. This method
is known as the Karhunen-Loeve transform or Singular Value Decomposition,
assuming the modes are the eigenvectors of the covariance matrix. A direct noise
reduction which does not require knowledge of the statical properties of the sig-
nal is obtained by eliminating the lower signal-to-noise singular values.

The full reconstruction of the 3D dark matter distribution from weak lensing
has only been considered recently [35, 89] because the finite size of the earlier
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surveys did not allow for 3D mapping. Recently, the COSMOS survey [59, 60]
has enabled to reconstruct the first 3D weak lensing map. Although the results
were limited by the finite size of the survey, they provide a framework for future
large weak lensing surveys like the future Euclid mission. The next step, is to
develop a full 3D Wiener filter, to extend the MRLens method from 2D to 3D,
and possibly to develop a combined filtering method.

6 Cosmological model constraints

Measurement of the distortions in images of background galaxies caused by
large-scale structures provides a direct way to study the statistical properties of
the evolution of structures in the Universe. Weak gravitational lensing measures
the mass and can thus be directly compared to theoretical models of structure
formation. But because we have only one realization of our Universe, a statistical
analysis is required to do the comparison. The estimation of the cosmological
parameters from weak lensing data can be seen as an inverse problem. The direct
problem consisting of deriving weak lensing data from cosmological parameters
can be solved using numerical simulations, but the inverse problem cannot be
solved so easily because the N-body equations used by the numerical simulations
can not be inverted.

6.1 Methodology

A solution is to use analytical predictions for statistics of cosmic shear and to
compare with the values estimated from the data. A statistical analysis of the
weak lensing field is then required to constrain the cosmological parameters.

The method that is usually used to constrain cosmological parameters from
statistic estimation is the maximum likelihood (see §4.4). Let’s estimate the
statistic η(x, y) in the weak lensing field to constrain the cosmological param-
eters p1 and p2. By assuming the noise follows an uncorrelated and Gaussian
distribution, the likelihood function L is defined as follows:

L(p1, p2, p3) ≡ P (ηobs|ηmod) ∝ exp(−1

2
χ2(p1, p2, p3)), (46)

with:

χ2(p1, p2, p3) =
∑
x,y

(ηobs(x, y)− ηmod(x, y; p1, p2, p3))2

σ2(x, y)
, (47)

where ηmod is the analytic prediction depending on the two cosmological pa-
rameters (p1, p2) and a nuisance parameter (p3). ηobs is the statistic estimation
from the data. χ2 is then a function of three parameters. A two-dimensional
probability distribution can be obtained by marginalizing the three-dimensional
probability distribution function over p3:

L(p1, p2) =

∫
dp3P (p3) exp(−1

2
χ2(p1, p2, p3)), (48)
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Here P (p3) is the prior distribution function for the parameter p3, which is
assumed to be a known Gaussian distribution. Using L(p1, p2), we can define
the 1, 2 and 3σ contours on the two-dimensional (p1, p2) parameter space.
The best-fit values for p1 and p2 can also be easily determined by maximizing
the likelihood function. Recent cosmic shear results obtained from maximum
likelihood maximization are given in [24, 76].

The different cosmological parameters can be quantified using a variety of
statistics estimated either in the shear field or in the convergence field. Most
lensing studies do the statistical analysis in the shear field to avoid the inversion.
But most of the following statistics can also be estimated in the convergence
field if the missing data are carefully accounted for. A description of the different
statistics that can be used to constrain cosmological parameters is provided
below.

6.2 Second-order statistics

The most common method for constraining cosmological parameters uses
second-order statistics of the shear field calculated either in real or Fourier space
(or Spherical Harmonic space). Whatever the second-order statistic that is con-
sidered, it can be easily related to the theoretical 3D matter power spectrum
P (k, χ) by means of the 2D convergence power spectrum Pκ(l).

• The convergence and shear power spectra Pκ(l) and Pγ(l):

The 2D convergence power spectrum Pκ(l) only depends on l = |~l|, and is
defined by:

〈κ̂(~l)κ̂(~l′)〉 = (2π)2δ(~l −~l′)Pκ(l), (49)

where κ̂ is the Fourier transform of the 2D convergence κ.

The 2D convergence power spectrum Pκ(l) can be expressed as a function
of the 3D matter power spectrum P (k, χ), the mass fluctuations δρ/ρ and
cosmological parameters [68]:

Pκ(l) =
9

16

(
H0

c

)4

Ω2
m

∫
dχ

[
g(χ)

ar(χ)

]2

P

(
l

r
, χ

)
, (50)

where a is the cosmological scale factor, H0 is the Hubble constant, Ωm
is the matter density parameter, χ the comoving distance, r = a−1DA

with DA being the angular diameter distance and g the lensing efficiency
function.

