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1 Introduction to CMB Cosmology
About 400, 000 years after the big bang the temperature of the Universe fell to about a few thousand
degrees. As a result the previously free electrons and protons combined and the Universe became
neutral. This released a radiation which we now observe as the cosmic microwave background
(CMB). The tiny fluctuations1 in the temperature and polarization of the CMB carry a wealth of
cosmological information. These so-called temperature anisotropies were predicted as the imprints
of the initial density perturbations which gave rise to the present large-scale structures such as
galaxies and clusters of galaxies. This relation between the present-day Universe and its initial
conditions has made the CMB radiation one of the most preferred tools to understand the history
of the Universe. The CMB radiation was discovered by radio astronomers Arno Penzias and Robert
Wilson in 1965 [72] and earned them the 1978 Nobel Prize. This discovery was in support of the
big bang theory and ruled out the only other available theory at that time — the steady state
theory. The crucial observations of the CMB radiation were made by the Far-Infrared Absolute
Spectrophotometer (FIRAS) instrument on the Cosmic Background Explorer (COBE) satellite [86]
— orbited in 1989 − 1996. COBE made the most accurate measurements of the CMB frequency
spectrum and confirmed it as being a black body to within experimental limits. This made the CMB
spectrum the most precisely measured black body spectrum in nature. The CMB has a thermal black
body spectrum at a temperature of 2.725 K: the spectrum peaks in the microwave range frequency
of 160.2 GHz, corresponding to a 1.9 mm wavelength. The results of COBE inspired a series of
ground- and balloon-based experiments, which measured CMB anisotropies on smaller scales over
the next decade. During the 1990s, the first acoustic peak of the CMB power spectrum (see Figure 1)
was measured with increasing sensitivity and by 2000 the BOOMERanG experiment [26] reported
that the highest power fluctuations occur at scales of about one degree. A number of ground-based
interferometers provided measurements of the fluctuations with higher accuracy over the next three
years, including the Very Small Array [16], Degree Angular Scale Interferometer (DASI) [61] and
the Cosmic Background Imager (CBI) [78]. DASI was the first to detect the polarization of the
CMB and the CBI provided the first E-mode polarization spectrum with compelling evidence that
it is out of phase with the T -mode spectrum.

In June 2001, NASA launched its second CMB mission (after COBE), Wilkinson Microwave
Anisotropy Explorer (WMAP) [44], to make much more precise measurements of the CMB sky.
WMAP measured the differences in the CMB temperature across the sky creating a full-sky map
of the CMB in five different frequency bands. The mission also measured the CMB’s E-mode
and the foreground polarization. As of October 2010, the WMAP spacecraft has ended its mis-
sion after nine years of operation. Although WMAP provided very accurate measurements of the
large angular-scale fluctuations in the CMB, it did not have the angular resolution to cover the
smaller scale fluctuations which had been observed by previous ground-based interferometers. A
third space mission, the Planck Surveyor [1], was launched by ESA2 in May 2009 to measure the
CMB on smaller scales than WMAP, as well as making precise measurements of the polarization
of CMB. Planck represents an advance over WMAP in several respects: it observes in higher res-
olution, hence allowing one to probe the CMB power spectrum to smaller scales; it has a higher
sensitivity and observes in nine frequency bands rather than five, hence improving the astrophysical
foreground models. The mission has a wide variety of scientific aims, including: 1. detecting the
total intensity/polarization of the primordial CMB anisotropies; 2. creating a galaxy-cluster cata-

1These tiny fluctuations are of the order of O(10−5) and O(10−7) for temperature and polarization respectively.
2http://www.esa.int/SPECIALS/Planck/index.html
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logue through the Sunyaev-Zel’dovich (SZ) effect [93]; 3. observing the gravitational lensing of the
CMB and the integrated Sachs Wolfe (ISW) effect [82]; 4. observing bright extragalactic radio and
infrared sources; 5. observing the local interstellar medium, distributed synchrotron emission and
the galactic magnetic field; 6. studying the local Solar System (planets, asteroids, comets and the
zodiacal light). Planck is expected to yield data on a number of astronomical issues by 2012. It is
thought that Planck measurements will mostly be limited by the efficiency of foreground removal,
rather than the detector performance or duration of the mission − this is particularly important
for the polarization measurements.

Technological developments over the past two decades have accelerated the progress in obser-
vational cosmology. The interplay between the new theoretical ideas and new observational data
has taken cosmology from a purely theoretical domain into a field of rigorous experimental science
and we are now in what is called the precision cosmology era. The CMB measurements have made
the inflationary big bang theory the standard model of the early Universe. This theory predicts
a roughly Gaussian distribution for the initial conditions of the Universe. The power spectrum
of these fluctuations agrees well with the observations, although certain observables, such as the
overall amplitude of the fluctuations, remain as free parameters of the cosmic inflation model.

Temperature and Polarization Power Spectrum

The observable quantity is the temperature of the CMB, which can be described as

T (p̂) = TCMB [1 + Θ(p̂)] , (1)

where Θ(p̂) is the temperature anisotropy in direction p̂. This temperature field is expanded on the
spherical harmonic functions with coefficients a`m

Θ(p̂) =
∑
`m

a`mY`m(p̂) , (2)

where ` is the multipole moment, which is related to the angular size on the sky via ` ∼ 180◦/θ,
and m is the phase ranging from −` to `. For a Gaussian random field the average and variance
carry all the information of the field. In case of a`m, the average vanishes and the variance is given
by

〈a`ma∗`′m′〉 = δ``′δmm′C` , (3)

where C` is called the CMB angular power spectrum and it only depends on ` due to the isotropy
assumption. This spectrum depends on the cosmological parameters through an angular transfer
function T (k, `) as

C` = 4π

ˆ
dk

k
T 2(k, `)P (k) , (4)

where k defines the scale and P (k) is the primordial power spectrum (defining the initial conditions
of the Universe). Up to 1996, the angular transfer function was calculated by solving a series of
coupled Boltzmann equations simultaneously — a very time consuming process. In 1996 Seljak and
Zaldarriaga [83] devised a new method for the calculation of this transfer function, improving its
speed greatly — this is exactly what codes like the CMBFast [83] and CAMB [63] are based on.

The CMB power spectrum is what is used to estimate the cosmological parameters and hence
accurate measurements of this spectrum from CMB experiments is the main goal of any CMB data
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Figure 1: Top: CMB map seen by WMAP (http://map.gsfc.nasa.gov/). Bottom: CMB Angular
Power Spectrum, showing the important scales discussed in the text.

analysis. The shape of the angular power spectrum is related to the physics of the oscillations of
photons in the photon-baryon fluid at the time of recombination. The relative height and position
of the peaks and troughs of the spectrum are of great importance as they are a direct impact of
the cosmological parameters measured. For example, the first peak corresponds to the horizon scale
at the time of recombination. It shows how far radiation has travelled since the big bang until the
time of recombination. At angular scales above ten degrees (` . 20) main source of fluctuations
is the Sachs Wolfe effect [82]. This effect is due to the gravitational redshift of the CMB photons
causing the CMB spectrum to appear uneven. Also information about the present day galaxies can
be obtained by Silk damping on angular scales ` & 1000. The Silk scale corresponds to the size
of galaxies of the present day. Hence every aspect of the spectrum carries an important piece of
information about cosmology and this reflects on the importance of the accurate measurements of
this spectrum from CMB experiments.

