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ABSTRACT

We have performed a 70 billion dark-matter particles N-body simulation in a 2 h−1 Gpc periodic box, using the concordance, cos-
mological model as favored by the latest WMAP3 results. We have computed a full-sky convergence map with a resolution of
∆θ # 0.74 arcmin2, spanning 4 orders of magnitude in angular dynamical range. Using various high-order statistics on a realistic cut
sky, we have characterized the transition from the linear to the nonlinear regime at " # 1000 and shown that realistic galactic masking
affects high-order moments only below " < 200. Each domain (Gaussian and non-Gaussian) spans 2 decades in angular scale. This
map is therefore an ideal tool for testing map-making algorithms on the sphere. As a first step in addressing the full map reconstruc-
tion problem, we have benchmarked in this paper two denoising methods: 1) Wiener filtering applied to the Spherical Harmonics
decomposition of the map and 2) a new method, called MRLens, based on the modification of the Maximum Entropy Method on a
Wavelet decomposition. While the latter is optimal on large spatial scales, where the signal is Gaussian, MRLens outperforms the
Wiener method on small spatial scales, where the signal is highly non-Gaussian. The simulated full-sky convergence map is freely
available to the community to help the development of new map-making algorithms dedicated to the next generation of weak-lensing
surveys.
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1. Introduction

Weak gravitational lensing, or “cosmic shear”, provides a unique
tool for mapping the matter density distribution in the Universe
(for reviews, see Refregier 2003; Hoekstra 2003; Munshi et al.
2006). Current weak-lensing surveys cover altogether about 100
square degrees and have been used to measure the amplitude
of the matter power spectrum and other cosmological parame-
ters (see Benjamin et al. 2007; Fu et al. 2008, and references
therein). A number of new instruments are being planned to
carry out these surveys over wider sky areas (PanSTARRS,
DES, SNAP and LSST)1 or even over the full extragalactic
sky (DUNE2). These wide-field surveys will yield cosmic-shear
measurements on both large scales, where gravitational dynam-
ics is in the linear regime, and small scales, where the dy-
namics is highly nonlinear. The comparison of these measure-
ments with theoretical predictions of the density field evolu-
tion will place strong constraints on cosmological parameters,
including dark energy parameters (e.g. Hu & Tegmark 1999;
Huterer 2002; Amara & Refregier 2006; Albrecht & Bernstein
2007). On small scales, the highly nonlinear nature of the den-
sity field ensures that predictions based on analytic calculations
are prohibitively difficult and requires the use of numerical sim-
ulations. N-body simulations have thus been used to simulate

1 PanSTARRS: http://pan-starrs.ifa.hawaii.edu, DES:
https://www.darkenergysurvey.org, SNAP: http://snap.
lbl.gov and LSST: http://www.lsst.org
2 DUNE: http://www.dune-mission.net

weak-lensing maps across small patches of the sky, using the
flat sky approximation (e.g. Jain et al. 2000; Hamana et al. 2001;
White & Vale 2004). The simulation of full-sky maps in prepa-
ration for future surveys involve a wide range of both mass and
length scales and is challenging for current N-body simulations.
The range of scales involved also requires the development of ef-
ficient algorithms for deriving a mass map from true noisy data
sets. These algorithms need to be well-suited to both the large-
scale signal, which is essentially a Gaussian random field, and
those on small-scales, where it is highly non-Gaussian and ex-
hibits localized features.

In this paper, we used a high resolution N-body simulation
to construct a full-sky weak-lensing map and test a new map-
reconstruction method based on a multi-resolution technique.
For this purpose, we use the Horizon simulation, a 70 billion
particle N-body simulation, featuring more than 140 billion cell
in the AMR grid of the RAMSES code (Teyssier 2002). The
simulation covers a sufficiently large volume (Lbox = 2 h−1Gpc)
to compute a full-sky convergence map, while resolving Milky-
Way size halos with more than 100 particles, and exploring small
scales into the nonlinear regime (see Sect. 2). This unprece-
dented computational effort allows us, for the first time, to close
the gap between scales close to the cosmological horizon and
scales deep inside virialized dark-matter haloes. A similar effort
at lower resolution was presented by Fosalba et al. (2008).