Furthermore, in the case of weak lensing, the power spectra for the shear
Pγ(l) and the convergence Pκ(l) are the same.

In general there are advantages for cosmological parameter estimation in
using Fourier (or Spherical harmonic) statistics, because the Fast Fourier
Transform (FFT) algorithm can be used to estimate these power spectra
rapidly, and the correlation properties are more convenient to express in
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Fourier space. However, for surveys with complicated geometry due to
the removal of bright stars, the spatial stationarity is not satisfied and
the missing data need proper handling. The problem of power spectrum
estimation from weak lensing data with missing data has been studied by
[30]. But real space statistics are largely used because they are easier to
estimate, although statistical error bars are harder to estimate.

• Shear variance 〈γ2(θ)〉 :
An example of real space second-order statistic is the shear variance
〈γ2(θ)〉, defined as the variance of the average shear γ̄ evaluated in circular
patches of varying radius θs. The shear variance 〈γ2(θ)〉 can be related to
the underlying 3D matter power spectrum via the 2D convergence power
spectrum Pκ by the following relation:

〈γ2(θ)〉 =

∫
dl

2π
lPκ(l)

J2
1 (lθs)

(lθs)2
, (51)

where Jn is the Bessel function of order n. The shear variance has been
frequently used in weak lensing analysis to constrain cosmological param-
eters [54, 32, 24].

• Shear two-point correlation function ξi,j(θ) :
Another real space statistic is the shear two-point correlation function
ξi,j(θ) defined in §3, which is widely used because it is easy to implement
and can be estimated even for complex geometry. The shear two-point cor-
relation function can also be related to the underlying 3D matter power
spectrum via the 2D convergence power spectrum Pκ. The shear two-point
correlation function is the Fourier transform of the convergence power
spectrum Pκ, which becomes a Hankel transform (also called Fourier-
Bessel transform) considering the isotropy of the Universe:

ξ+(θ) = ξ1,1(θ) + ξ2,2(θ) =

∫ ∞
0

dl

2π
lPκ(l)J0(lθ), (52)

where J0 corresponds to the Bessel function at zero order.

The two-point correlation function is the most popular statistical tool
used in weak lensing analysis. It has been used in many recent weak lensing
analyses to constrain cosmological parameters (see for example [7, 32, 24]).

The simplest way to compute a two-point correlation function consists in
counting the number of background galaxy pairs separated by a distance
d. But this brute force approach has a complexity of O(N2), which be-
comes an important computational load for large surveys. Recently, some
progress has been made in this field, and new methods have been devel-
oped to speed up the calculation of the two-point correlation function by
reducing the complexity to O(NlogN). These algorithms are based on or-
dered binary trees that are an interesting data structure to scan the galaxy
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pairs [96, 63]. But to reach this complexity some approximations are re-
quired, such as neglecting large scales or binning the two-point correlation
function [37, 96].

• Shear Tomography ξk,li,j (θ) :
The constraints on cosmological parameters can be significantly improved
if the shape measurements are combined with photometric redshifts. The
2D shear correlation formalism can be extended to 3D shear by split-
ting the galaxy sample into redshift bins from which the auto- and cross-
correlations can be calculated. It is the so-called cosmic shear tomography
[34, 2]. The shear cross-correlation functions ξk,li,j (θ) between the bins k
and l are defined as follows:

ξk,li,j (θ) = 〈γki (~θ′)γlj(
~θ′ + ~θ)〉. (53)

The shear cross-correlation functions ξk,li,j (θ) can be related to the un-
derlying 3D matter power spectrum via the 2D convergence cross-power
spectrum P k,lκ by the following relation:

ξk,l+ (θ) =

∫ ∞
0

dl

2π
lP k,lκ (l)J0(lθ), (54)

with:

P k,lκ (l) =
9

16

(
H0

c

)4

Ω2
m

∫
dχ
gk(χ)gl(χ)

(ar(χ))2
P

(
l

r
, χ

)
, (55)

Shear tomography has been applied to real data (e.g. [4, 76]) to im-
prove the constraints on cosmological parameters. The separation of source
galaxies into tomographic bins improves significantly the constraints on
cosmological parameters, and particularly those of dark energy that drives
cosmic expansion.