Apart from the temperature anisotropy, the CMB radiation is polarized. This polarization is
due to the Compton scattering at the time of recombination which thermalizes the CMB radia-
tion. Therefore, there are three types of a`m; aE , aB and aT (E-mode, B-mode and temperature
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respectively), which can form six types of power spectra〈
aX`ma

Y
`′m′

〉
= δ``′δmm′CXY` , (5)

where X,Y ∈ {T, B, E}. The CTT` power spectrum is the temperature power spectrum obtained
previously. We expect CBE` = CBT` = 0 as any correlation between B and T/E would correspond
to parity violation at recombination. The decomposition into E and B modes are particularly
helpful because scalar/density fluctuations cannot produce B modes (B modes are only produced
by directed quantities such as gravitational waves or lensing). Hence a B type detection is a direct
signature of the presence of a stochastic background of gravitational waves. This would provide an
invaluable information about inflation.

2 The CMB Data Analysis Pipeline
As explained previously the aim of all the CMB experiments is to estimate the cosmological param-
eters. Figure 2 shows a schematic illustration of the steps involved in estimating the cosmological
parameters from CMB experiments. Each step involves a compression of information and hence the
best techniques at each step are the ones with the least information loss. Below, we will go through
the different steps shown in the Figure. Needless to say that this review may not do full justice to
much of the work which has been done on this topic over the years. Nonetheless, we have tried to
cover as much as possible, space permitting, and at least mention all the exciting work even if all
the details are not fully covered. You can also refer to [22] for shorter review on the CMB data
analysis.

2.1 From Raw to Time Ordered Data
The raw measured data from the satellite are pre-processed, cleaned (e.g., by removing glitches
such as cosmic ray hits) and checked for any systematic problems. Each detecter’s time stream
noise correlation is characterized. The result of processing the raw data is the time-ordered data
set (TOD), which is simply a list of the positions and temperatures of all the pixels observed, in
chronological order. For single-difference experiments, such as WMAP, the TOD consists of pairs of
pixel positions and temperature difference. For more general chopping schemes, each temperature in
the TOD is some linear combination of the temperature across the sky. In principle, the cosmological
parameters can be measured with the smallest error bars possible by performing a brute force
likelihood analysis on the TOD. However, in practice, this is numerically unfeasible for large data
sets and hence an intermediate step of reducing the TOD to sky maps and then a power spectrum
is necessary.

2.2 Map-making
The map-making process passes the cosmological information from the TOD into a much smaller
data set, the map. The best map-making method should retain all the cosmological information
from the TOD so that the parameters can be measured just as accurately from the map(s) as from
the full TOD. By linearity, the TOD data can be written as

dt = st + nt = Atpsp + nt , (6)
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Figure 2: CMB data analysis pipeline.

where sp is the temporally constant (but spatially varying) CMB signal and nt is the temporal
detector noise. The matrix Atp is the pointing matrix which gives the weight of each pixel p in
time sample t. This matrix is typically very sparse with normally only one nonzero entry for a total
power temperature observation, two nonzero entries for a differencing temperature observation and
three nonzeros for a total power polarization observation; the nonzero values in the rows correspond
to the pixels being observed, at the time denoted by the row, and the columns, that typically have
many nonzero entries, correspond to all the times a given pixel has been observed. The Gaussian
noise likelihood function can be maximized over all possible sky signals to yield the map-making
equations

N−1pp′ = ATtpN
−1
tt′ At′p′ , (7)

zp = ATtpN
−1
tt′ dt′ , (8)

dp = Npp′zp′ . (9)

This results in the sky maps for the different frequencies, where each frequency map is the
weighted average of all the maps of the different channels at that frequency. One of the advantages
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of map-making is that it enables inclusion of maps at additional frequencies from other experiments.
Generally, a Planck sky map will have ∼ 108 pixels, while a WMAP map has ∼ 107 pixels.

2.3 From Multichannel Maps to Cosmological Parameters
In the CMB experiments, as in many astrophysical observations, signals contain contributions from
several components or sources. In efficiently designing experiments one aims to maximize the ability
to subtract foregrounds and minimize the susceptibility to systematic errors. For example, incom-
plete sky coverage increases the sample variance (by a factor of about 1/

√
Covered Area) and smears

out features in the power spectrum. Therefore, one needs to choose an area such that the S/N per
resolution element is of the order of unity or greater. Also, avoiding regions narrower than a few
degrees in the smallest direction is helpful as a cold dark matter (CDM) spectrum has information
on scales of order ∆` = 30.

Generally, the foregrounds are classified into three categories; diffuse galactic emission, extra-
galactic sources and solar system emission. The main emission mechanisms from our own galaxy
are synchrotron radiation, free-free emission (lower frequencies) and astrophysical dust emissions
(higher frequencies). The synchrotron emission is due to the relativistic electrons being accelerated
in the galactic magnetic field. The free-free emission comes from the thermal bremsstrahlung that
is caused by the acceleration of hot electrons in the interstellar gas. The observed dust emission
is the total emission from all the dust grains along the line of sight. The extragalactic emissions
include extragalactic sources, point sources and clusters of galaxies. To remove the foreground con-
tamination in the CMB data, one can use prior information of the foreground signals to reduce their
impact on the data: 1. For all-sky experiments the regions suspected to have significant foreground
emissions are masked; for localized components in real space (like the galactic plane) one can dis-
card or down-weigh the polluted regions. The drawbacks, however, are the resulting incomplete sky
maps. 2. For ground-based/balloon-borne experiments one would observe in the regions where the
contamination is minimal, for example in directions away from the galactic plane. 3. The CMB itself
dominates at a frequency of ∼ 70− 100 GHz, but for an efficient component separation a range of
channels needs to be observed. Note that ground-based observations are limited by the frequency
window permitted by the atmosphere. Based on the observations made at the different frequencies,
an estimate of the foreground emissions can be obtained and subtracted from the observations. This
procedure is very model-dependent but can help reduce the amount of cut sky.

Component separation consists of estimating a set of parameters which describe the components
of interest. For example, it could be parameters describing the statistical properties such as power
spectra and spectral indices. However, this is very difficult in practice and there are many methods
that have been developed in order to recover the CMB from the multichannel data. The main
difficulties are;

• The noise is not stationary as different sections of the sky are observed different number of
times, according to the scanning strategy adopted.

• The point sources cannot be considered as one template in different frequencies, as each source
has its own spectrum.

• The spectral index of the emissions due to dust and synchrotron has a spatial variation.

• The maps at different channels have different resolutions with beams not necessarily isotropic
or spatially invariant.
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This means to estimate the CMB, first the point sources should be detected and removed (or
masked) at each individual channel, then different foreground emissions are removed and a CMB
map is recovered using component separation techniques. The CMB power spectrum is then com-
puted from the map, from which the cosmological parameters are estimated. A statistical analysis
is also performed on the CMB map, which aims at, for e.g., determining the Gaussianity of the
CMB or testing if it is isotropic as predicted in the theory. Other statistics such as measuring weak
gravitational lensing or detecting weak gravitational waves are also part of the analysis.

In next sections, we describe in details these different steps, and we address the specific case of
polarized data.