The dark-matter distribution in the simulation was integrated
in a light cone to a redshift of 1, around an observer located at
the centre of the simulation box (see Sect. 3). This light cone
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was then used to calculate the corresponding full-sky lensing
convergence field, which we mapped using the Healpix3 pix-
elisation scheme (Górski et al. 2005) with a pixel resolution of
∆θ # 0.74 arcmin2 (nside = 4096), and added “instrumental”
noise for a typical all-sky survey with 40 galaxies per arcmin2,
as expected for example for the DUNE mission (Réfrégier et al.
2006). Using an Undecimated Isotropic Wavelet Decomposition
of this realistic simulated weak-lensing map on the sphere, we
analyzed the statistics of each wavelet plane using second, third
and fourth order moments estimator (Sect. 4). We then applied,
in Sect. 5, a multi-resolution algorithm to filter a fictitious sim-
ulated κ data set based on an extension of the wavelet filtering
technique of Starck et al. (2006b). We characterised the quality
of the reconstruction using the power spectrum of the error map
and compare this to the result of standard Wiener filtering on the
sphere. Our results, summarised in Sect. 6, illustrate the virtue
of high resolution simulations such as the one reported here to
prepare for future weak-lensing surveys and to design new map-
making techniques.

2. The horizon N-body simulation

This large N-body simulation was carried out using the
RAMSES code (Teyssier 2002) for two months on the
6144 Itanium2 processors of the CEA supercomputer BULL
Novascale 3045 hosted in France by CCRT4. RAMSES is a
parallel hydro and N-body code based on the Adaptive Mesh
Refinement (AMR) techniques. Using a parallel version of the
grafic package (Bertschinger 2001), we generated the initial
displacement field on a 40963 grid for the cosmological param-
eters from the WMAP 3rd year results (Spergel et al. 2007),
namely Ωm = 0.24, ΩΛ = 0.76, Ωb = 0.042, n = 0.958,
H0 = 73 km s−1 Mpc−1 and σ8 = 0.77. We used the Eisenstein
& Hu (1999) transfer function, which includes baryon oscil-
lations. The box size was set to 2 Gpc/h, which corresponds
roughly to the comoving distance to an object at z # 0.8. We
used 68.7 billion particles to simuate the dark-matter density
field, yielding a particle mass of 7.7 × 109 M% and 130 particles
per Milky Way halo. This large particle distribution was split
across 6144 individual files, one for each processor, according
to the RAMSES code domain decomposition strategy (Prunet
et al. 2008). Starting with a base (or coarse) grid of 40963 grid
points, AMR cells are recursively refined if the number of parti-
cles in the cell exceeds 40. In this way, the number of particles
per cell varied between 5 and 40, so that the particle shot noise
remained at an acceptable level. At the end of the simulation,
we had reached 6 levels of refinement with a total of 140 billion
AMR cells. This corresponds to a formal resolution of 262 1443

or 7.6 h−1kpc comoving spatial resolution. Parallel computing is
perfomed using the MPI message-passing library, with a domain
decomposition based on the Peano-Hilbert space-filling curve.
The work and memory load was adjusted dynamically by reshuf-
fling particles and grid points from each processor to its neigh-
bors. The simulation required 737 main (or coarse) time steps
and more than 104 fine time steps for completion.

3. Light cone and convergence map

Born’s unperturbed-trajectory assumption for all neighboring
light rays is a good approximation in the linear regime of
structure formation, but is inaccurate in the nonlinear regime.

3 HeaPix: http://healpix.jpl.nasa.gov
4 Centre de Calcul Recherche et Technologie.

Consequently, distortion effects of lensing beyond the first or-
der cannot be simulated reliably. As shown by Van Waerbeke
et al. (2001), the Born approximation also introduces a rela-
tive error in the skewness of the signal of aproximately 10%
on large scales where the convergence is Gaussian, and about
1% on small scales in the nonlinear regime. We therefore imple-
mented a multiple-lens ray-tracing method that can be applied
more generally than Born’s approximation.

We constructed a light cone by recording, at each main time
step, the positions of particles within the boundaries of a pho-
ton plane: this plane moved at the speed of light towards an ob-
server, who was located at the centre of the box. Our method
was developed from the one presented by Hamana et al. (2001).
This method produced 348 slices in the light cone, spanning the
redshift range [0, 1]. Due to the large size of the simulated vol-
ume, the effect of periodic replications of the computational box
are minimized. Each slice was then transformed into a full-sky
Healpix map (nside = 4096) of the average overdensity using
a simple “Nearest Grid Point” (NGP) mass projection scheme.
The density slices thus represented our physical model of the
lens screens used in the ray-tracing procedure. We note that there
is no unique procedure for generating a band-limited harmonic
representation of each slice of particles. We choose to use an
NGP interpolation because it is a good compromise between fil-
tering and aliasing, and remains localised in configuration space.
More sophisticated interpolation schemes have been developed
in the context of either 3D particle distributions (Colombi et al.
2009) or 2D continuous fields (Basak et al. 2008), which, how-
ever, remain impractical in significantly large simulations.