• Second-order statistics to separate E and B modes :
If the shear, estimated from the image shapes of distant galaxies, was
only due to gravitational lensing, then it should consist only of a pure E-
mode shear (see §4.2). But the estimated shear may contains systematic
errors. Therefore, the splitting of the observed shear field into its E- and
B-modes is of great importance to isolate the gravitational shear from the
shear components most likely not due to lensing. The standard technique
for this separation is the variance of the aperture mass 〈M2

ap〉 [74], which
corresponds to an average shear two-point correlation.This statistic is the
result of the convolution of the shear two-point correlation with a com-
pensated filter. Several forms of filters have been suggested which trade
locality in real space with locality in Fourier space. By considering the
filter defined by [69] with a scale of θs, the variance of the aperture mass
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can be expressed as a function of the 2D convergence power spectrum as
follows:

〈M2
ap(θs)〉 =

∫
dl

2π
lPκ(l)

576J2
4 (lθs)

(lθs)4
. (56)

This method has been used in many weak lensing analyses to constrain
cosmological parameters (see for example [94, 82, 32, 24]). However, the
lack of knowledge of the shear correlation function on very small scales
introduces a systematic bias on the variance aperture method. More re-
cently, new second-order statistic, i.e. the ring statistic [72] and COSEBIs
(Complete Orthogonal Sets of E-/B-mode Integrals) [71] have been pro-
posed to overcome the practical problem encountered by the aperture mass
method.

Second-order statistics measure the Gaussian properties of the field, which
limits the amount of information extracted, since it is known that the low red-
shift Universe is highly non-Gaussian on small scales. Indeed, gravitational clus-
tering is a non linear process and, in particular, at small scales the mass dis-
tribution is highly non-Gaussian. Consequently, if only second-order statistics
are used to place constraints on the cosmological model, degenerate constraints
are obtained between some important cosmological parameters (see for example
[33, 24, 76]).

6.3 Non-Gaussian statistics

If the weak lensing signal was Gaussian, it would be fully described by its
angular power spectrum. However, in the standard model of structure formation,
fluctuations that are initially Gaussian are amplified by gravitational collapse
to produce a highly non-Gaussian matter distribution. Thus, except at large
scale, the convergence field is highly non-Gaussian. On small scales, we can
observe structures like galaxies and clusters of galaxies, and on intermediate
scales, we observe some filamentary structures. The characterization of this non-
Gaussianity can be used to constrain the cosmological parameters. A possible
solution is to consider higher-order statistics of the shear or convergence field.
The statistics presented below are estimated in the convergence field because
the non-Gaussianity is clearly visible in the field.

Third-order statistics are the lowest-order statistics which can be used to
detect non-Gaussianity. Many authors have already addressed the problem of
three-point statistics and semi-analytical predictions for the three-point correla-
tion function and the bispectrum have already been derived (e.g. [51, 52, 78, 19]).
However, the correction for missing data in the full higher-order Fourier statis-
tics remains an outstanding issue. An alternative solution (see §4.3) has been
proposed by [67] to derive second-order and third-order statistics and possibly
higher-order statistics from an incomplete shear map.
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• The Convergence Bispectrum Bκ(|~l1|, |~l2|, |~l3|):
By analogy with second-order statistics, whatever the third-order statis-
tic considered, it can be easily related to the convergence bispectrum
Bκ(|~l1|, |~l2|, |~l3|), which is the Fourier analog of the three-point correla-
tion function:

Bκ(|~l1|, |~l2|, |~l3|) ∝ 〈κ̂(|~l1|)κ̂(|~l2|)κ̂∗(|~l3|)〉. (57)

where κ∗ is the complex conjugate of κ. The bispectrum only depends
on distances |~l1|, |~l2| and |~l3|. [77] proposed an algorithm to compute the
bispectrum from numerical simulations using a Fast Fourier transform but
without considering the case of incomplete data. This method is used by
[23] to estimate the bispectrum from numerical simulations in order to
compare it with the semi-predictions of the analytic halo model.

• Convergence three-point correlation function ξi,j,k(θ):
The three-point correlation function ξi,j,k is easy to estimate and can be
estimated even for complex geometry. It is defined as follows :

ξi,j,k(θ) = 〈κ(~θ1)κ(~θ2)κ(~θ3)〉. (58)

The same relation can be derived for the shear. It has been shown that
tighter constraints can be obtained with the three-point correlation func-
tion [87]. Estimating three-point correlation function from data has al-
ready be done [9] but can not be considered in future large data sets
because it is computationally too intensive. In the conclusion of [86], the
authors briefly suggested to use the p-point correlation functions with im-
plementations that are at best O(N(logN)p−1). However, it was not clear
if this suggestion is valid for the missing data case.