3 Point Sources

3.1 Matched Filter (MF)
This is defined as a linear filter that maximizes the amplification of the signal. Given a filter ψ
(note that parts of the data that have similar shapes to the filter will be enhanced, therefore, the
filter should have a similar shape to the sought signal) the filtered field is

w(x) =

ˆ
y(q)ψ(q)e−iqxdq , (10)

where y(q) is the Fourier transform of the data y(x) = s(x) + n(x). It can be shown that the field
will have the following shape at the position x0 of the signal

w(x0) = 2π

ˆ
qs(q)ψ(q)dq , (11)

with variance
σ2
w = 2π

ˆ
qP (q)ψ2(q)dq , (12)

where P (q) is the power spectrum of the noise: 〈n(q)n∗(q′)〉 = P (q)δ2(q − q′), with n(q) being the
Fourier transform of the noise n(x). The point sources are recovered by satisfying two conditions:
1. 〈w(x0)〉 = A, where A is the amplitude of the signal at position x0; 2. minimizing the variance
σ2
w with respect to the filter ψ.
Applying this method to first year WMAP data [12] has produced a catalogue of 208 extra-

galactic point sources.

3.2 Mexican Hat Wavelet (MHW)
The Mexican Hat wavelet has been used for detection of point sources with Gaussian profiles [43].
The MHW is the second derivative of the Gaussian function, which has the following form in Fourier
space

ψ(q) ∝
(
qR2

)
exp

(
− (qR)2

2

)
, (13)

where R is the scale of MHW. To detect the point sources the wavelet coefficient map at a given R
is studied and those wavelet coefficients above a certain threshold are identified as point sources.
The reason this works is that in the wavelet coefficient map a large fraction of the background is
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removed while the amplitude of the point sources are enhanced. Note that the enhancement depends
on the scale R. Each image has an optimal scale that gives the maximum amplification for the point
sources and this is determined from the data. The IFCA Mexican hat wavelet filter [66] is based on
this method.

3.3 PowellSnake
PowellSnake [23] is a Bayesian approach. In this method the likelihood for the parameters charac-
terizing the discrete objects is replaced by an alternative exact form, which makes it much quicker
to evaluate. Rather than using MCMC methods to search the posterior to detect objects, the lo-
cal maxima of the posterior are located in the parameter space that parametrizes the object. The
maxima are located using a simultaneous multiple minimization code based on Powell’s [76]. The
method uses a 1-dimensional minimization algorithm, which in this case, is an enhanced version
of the Brent’s method3. The end-point of each minimization is a local maximum in the posterior,
which gives the optimal parameters for the detected object. A Gaussian approximation to the pos-
terior is then constructed about the peak and the detection is either accepted or rejected based on
an evidence criterion; a Bayesian model selection is performed using an approximate evidence value
based on a Gaussian approximation to the peak. This Gaussian approximation also provides the
covariance matrix for the derived parameters of the objects. If the detection is accepted, then the
detected object is subtracted from the map before the next minimization is launched.

3.4 SExtractor
One of the most widely used software packages for source detection is SExtractor [15]. Its success
is in its ability to deal with very large images and its robustness. The first step in SExtractor is to
estimate the background accurately to avoid any biases in the flux estimation. For this, the image is
partitioned into blocks, and the local sky level in each block is estimated from its histogram [17, 49].
A filtering is applied to the background measurements in order to correct for spurious background
values. Then, for an optimized detection, the image is convolved with a filter, the shape of which
should match the shape of the sought signal. After, the pixels with values larger than a threshold
level, T , are considered as significant, i.e. belonging to an object. The threshold level is generally
chosen as T = B + Nσ, where B is the background estimation at that pixel, σ is the standard
deviation of the noise and N is a constant (typically 3− 5). The next step is to isolate the blended
objects which are connected; sources which are extremely close to each other are deblended if a
saddle point is found in the intensity distribution. Spurious detections due to neighboring bright
objects are cleaned, and finally the centroids of each source is determined and a photometry in an
elliptical Kron aperture [15, 57] is performed.

3.5 Sunyaev-Zeldovich (SZ) Cluster Extraction
The thermal SZ effect [94] is a spectral distortion of the CMB blackbody spectrum. This is caused
by the inverse Compton scattering of the CMB photons by hot electrons in the interstellar gas of
a galaxy cluster. There is also the kinetic SZ effect which is due to the radial peculiar velocities of
clusters producing secondary anisotropies in the CMB via the Doppler effect. There are techniques

3Brent method is an interpolation scheme alternating between parabolic steps and golden sections.
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for extraction of the kinetic SZ effect. However, as this emission is very weak its extraction is very
challenging. Therefore, we focus on the extraction of the thermal SZ effect here.

The techniques for detection of the thermal SZ effect are very similar to the point source extrac-
tion techniques. This means the methods discussed above can easily be adapted to detect the SZ
effect, by applying the correct profile of the sought signal. However, the thermal SZ effect has a very
specific frequency signature that can be used to detect it — provided multifrequency observations
are available. Such a multichannel matched filter was proposed in [69], and was selected by the
Planck collaboration for the release of the Planck Early Sunyaev-Zeldovich Cluster Catalogue [74].

There are also other techniques that can be applied to a CMB map such as Biparametric Scale-
Adapter Filter (BSAF) [67] and A Bayesian Approach [47]. Briefly, BSAF uses extra information
apart from just the amplitude of the point sources. In particular it estimates the number of the
maxima due to the background itself and compares it to the number of maxima due to the back-
ground plus the point sources by applying the Neyman-Pearson detector. The Bayesian approach
is based on the evaluation of the posterior distribution P (θ|d) of the parameters θ given the data
d. Two different strategies are proposed for the detection of compact sources: 1. an exact approach
trying to detect all objects present in the data all at the same time; 2. an iterative approach (Mc-
Clean algorithm). For both methods a Markov chain Monte Carlo technique is used to explore the
parameters space modeling the objects.

For the Planck Early Release Compact Source Catalogue, PowellSnake and SExtractor were
the two algorithms selected as they detected the largest number of sources with high reliability at
high Galactic latitude; PowellSnakes for frequencies 30−143GHz, and SExtractor for frequencies
217−857GHz [74].

4 Component Separation

4.1 Modeling the sky emission
All components in a CMB sky observation are assumed to have emissions that can be separated
into spatial and spectral parts so that an emission process j is written as

xj(ν, p) = a(ν)sj(p) , (14)

and the observation has the form

yi(p) =
∑
j

xj(νi, p) + ni(p) , (15)

where i denotes the detector and ni(p) is the detector’s noise contribution. For each component j
this takes the form

y(p) = As(p) + n(p) , (16)

where A is the mixing matrix with the number of rows and columns representing the number of
detectors and number of components respectively. The problem of component separation involves
inverting the mixing matrix A giving a solution such that ŝ = Wy is as good an estimator of s as
possible. This is an ill posed problem dubbed the Blind Source Separation problem (BSS). Possible
inversion methods include;
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1. A simple inversion in the case of a square and non-singular A; W = A−1. The solution is
unbiased, but may be noisy.

2. A pseudo-inverse in case of having more channels than components;W =
[
A†A

]−1
A†. Here

nothing is known about the level of noise and signal. Note that as there is no noise weighting
one bad channel could contaminate all the data after inversion. The solution is unbiased.

3. A generalized least square solution in case of knowing the noise correlation matrix Cn;W =[
A†C−1n A

]−1
A†C−1n . This is the best linear solution in the limits of high S/N . The solution

is again unbiased.