After an interpolation kernel has been chosen, all fields (lens-
ing potentials and displacement fields) are computed from the
NGP interpolation mass slices at each redshift using a spher-
ical harmonic decomposition. The resampling of the displace-
ment fields outside the pixel centres (as required in a multi-lens
method) is completed using a local linear-interpolation scheme
(using covariant, second derivatives of the potential); this last
interpolation has the same spectral behavior (and thus the same
aliasing contamination) as the NGP-interpolated mass slices,
and we therefore do not need to use a higher-order resampling
scheme (since the calculation of the potential requires two sets of
integration over the mass distribution, while the interpolation of
the displacement field corresponds to a second-order derivative).
We provide more details in Appendix A (see Jain et al. 2000;
Hamana et al. 2001; and White & Vale 2004, for alternative ap-
proaches). We assumed that the background galaxies are within
a single source plane located at redshift zs = 1. The final con-
vergence map was computed using our multiple-lens ray-tracing
scheme, for which spherical geometry precludes the use of small
angle approximations (as in Das & Bode 2008) especially in the
neighborhood of the poles; full rotation matrices for each light
ray must therefore be computed from the displacement fields at
each redshift.

The resulting full-sky Healpix map with a pixel size of ∆θ #
0.74 arcmin is shown in Fig. 1, with small inserts to highlight the
large dynamical range achieved5. The particle shot noise corre-
sponding to our 70 billion particle run has a small impact on the
map. As shown in Fig. 4, the particle shot noise is well below
the expected instrumental noise, and even sufficiently low to be
ignored in the spectral analysis of the signal.

5 Higher resolution images are available at
http://www.projet-horizon.fr

http://healpix.jpl.nasa.gov
http://www.projet-horizon.fr
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Fig. 1. Full-sky simulated convergence map derived from the Horizon Simulation. Its resolution of 200 million pixels has been downgraded to fit
the page. The various inserts display a zoom sequence into smaller and smaller areas of the sky. The pixel size is 0.74 arcmin2.

Fig. 2. Map of the cut-sky used in Sect. 4 to compute high-order
moments.

4. High-order moments and realistic sky cut

In Fig. 1, the signal appears as a typical Gaussian random field
on large scales, similar to the Cosmic Microwave Background
map seen by the WMAP satellite (Spergel et al. 2007). On small
scales, the signal is clearly dominated by clumpy structures (dark
matter halos) and is therefore highly non-Gaussian. To character-
ize this quantitatively, we performed a wavelet decomposition of
our map using the Undecimated Isotropic Wavelet Transform on
the sphere (Starck et al. 2006a), and, for each wavelet scale, we
have computed its second-, third- and fourth-order moment. We
used 11 scales with central multipole values of "0 = 9000, 4500,
2250, 1125, 562, 282, 141, 71, 35, 18. For each of these maps,
we computed the variance σ2 = 〈κ2〉, the normalized skewness
S = 〈κ3〉/σ3, and the normalized kurtosis K = 〈κ4〉/σ4. Results
are plotted in Fig. 3 as solid lines of various colors. Error bars
were estimated approximately by computing each moment on
the 12 Healpix base pixels independently and evaluating the vari-
ance in the 12 results. A more appropriate strategy would have
been to perform several, independent, 70 billion particle runs,
which is currently impossible for us to do. We can see that the

Fig. 3. Moments of the convergence as a function of the average multi-
pole moment on each wavelet scale. The variance, skewness, and kur-
tosis are shown as black, blue, and red lines, respectively. Solid lines
with error bars corresponds ro a full-sky analysis, while dotted lines
correspond to our cut-sky analysis.

variance in the signal steadily increases for higher and higher
multipoles, and saturates at a fraction of 10−4, corresponding to
the value predicted from nonlinear gravitational clustering for
" ≥ 6000. The variance for each wavelet plane can be consid-
ered to be a band power estimate of the angular power spectrum,
as can be verified using Fig. 4. In the same figure, we have also
plotted for comparison the linear power spectrum, to highlight
the scale below which nonlinear clustering contributes signifi-
cantly, i.e., for " > 750 or equivalently θ < 15′, as first pointed
out by Jain & Seljak (1997). Skewness and kurtosis are more
direct estimators of the signal non-Gaussianity. Departures from

http://dexter.edpsciences.org/applet.php?DOI=10.1051/0004-6361/200810657&pdf_id=1
http://dexter.edpsciences.org/applet.php?DOI=10.1051/0004-6361/200810657&pdf_id=2
http://dexter.edpsciences.org/applet.php?DOI=10.1051/0004-6361/200810657&pdf_id=3
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Fig. 4. Angular power spectrum of the simulated convergence map
(black solid line), compared to a fit based on the Smith et al. (2001) an-
alytical model with error bars corresponding to our noise model (pink
area). Also shown is the prediction from linear theory (pink dashed
curve). The noise power spectrum is plotted as the dashed black line.
The green solid line is the power spectrum of the error map obtained
with the Wiener filter method, while the blue solid line are that for the
MRLens method.