• Third-order moment of the convergence Sκ:
A simpler quantity than the three-point correlation function is provided
by measuring the third-order moment of the convergence κ, also named
the skewness, that measures the asymmetry of the distribution [66]:

Sκ =

N∑
i=1

(κi − κ)3

(N − 1)σ3
. (59)

The convergence skewness is primarily due to rare and massive dark matter
halos. The distribution will be more or less skewed positively depending
on the abundance of rare and massive halos.

• Fourth-order moment of the convergence Kκ:
We can also estimate the fourth-order moment of the convergence, also
known as kurtosis, that measures the peakiness of a distribution [66]: The
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kurtosis of the convergence κ is defined as follows :

Kκ =

N∑
i=1

(κi − κ)4

(N − 1)σ4
− 3, (60)

which is known as excess kurtosis. A high kurtosis distribution has a
sharper “peak” and flatter “tails”, while a low kurtosis distribution has a
more rounded peak.

• The skewness and the kurtosis of the aperture mass 〈Mn
ap〉:

Similarly to the aperture mass variance described in the previous section,
the skewness and the kurtosis of the aperture mass have also been intro-
duced to weak lensing analyses to constrain cosmological parameters (see
for example [38, 73]).

• Peak Counting (PC)
As said previously, the convergence field is highly non-Gaussian. Another
approach to look for non-Gaussianity is to perform a statistical analysis
directly on the non-Gaussian structures present in the convergence field.
For example, galaxy clusters, which are the largest virialized cosmological
structures in the Universe, can provide a unique way to focus on non-
Gaussianity present at small scales. One interesting method is the Peak
Counting, which searches the number of peaks detected on the field that
differs from the cluster abundance because of the projection of the large
scale structures. The peak counting has been used to measure the number
of peaks detected on the convergence field by [36, 26, 48]. Peaks can be
also counted on the shear field using a filtered version of the shear [20].

It has been proposed by [66] to do a comparison between several statistics and
several representations. The comparison shows that the wavelet transform makes
statistics more sensitive to the non-Gaussianity present in the convergence field.
In the same paper, several non-Gaussian statistics have been compared and
the peak counting estimated in a wavelet representation, called Wavelet Peak
Counting, has been found to be the best non-Gaussian statistic to constrain
cosmological parameters. In this paper, the comparison with bispectrum was
restricted to the equilateral configuration. In [8], the authors shows that bispec-
trum using all triangle configurations outperforms peak counting as a function
of clusters’ mass and redshift.

7 Conclusion

The weak gravitational lensing effect, which is directly sensitive to the gravita-
tional potential, provides a unique method to map the 3D dark matter distribu-
tion and thus understand the process of structure formation. This can be used
to set tighter constraints on cosmological models and to better understand the
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nature of dark matter and dark energy. But the constraints derived from this
weak lensing effect depend on the techniques used to analyze the weak lensing
signal, which is very weak.

The field of weak gravitational lensing has recently seen great success in
mapping the distribution of dark matter (Fig. 8). The next breakthrough will
certainly happen in the next decade thanks to the future full-sky missions de-
signed to weak gravitational lensing: ground-based missions like LSST (Large
Synoptic Survey Telescope) or space-based missions like Euclid or WFIRST
(Wide Field Infrared Survey Telescope). The primary goal of these missions is
precisely to map very accurately the geometry of the dark universe and its evo-
lution by measuring shapes and redshifts of galaxies over the entire sky. It will
provide a 3D full-sky map of the dark and visible matter in the Universe and
will permit to set tighter constraints on Dark Energy and other cosmological
parameters. For this to happen, new methods are now necessary to reach the
accuracy required by this survey, and ongoing efforts are needed to improve the
standard analyses. This chapter attempts to give an overview of the techniques
that are currently used to analyze the weak lensing signal along with future
directions. It shows that weak lensing is a dynamic research area in constant
progress.

In this chapter, we have detailed the different steps of the weak lensing
data analysis, thus presenting various aspects of signal processing. For each
problem, we have systematically presented a range of methods currently used,
from earliest to up-to-date methods. This chapter highlights the introduction
of Bayesian ideas that have provided a way to incorporate prior knowledge in
data analysis as a major milestone in weak lensing analysis. The next major
step might possibly be the introduction of sparsity. Indeed, we have presented
new methods based on sparse representations of the data that have already had
some success.
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