4. A Wiener Solution in the case where the correlation between the sources, Cs, is known;

W =
[
A†C−1n A+C−1s

]−1
A†C−1n . One is minimizing the variance of a stochastic signal.

This solution is biased, but can be debiased by multiplying the Wiener matrix by a diagonal
matrix removing, for each mode, the impact of filtering. There is also a second form for the

Wiener filter; W = CsA
†
[
Cn +ACsA

†
]−1

, where in the limits of high S/N it tends to the
pseudo-inverse case.

The very first approach to derive the CMB is called ‘template fitting’ which, consists of fitting
sky templates to all the non-CMB sky emissions and remove them from the maps. However, more
advanced methods have been developed to tackle the BSS problem. For example, the Indepen-
dent Component Analysis (ICA) methods have been developed which mostly rely on the statistical
independence of the sources. Although independence is a strong assumption, it is in many cases
physically acceptable, and provides much better solutions than using a simple second order decor-
relation method, such as the Principal Component Analysis (PCA). Most of the ICA Methods,
such as FastICA, assume that sources are statistically independent and non-Gaussian. However,
there are also other ones, such as SMICA, which considers the case of mixed stationary Gaussian
components and goes further by taking into account the additive instrumental noise. This method
works in spherical harmonic domain, which has the advantage of better control of the beams of
the instrument. Sparsity was also recently proposed for component separation and several methods
have been extended to work in the wavelet domain, or to explicitly use a sparsity criterion. This
section reviews a few methods for component separation.

4.2 Component Separation in the Pixel Domain
Template Fitting

Having the foregrounds as additional components of the microwave sky, one can perform a fit of the
template to the data for foreground analysis. For template vector, T , the template-corrected data
has the form

ỹ = y −
∑
j

βjT j , (17)

where the best-fit amplitude, βj , for each foreground template can be obtained by minimizing
ỹTC−1ỹ, where C is the total covariance matrix for the template-corrected data C =

〈
ỹỹT

〉
. The

minimization leads to ∑
j

T Tj C
−1T jβj = T Tj C

−1y , (18)
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where T Tj C
−1T j has the information about the cross-correlation between the the templates them-

selves. This equation is equally valid in pixel space or harmonic space. However, in pixel space
dealing with incomplete sky coverages is easier and, in addition, the noise is usually a diagonal
matrix. On the other hand, in this space the signal covariance matrix is large and not sparse, where
in harmonic space and under the assumption of Gaussianity, the signal covariance is diagonal. Al-
though, approximating the noise as uniform and uncorrelated over the sky, one can make the noise
covariance diagonal in this space too.

Template cleaning has a number of advantages, the first to be its simplicity. The technique makes
full use of the spatial information in the template map, which is important for the non-stationary,
highly non-Gaussian emission distribution, typical of Galactic foregrounds. It is also possible to fit
multiple template maps to a single frequency channel, where in pixel-by-pixel techniques at least
one frequency channel is required to fit each foreground component. There are also disadvantages
to this technique and that is that imperfect models of the templates could add systematics and
non-Gaussianities to the data. Refer to [28] for a more detailed description of template fitting
techniques.

Template cleaning of the COBE/FIRAS data reduced a complicated foreground by a factor of
10 by using only 3 spatial templates [37]. WMAP team used a more complex technique, called the
ILC, explained next, for their template fitting [39].

ILC: Internal Linear Combination

In this method very little is assumed about the different components in the signal. The main
component is assumed to have the same template in all the frequency bands and the observations
are calibrated with respect to this component. Data y has the form

yi(p) = s(p) + fi(p) + ni(p) , (19)

where i denotes the frequency channels, fi(p) and ni(p) are the foreground and noise contributions
in pixel p respectively. One then looks for the solution

ŝ(p) =
∑
i

wi(p)yi(p) , (20)

where the weights wi(p) maximize a certain criterion about the reconstructed estimate ŝ(p), while
keeping the component of interest unchanged, and satisfy

∑
i wi = 1. The simplest case is assuming

the weights are independent of p and try to minimize the variance σ2 of the estimated map. Hence
having

ŝ(p) = s(p) +
∑
i

wifi(p) +
∑
i

wini(p) , (21)

under the assumption of decorrelation between s(p) and all the foregrounds or noise. The variance
of the ILC map is

σ2 = w†Cw , (22)

where C =
〈
yy†

〉
with y andw standing for vectors of elements yi and wi. The minimum is obtained

using the Lagrange multiplier method, which has as a solution

wi =

∑
j

[
C−1

]
ij∑

ij

[
C−1

]
ij

. (23)
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Note that the ILC method minimizes the total variance of the ILC map which means the weights
are strongly constrained by regions close to the galactic plane where most of the foregrounds are
constrained. Away from the galactic plane and on small scales, the best linear combination for
cleaning the CMB map from foregrounds and noise might be different from regions close to the
galactic plane or the large scales. To improve on this, the map is decomposed in several regions
and ILC is applied to them independently. The ILC method is useful when no prior information
is known about the different components (in this method the only prior knowledge is the CMB
behavior). Therefore, it is more of a foreground removal than a component separation technique.
Prior information about the different astrophysical components, if present, can be used in efficiently
removing their contributions to the CMB sky. In particular their morphology, their localization, their
frequency scaling can be used in understanding their emission in the CMB sky.

FastICA

FastICA [48] solves a Blind Source Separation (BSS)4 problem. The simplest mixture model takes
the form y = As where as before A is the mixing matrix and the entries of s are assumed to be
independent random variables. Note that the independent sources can only be recovered up to a
permutation and a scaling of the entries of s. Although independence is a strong assumption, it is
in many cases physically plausible.

Independent Component Analysis (ICA) methods were developed to solve the BSS problem.
Algorithms for BSS and mixing matrix estimation depend on the model used for the probability
distribution of the sources. In a first set of techniques, source separation is achieved in a noise-less
setting, based on the non-Gaussianity of all but possibly one of the components. Most mainstream
ICA techniques belong to this category, e.g. FastICA. In a second set of blind techniques, the
components are modeled as Gaussian processes, either stationary or non-stationary and, in a given
representation, separation requires that the sources have non-proportional variance profiles. Moving
to a Fourier representation, the idea is that colored components can be separated based on the
diversity of their power spectra.

The FastICA technique is meant for the analysis of a combination of independent non-Gaussian
sources in a noise-less setting. It is a so-called orthogonal ICA method where the components
are sought by maximizing a measure of non-Gaussianity assuming they are independent. Non-
Gaussianity is assessed in FastICA using a contrast function G based on a non-linear approximation
to neg-entropy [48]. In a simple deflation scheme (for spherical data) the directions are found
sequentially: a direction r of maximal non-Gaussianity is sought by maximizing

JG(r) =
(
E{G(rT ywhite)} − E{G(µ)}

)
2 , (24)

where E is the expectation operator, ywhite is the renormalized data and µ stands for centered unit
variance Gaussian variable, under the constraint that r has unit norm and is orthogonal to the di-
rections found previously. For example, the contrast function G can be G0(u) = (1/a) log(cosh(au)),
where a is a constant to be determined depending on the application [48]. A complete description
of this method can be found in [48] and references therein.

4BSS is a problem that occurs in multi-dimensional data processing where the overall goal is to recover unobserved
sources s from a mixture of them y, without assuming any forms for the sources.
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Correlated Component Analysis (CCA)

This method [9] is a semi-blind approach that estimates the mixing matrix on sub-patches of the
sky based on second order statistics of the data. It makes no assumptions about the independence
of the sources. This method adopts the commonly used models for the sources to reduce the number
of parameters estimated and exploits the spatial structure of the source maps. The spatial structure
of the maps are accounted for through the covariance matrices at different shifts (τ, ψ)

Cd(τ, ψ) = ACs(τ, ψ)At +Cn(τ, ψ) , (25)

where Cd(τ, ψ) is estimated from data and the noise covariance matrix Cn(τ, ψ) is derived from
the map-making noise estimations. Then by minimizing the equation∑

τ,ψ

∥∥ACs(τ, ψ)At − [Cd(τ, ψ)−Cn(τ, ψ)]
∥∥ , (26)

where the Frobenius norm is used, one can estimate the mixing matrix and the free parameters
of the source covariance matrix. Given as estimate of Cs and Cn, the above equation can be
inverted and component maps obtained via the standard inversion techniques of Wiener filtering
or generalized least square inversion. To obtain a continuous distribution of the free parameters of
the mixing matrix, CCA is applied to a large number of partially overlapping patches.

4.3 Component Separation in the Spherical Harmonic Domain
Maximum Entropy Method (MEM)

Having a hypothesis H in which the measured data d is a function of the underlying signal s one
can follow Bayes’ theorem, which tells us the posterior probability is the product of the likelihood
and the prior probability divided by the evidence;

P (s|d,H) =
P (d|s,H)P (s|H)

P (d|H)
. (27)

Then following the maximum entropy principle, one uses a prior distribution which maximizes
the entropy given a set of constraints. Hobson and collaborators [46] argue that for such purposes
an appropriate prior for the astrophysical components s is

P (s) = exp [−αSc(s, mu, mv)] , (28)

Sc =
∑
j

{[
s2j + 4mujmvj

]1/2 −muj −mvj − sj ln

[[
s2j + 4mujmvj

]1/2
+ sj

2muj

]}
, (29)

where mu and mv represent the astrophysical components. The MEM can be implemented in the
spherical harmonic domain where the separation is performed mode-by-mode which speeds up the
optimization. FastMEM is an algorithm based on this; it is a non-blind method, which means the
spectral behavior of the components must be known beforehand. Further details of this method are
presented in [91].
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Spectral Matching ICA (SMICA)

This technique also solves a BSS problem, but is computationally very different from FastICA.
SMICA [27] is based on spectral statistics that are localized in frequency instead of space, which
are simply the spectra of the channels. For multichannel maps yi(p) one computes

R̂` =
1

2`+ 1

∑
m

y`my
†
`m , (30)

for each ` and m. One then models the ensemble-average as R` =
〈
R̂`

〉
=
∑
jR

j
` where the sum

is over the components. For each component, Rj
` is a function of a parameter vector θj , where

the parameterization embodies the prior knowledge about the components. The parameters are
determined by minimizing the spectral mismatch

minθ
∑
`

(2`+ 1)K(R̂`|
∑
j

Rj
`) , (31)

where K(C1|C2) is a measure of mismatch between C1 and C2.

4.4 Component Separation in the Wavelet Domain
Toward Wavelet Based Methods

Working in the pixel space has the advantage of decomposing the sky into patches and processing
them independently. Having a mixing matrix per patch, one can have a better grasp of the spatial
variation of the total matrix. The smaller the patches are the better the variations are captured, but
the higher the noise is, so there is a trade off between the two. Working in the spherical harmonic
domain makes the spatial variation analysis harder but has the advantage of better modeling of the
beam.

Working in the wavelet space is a way to use the best of both worlds. By making use of un-
decimated wavelet transform, one can transform each channel into the wavelet domain, partition
each wavelet band into blocks and perform a component separation per frequency band, per patch.
Wavelets tend to grab the informative coherence between pixels while averaging the noise contribu-
tions, thus enhancing structures in the data. Hence a wavelet representation often leads to a more
robust noise. Following this principle, ILC and SMICA have been extended to use wavelets [35],
[71].

Generalized Morphological Component Analysis (GMCA)

This method again solves a BSS problem, but goes further by using the sparsity of the components
in the wavelet domain [18].

Assume Φ is a signal representation (such as wavelet basis, curvelet frame, etc.) in which each
source is assumed to be sparse; sj = Φαj , where αj are the decomposition coefficients. The sparsity
of the sources means that most of the entries of αj are equal or very close to zero. The multichannel
noiseless data y can be written as

y = AαΦT , (32)
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where the GMCA seeks an unmixing scheme through the estimation of A, which leads to the
sparsest sources s. This is expressed by the following optimization problem written in the augmented
Lagrangian form

min
1

2
‖y −AαΦ‖2F + λ

∑
j

‖αj‖p , (33)

where typically p = 0 (or its relaxed convex version with p = 1) and ‖X‖F =
(
trace(XTX)

)1/2
is the Frobenius norm. The details of this method is presented in [18], where it is shown that the
GMCA is very robust to noise.

4.5 Comments
As presented above, there are many methods proposed to tackle the difficulties of component
separation. They all work differently and depending on what the final scientific goal is one might
perform better than the others. For example, one may work better on large scales while another
could do a better job on small scales. Therefore, the "best" map could be different depending on
what the goal is. A first comparison of methods has been done in [60]. Also, with the future Planck
release in early 2014, we will certainly have a much better understanding of what methods work
better to recover the CMB map for Planck.

5 Power Spectrum Estimation
As discussed before, if the statistical properties of the CMB fluctuations are isotropic and Gaussian
all the cosmological information in a sky map is contained in its power spectrum. This means
that all the information from a data set can be reduced to just a few thousand numbers, greatly
facilitating parameter estimation. However, a straightforward expansion in spherical harmonics is
not the best way to measure the power spectrum: 1. one always has incomplete sky coverage; 2. one
wishes to give less weight to noisier pixels in order not to destroy information. Both of these facts
spoil the orthogonality of the spherical harmonics. Any quadratic combination of pixels will, when
appropriately normalized, measure some weighted average of the power spectrum - the weights are
known as the window function. The non-orthogonality simply means that it is impossible to obtain
an ideal (Kronecker delta) window function. Instead, the best you can do is to get a window function
whose width is about the inverse of the smallest angular map dimension in radians, which is usually
adequate for all practical purposes adequate.

To be able to use the power spectrum for estimation of the cosmological parameters, one needs
to know the complete likelihood function P (d|C`(θ)), where θ are the underlying cosmological
parameters. Hence an important output of the power spectrum estimation step is a prescription for
evaluation of the model spectra likelihood function. However, this evaluation is not computationally
feasible at the full map resolution and hence there are different methods to calculate the likelihood
function at low and high `. The low-` codes use low resolution maps (eg. Healpix maps of Nside =
8, 16) and determine the properties of the likelihood as a function of the C` parameters using
Bayesian statistics. The high-` codes use unbiased frequentist estimators to form quadratic functions
of the data (pixels of the map) and determine Ĉ`, such that

〈
Ĉ`

〉
= C`. Below we will summarize

a few codes.
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5.1 Low-` Codes
MADCAP

MADCAP maximizes the log-likelihood function using a quasi Newton-Raphson (NR). It uses the
Fisher matrix

F``′ =
1

2
trace

(
C−1

∂C

∂C`
C−1

∂C

∂C`′

)
, (34)

to find the location where
∂ lnP (d|C`′)

∂C`
= 0 . (35)

The NR iteration step involves

δC` =
1

2

∑
`′

(F−1)``′

[
dtC−1

∂C

∂C`
C−1d− trace

(
C−1

∂C

∂C`′

)]
. (36)

In some cases it is necessary to bin the C` to make the calculations computationally feasible.
The binned power spectrum satisfies C` =

∑
`∈b CbP`, where P` is the shape function usually taking

the form P` ∝ (`(`+ 1))−1.
BolPol is a similar quadratic maximum likelihood (QML) estimator, which is equivalent to one

step of NR iteration. Presently, it can handle maps of Healpix resolution Nside = 32. BoLike is
another similar code which can provide likelihood based confidence intervals. Refer to [41] where
both of these methods have been applied to WMAP data.

Commander (Gibbs Sampling)

The Commander [33] algorithm maps out the joint CMB-foreground posterior distribution by sam-
pling. This method is a very general and flexible, which means any parametric foreground model can
be included in the analysis. It provides the exact joint CMB and foreground posterior distributions,
from which the exact marginal CMB power spectrum and sky signal posterior distributions can be
obtained.

The idea behind this technique is to draw samples from the joint density P (C`, s|d) and then
marginalize over the signal to obtain probability density P (C`|d). This is because the theory of
Gibbs sampling states that sampling from the conditional densities P (s|C`,d) and P (C`|s,d) will
converge to sampling from the joint density P (C`, s|d) after the initial burn-in period. As the joint
distribution is probed one can quantify joint uncertainties if desired. The map sampling process is
performed in solving the following two equations simultaneously. The first is to solve for the mean
field map x [

C−1 +

(∑
i

AT
i C
−1
n,iAi

)]
x =

∑
i

AT
i C
−1
n,idi , (37)[

C−1 +

(∑
i

AT
i C
−1
n,iAi

)]
y = C−1/2ω0 +

∑
i

AT
i C
−1/2
n,i ωi , (38)

where di is the residual signal map i and ωi are Gaussian white noise maps having zero mean and
unit variance. Any other component one may wish to include in the analysis will be subtracted from
the data so that an actual residual map can be formed, from which the mean field map is computed.
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The mean field map is a generalized Wiener filtered map, meaning it is biased. For constructing
an unbiased sample one must add a fluctuation map having the properties such that the sum of
the two fields forms a sample from the distribution of the correct mean and covariance. The second
equation above is the appropriate equation for this fluctuation map.

TEASING is another method that approximates the low-` likelihood using; 1. parametric models
for the conditional and marginal likelihood; 2. a Gaussian copula model to assemble the marginal
distribution into a joint distribution. For further information about TEASING refer to [10].

5.2 High-` Codes
MASTER

Monte Carlo Apodized Spherical Transform Estimator (MASTER) [45] is a method based on a
direct spherical harmonic transform (SHT) of the CMB map and allows one to implement particular
properties of a given CMB experiment, such as the survey geometry, instrumental noise behavior,
etc.. The unwanted contribution of the instrumental noise, any necessary alteration of either the
recorded data stream or the raw map of the sky (introduced during the data analysis) can be
calibrated in Monte Carlo (MC) simulations of the modeled observation and can then be removed
or corrected for in the estimated power spectrum. The harmonic mode-mode coupling, which is
induced by the incomplete sky coverage, can analytically be corrected for to obtain an unbiased
estimated power spectrum.

One can define a pseudo-power spectrum C̃` as

C̃` =
1

2`+ 1

∑̀
m=−`

|ã`m| , (39)

where 2`+ 1 are the number of degrees of freedom and the coefficients ã`m are defined as

ã`m =

ˆ
dΩΘ(Ω)W (Ω)Y ∗`m (40)

≈ Ωp
∑
p

Θ(p)W (p)Y ∗`m(p) . (41)

W (Ω) is a position-dependent weighting function applied to the map. The integral over the
whole sky is approximated by a summation over the pixels (with surface area Ωp) of the CMB map.
The ensemble average of this spectrum is related to the full-sky angular spectrum C` by〈

C̃`

〉
=
∑
`′

M``′F`′B
2
`′ 〈C`′〉+

〈
Ñ`

〉
, (42)

where M``′ describes the effect of mode-mode coupling due to the cut sky, B` is a window function
taking care of the smoothing effects of the beam and finite pixel size, F` is a transfer function
modeling the filtering that is applied to the data/maps and

〈
Ñ`

〉
is the average power spectrum

of the noise, which can be extracted from the actual data stream.
To reduce the correlations between the C`, which is induced by the cut sky, and also to reduce

the errors on the estimated power spectrum, one can bin the power spectrum in `. The binned
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power spectrum is Cb = Pb`C`, where P is the binning operator. Therefore, an unbiased estimator
for the power spectrum of the whole sky is given by

Ĉb = K−1bb′ Pb′`

(
C̃` −

〈
Ñ`

〉
Monte Carlo

)
, (43)

where Kbb′ = Pb`M``′F`′B
2
`′Q`′b and Q`bPb`′ 〈C`′〉 = Q`b 〈Cb〉, with an estimator of the noise having

the form
N̂b = K−1bb′ Pb′`

〈
Ñ`

〉
Monte Carlo

. (44)

This methods has been successfully applied to the WMAP map; in this case a hybrid method
was used for the power spectrum estimation, where for ` ≤ 32 the spectrum is obtained using a
Blackwell-Rao estimator applied to a chain of Gibbs samples and for ` > 32 the spectrum is derived
from the MASTER pseudo-C` quadratic estimator [11].

cROMAster is an implementation of the MASTER method extended to polarization [56] and
has been applied to BOOMERang data [70, 52]. CrossSpect is again a pseudo-C` [45] estimator that
computes cross power spectra from two different detectors. XFaster [80] is again a similar method
based on MASTER to estimate the pseudo-C` for temperature and polarization.

Xpol

Xpol estimates the angular power spectra by computing the cross-power spectra between different
input maps of multiple detectors of the same experiment or from different instruments, calculating
analytical error bars for each of the maps. The cross-power spectra are then combined by making use
of a Gaussian approximation for the likelihood function. The method also computes an analytical
estimate of the cross-correlation matrix from the data, avoiding any Monte Carlo simulations.

For each power spectra, Xpol can estimate the cross-correlation matrix at different multipoles,
from which error bars and the covariance matrix can be deduced for each cross-power spectra. In
the limit of large sky coverage [31], one obtains [96]:

ΞXY,X
′Y ′

``′ =M−1``1(XY )

[
M(2)

`1`2
(XX ′, Y Y ′)CXX

′

`1
CY Y

′

`2

2`2 + 1
+
M(2)

`1`2
(XY ′, X ′Y )CXY

′

`1
CX

′Y
`2

2`2 + 1

] (
M−1`′`2(X ′Y ′)

)t
,

(45)
with

M``′(XY ) = EX` E
Y
` M``′(XY ) ,

M(2)
``′ (XX

′, Y Y ′) = EX` E
X′

` M
(2)
``′ (XX ′, Y Y ′)EY`′E

Y ′

`′ ,

where X,Y ∈ {T, B, E}; M``′(XY ) is the coupling kernel matrix analytically determined from sky
masks for X and Y ; M (2) is the quadratic coupling matrix determined from the mask product for
X and X ′correlated with the mask product for Y and Y ′; E` = p`B`

√
F`, where p` is the transfer

function describing the smoothing effect induced by the finite pixel size.
To obtain the best estimate of the power spectrum C̃` by combining the cross power spectra,

one needs to maximize the Gaussian approximated likelihood function

−2 lnL =
∑

XY,X′Y ′

[(
CXY` − C̃`

) ∣∣Ξ−1∣∣XY,X′Y ′

``′

(
CX

′Y ′

`′ − C̃`′
)]

, (46)
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and the estimate of the angular power spectrum is (ignoring correlation between adjacent multi-
poles)

C̃` =
1

2

∑
XY,X′Y ′

[∣∣Ξ−1∣∣XY,X′Y ′

``
CX

′Y ′

` + CXY`
∣∣Ξ−1∣∣XY,X′Y ′

``

]
∑
XY,X′Y ′ |Ξ−1|XY,X

′Y ′

``

. (47)

This method has been used on Archeops data to estimate the CMB angular power spectrum
[96] and the polarized foreground emission at the sub-millimeter and millimeter wavelength in [75].

SPICE

This method differers from the previous methods by introducing the angular correlation function
of the signal at distance θ

ξ(θ) =
∑
`

2`+ 1

4π
C`P`(θ) , (48)

where P`(θ) is the Legendre Polynomial. The ensemble average of the measured correlation function
satisfies

〈
ξ̃(θ)

〉
= ξW (θ)ξ(θ)+ξN (θ), where ξW (θ) and ξN (θ) are the weighting and noise correlation

functions respectively [95]. The advantage of this method over MASTER is that the matrix inversion
in the MASTER method (Eq. 42) becomes a division by ξW . The full sky C` is then given by

C` ≡ 2π
∑
i

wiξ(θi)P`(θi) , (49)

where wi are the weights of the Gauss-Legendre quadrature.

6 Cosmological Parameters
Once computed from the data, the power spectrum can be used to constrain cosmological models.
The power spectrum is a complicated-looking function, because it depends on virtually all cosmo-
logical parameters. Therefore we can use an observed power spectrum to measure the cosmological
parameters.

A parameter estimation with a simple χ2 model fit to the observed power spectrum will give
virtually the smallest error bars possible. There are several methods for estimating the cosmological
parameters. Here we present the most popular method, Markov Chain Monte Carlo (MCMC)
simulations. In this method the idea is to generate a random walk through the parameter space which
then converges towards the most likely parameter values. This is an iterative process. At each step
a sample of parameters is chosen (Monte Carlo) from a proposal probability density. The likelihood
for that sample is calculated and depending on the criterion (that only depends on the previous
likelihood function value) the likelihood is accepted or rejected (Markov Chain). This is called the
Metropolis-Hastings algorithm. The code CosmoMC [62] is based on this procedure. Below, we will
go through the necessary steps involved in a MCMC run for the cosmological parameter estimation.

As explained above, MCMC is a random walk in the parameter space where the probability of
picking a set of parameters at any step is proportional to the posterior distribution P (θ|d):

P (θ|d) =
P (d|θ)P (θ)´
P (d|θ)P (θ)dθ

, (50)
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where P (d|θ) is the likelihood of the data d given the parameters θ and P (θ) holds the prior
knowledge about the parameters. Here is the necessary steps for each chain:

1. Start with an initial set of cosmological parameters θ1 to compute the C1
` and the likelihood

P1 = P (d|θ1) = P (Ĉ`|C1
` ).

2. Take a random step in the parameter space obtaining a new set of parameters θ2. Compute
the C2

` and the likelihood P2 for this new set.

3. If P2/P1 > 1, save θ2 as the new set of cosmological parameters and repeat step 2.

4. If P2/P1 < 1, draw a random number x from a uniform distribution from 0 and 1. If x > P2/P1,
save θ1 and return to step 2. If x < P2/P1 save θ2 as the parameters set, i.e. do as in 4.

5. Stop the chains when the convergence criterion is satisfied and the chains have enough points
for a reasonable presentation of the posterior distributions.

Here we present an example of a convergence criterion that was used for WMAP first year data
analysis. Assume havingM chains, each having 2N elements, of which only N is used. Therefore, yji
denotes a point in the parameter space with i = 1, ..., N and j = 1, ...,M . The following expressions
can be defined:

mean of the chains
ȳj =

1

N

∑
i

yji ,

mean of the distribution
ȳ =

1

NM

∑
ij

yji ,

variance between chains
Bn =

1

M − 1

∑
j

(
ȳj − ȳ

)2
,

and variance within a chain
W =

1

M (N − 1)

∑
ij

(
yji − ȳ

j
)2

.

Then the quantity

R̂ =
N−1
N W +Bn

(
1 + 1

M

)
W

,

monitors the convergence by requiring R̂ < 1 for converged chains. A few other codes for cosmo-
logical parameter estimation include, for e.g., PICO [36], CosmoPMC [54], CosmoNet [6]. Further
details on MCMC and cosmological parameter estimation can be found in [97, 81, 64, 98, 42].

7 CMB Map Statistical Analysis
The CMB observations so far have confirmed a standard model of the Universe predicting that
the primordial fluctuations are a ’realization’ of a Gaussian random field. This means that the
CMB fluctuations can be completely described by a power spectrum. However, there are several
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inflationary models that predict departures from Gaussianity that are detectable with the current
CMB experiments. To measure the amount of non-Gaussianity, the CMB bispectrum (the three
point correlation function in harmonic space) is measured.

Indeed, the non-Gaussian signatures in the CMB can be related to very fundamental questions
such as the global topology of the Universe [79], topological defects such as cosmic strings [19], and
multi-field inflation [13], etc.. However, the non-Gaussian signatures can also have non-cosmological
origins; the SZ effect [93], gravitational lensing by large scale structures [14] or the reionization of
the Universe [5, 24]. They may also be due to foreground emission [50] or to non-Gaussian in-
strumental noise and systematics [8]. All these sources of non-Gaussian signatures might have
different origins and thus different statistical and morphological characteristics. Many approaches
have been investigated to detect the non-Gaussian signatures: Minkowski functionals and the mor-
phological statistics [84], the bispectrum and trispectrum [65, 58], wavelet and curvelet transforms
[5, 38, 25, 87]. Describing all these methods are outside the scope of this chapter.

As the component separation cannot be perfect, some level of residual contributions, most
significantly in the galactic region and at the locations of strong radio point sources will unavoidably
contaminate the estimated spherical CMB maps. Therefore, it is common practice to mask out those
parts of the data (e.g. using the mask shown on Figure 3, provided by the WMAP team) in order
for instance to reliably assess the non-Gaussianity of the CMB field through estimated higher order
statistics (e.g., skewness, kurtosis ) in various representations (e.g., wavelet, curvelet, etc.) [51] or
to estimate the bispectrum of the CMB spatial fluctuations. But the gaps in the data thus created
need to be handled properly. For most previously mentioned methods, masked data is a nightmare.
Indeed, the effect of the mask on a given statistic may be much larger than the weak signal we are
trying to detect.

Sparse Inpainting as a Solution to the Curse of Missing Data
In order to restore the stationarity of a partly incomplete CMB map and thus lower the impact of
the missing data on the estimated measures of non-Gaussianity or on any other non-local statistical
test, it was proposed to use an inpainting algorithm on the sphere to fill in and interpolate across
the masked regions. The grounds of the inpainting scheme are in the notion of the sparsity of the
data set as discussed in the component separation section.

The inpainting problem can be set out as follows: Let X be the ideal complete image, Y be the
observed incomplete image andM be the binary mask (i.e.Mi = 1 if pixel i has information and
Mi = 0 otherwise), hence having Y = MX. Inpainting then aims to recover X, knowing Y and
M. Therefore, one aims to minimize

min
X
‖SX‖0 subject to Y =MX , (51)

where S is the spherical harmonic transform. It was shown in [32] that this optimization problem
can efficiently be solved through an iterative thresholding algorithm called MCA:

Xn+1 = ∆λn

S (Xn + Y −MXn) , (52)

where the nonlinear operator ∆λ
S(Z) 1. decomposes the signal Z onto the spherical harmonics giving

the coefficients α = SZ, 2. performs hard/soft thresholding on the coefficients and, 3. reconstructs
Z̃ from the thresholded coefficients α̃. In the iteration the threshold parameter λn decreases with the
iteration number working similarly to the cooling parameter of the simulated annealing techniques,
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i.e. it allows the solution to escape from local minima. More details on optimization in inpainting
with sparsity can be found in [89] and the theories behind inpainting on a sphere can be found in
[77].

Figure 3: Top: CMB data map provided by the WMAP team. Areas of significant foreground
contamination in the galactic region and at the locations of strong radio point sources have been
masked out. Bottom: Map obtained by applying the MCA-inpainting algorithm on the sphere to
the former incomplete WMAP CMB data map.

A simple numerical experiment is shown in Fig. 3, starting with the full-sky CMB map provided
by the WMAP team. This CMB map was partially masked at the pixels where the level of con-
tamination by residual foregrounds is high. Applying the inpainting algorithm, making use of the
sparsity of the representation of CMB in the spherical harmonics domain, leads to the map shown
on the right of Fig. 3: the stationarity of the CMB field appears to have been restored. It was shown
in [2, 3] that inpainting the CMB map is an interesting approach for analyzing it, especially for

23



non-Gaussianity studies and power spectrum estimation.
The sparse inpainting technique has been used in reconstruction of the CMB lensing [73] and

measuring the ISW effect [30].

8 Polarization
One of the main goals of the Planck experiment is to constrain the polarization of CMB to a scale
never done before. This is of great importance as the data will help break several degeneracies
that currently exist. The CMB polarization will also help probe the reionization era as the large
scale polarization, on scales of tens of degrees (` > 10), is generated at the time reionization. The
analysis of the CMB polarization data are very similar to the temperature data. However, some new
complications exist in their analysis due to the tensorial nature of the polarization field. In addition
the small amplitude of the CMB polarization means a more careful control of the systematics is
necessary5. This also makes the polarization data analysis more instrument specific. In spite of the
extra complications, the steps presented in the temperature pipeline above can easily be applied to
the case of polarization by a simple generalization. A generalization means that the TOD for the
polarization data can be written as

dt = st + nt (53)
= Atpsp + nt (54)
= Atp (Ip +Qp cos 2ψt + Up sin 2ψt) + nt , (55)

where Atp, nt are the pointing matrix and the noise respectively, ψt is the angle between the
direction of the detector at time t and the φ-direction on the sky. The Stokes parameter I, U and
Q measure the total intensity (I) and the linear polarization (Q and U). For full sky analysis they
are decomposed into spin ±2 spherical harmonics as

Q(n̂)± iU(n̂) =
∑
`m

a±2,`m∓2Y(`m)(n̂) . (56)

The spin ±2 spherical harmonic coefficients, a±2,`m, are then decomposed into E and B modes as

a±2,`m = −
(
aE`m ± iaB`m

)
, (57)

with aE`m = (−1)maE∗`−m′ and aB`m = (−1)maB∗`−m′ . This decomposition introduces an extra step in
the pipeline presented above, which is the E − B-mode separation in the map-making step. The
separation can also be done in the power spectrum step, however, a map-level separation is very
useful as, for e.g., analyzing the B-mode would be a useful diagnostic of foreground residuals or
unknown systematic effects. The separation amounts to solving for the potentials PE and PB in the
rank-2 symmetric trace-free tensor, Pab,

Pab = ∇〈a∇ b〉PE + εc〈a∇ b〉∇cPB , (58)

where angle brackets denote the trace-free, symmetric part of the indices, ∇a is the covariant deriva-
tive on the sphere and εab is the alternating tensor. Note that the maps of the Q and U polarization

5The CMB radiation has a partial linear polarization with r.m.s of ∼ 6µK, compared to ∼ 120µK of the temper-
ature anisotropies.
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are not physical quantities (i.e. are basis-dependent) and are components of the polarization tensor:

Pab(n̂) =
1

2

(
Q(n̂) −U(n̂) sin θ

−U(n̂) sin θ −Q(n̂) sin2 θ

)
, (59)

in spherical polar coordinates. The electric and magnetic parts of Pab in equation 58 can be decom-
posed in spherical harmonics as

PE(n̂) =
∑
`m

√
(`− 2)!

(`+ 2)!
aE`mY`m(n̂) , (60)

PB(n̂) =
∑
`m

√
(`− 2)!

(`+ 2)!
aB`mY`m(n̂) . (61)

The separation can be done trivially for full-sky observations. However, ambiguities arise for cut-
sky observations as the orthogonality of the E and B tensor harmonics break. Practical methods for
performing the separation can be found in, for e.g., [20, 21, 55]. Also [88] have developed multi-scale
methods, such as polarized wavelets/curvelets, for the statistical analysis of the polarized maps.

Apart from this extra step, the techniques used in each step of the pipeline presented in the
temperature case can be applied to the polarization data. For the polarized data the main diffuse
polarized foregrounds are the galactic synchrotron (which is linearly polarized in a uniform magnetic
field) and the thermal dust emission (which is linearly polarized if non-spherical grains are aligned
in a magnetic field). These emissions have been analyzed for the case of Planck by [34]. At small
angular scales extra-galactic radio sources contaminate (equally) to the E- andB-mode power and to
remove their effect from the maps one simply excludes the contaminated pixels. Refer to [68] for the
application of the ICA method to the polarization data. There is also the PolEMICA [7], which is the
application of SMICA to the polarization data. For the maximum-likelihood component separation
[92] methods applied to polarization data refer to [90] and [53], where the map making code is
called MADAM. In addition, [29] use a Metropolis-within-Gibbs MCMC method for component
separation.

For the power spectrum estimation, again, the same methods are applied. For e.g., [59] apply the
Gibbs Sampling method to the polarization data. The advantage of the exact methods such as exact
likelihood analysis or Gibbs sampling is that they do not suffer from the so-called E-B coupling that
exist in methods such as pseudo-C` methods [85]; the problem arises due to the unorthogonality
of the spherical harmonics on a cut-sky, which may cause leakage from the E-mode power into the
B-mode power spectrum. Refer to [40] for the a detailed explanation of the pseudo-Cl method .
Authors of [55] apply the harmonic ILC (HILC) to estimate the polarization maps and a quadratic
estimator approach to estimate the power spectra.
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Figure 4: CMB temperature and polarization power spectra measured by different CMB experi-
ments, each covering different range of scales [4].

34