Gaussianity occur around " # 750−1500, where both statistics
cross unity. Due to the large dynamical range of the Horizon sim-
ulation, we computed a map spanning two decades in angular
scales in the linear, Gaussian regime and two additional decades
in angular scales into the nonlinear, non-Gaussian regime.

It is clear from Fig. 3 that at small ", the skewness and the
kurtosis of the map are strongly affected by cosmic variance. The
statistics of the convergence field cannot be measured in practice
over the whole sky because of sky cuts imposed by the pres-
ence of saturated stars and by absorption in the Galactic plane.
We estimated the impact of this sky cut on the accuracy of our
multi-resolution statistical analysis. We computed the expected
number of bright stars that would saturate CCD cameras typi-
cally employed in wide-field survey (B-magnitude < 20). We
then removed from our analysis each pixel contaminated by at
least 3 bright stars, based on a random Poissonian realization of
bright stars in our Galaxy (according to the model presented in
Bahcall & Soneira 1980, Appendix B). We obtain a mask with
40% of the sky removed, corresponding roughly to a ±20◦ cut
around the Galactic plane (see Fig. 2). The resulting statistics
are overplotted as dotted lines in Fig. 3. The transition scale, for
which the departure from Gaussianity is significant, can still be
estimated reliabily around " # 750−1500. We concluded that the
cosmic variance of the cut sky affects high-order moments only
below " # 200.

5. Map-making using multi-resolution filtering

The full-sky simulated convergence maps described above can
be used to analyze and compare de-noising (or map-making)
methods on the sphere. For this purpose, we considered a purely
white instrumental noise, typical of the next generation all-sky
surveys, and a root mean square per pixel of area Ap given

by σN = 0.3/
√

ngalAp for ngal = 40 background galaxies
per arcmin2. Recovering the most accurate convergence map
from noisy data will be an important step in future surveys. This
reconstructed map can be used to construct a mass selected halo
catalog, measure its statistical properties and constrain cosmo-
logical parameters, and be compared directly with other cluster
catalogues compiled with other techniques (X-ray, galaxy counts
or SZ). We restrict ourselves to the full-sky denoising of a con-
vergence map already reconstructed from the shear derived from
galaxy ellipticities. In the present work, we do not address filter-
ing in the presence of a cut-sky, such as the one shown in Fig. 2.
Promising methods based on “impainting” have been developed
in the CMB context (Abrial et al. 2008), and also weak-lensing
applications (Pires et al. 2008); these replace missing data with
an artificial signal and allow us to optimize the results we ob-
tained with filtering methods for a full-sky analysis.

A straightforward filtering method is the Wiener filtering
scheme, which is optimal for Gaussian random fields, and is ex-
pected to operate here effectively on large scales. Defining S " as
the power spectrum of the input signal (see Fig. 4) and N" the
power spectrum of the noise, this method involves convolving
the noisy map by the Wiener filter defined as W" = S "/(S "+N").
The results of the Wiener filtering approach are shown in Fig. 5.
Comparing with the input signal map, we conclude that, al-
though the agreement is satisfactory on large scales, the dense
clumps clearly visible in the image are poorly recovered because
they have been convolved too significantly.

A dedicated weak-lensing wavelet-restoration method,
called MRLens, has been developed (Starck et al. 2006b). It
can be considered to be an extension of the Maximum Entropy
Method (MEM) that provides different types of information. In
MRLens, the entropy constraint is not applied to the pixels of
the solution, but rather its wavelet coefficients. This allows us to
take into account more efficiently the multi-scale behavior of the
information. MRLens was, however, designed for weak-lensing
maps of smaller surface area on the sky, for which the non–
Gaussian signal is stronger. MRLens was extended here to the
sphere by considering independently each of the 12 Healpix base
pixels covering the sphere as 12 independent Cartesian maps, on
which we applied the MRLens algorithm of Starck et al. (2006b).
Full-sky denoising performed with MRLens is shown in Fig. 5.
It performs more efficiently than the Wiener methods on small
scales, with dense clumps more accurately estimated, but less
efficient than the Wiener method on large scale when recovering
low frequency waves in the map. We also computed the angu-
lar power spectrum of the error map (see Fig. 4) in both cases
(Wiener and MRLens). We can see that Wiener filtering outper-
forms MRLens on large scales. Interestingly, the MRLens errors
decrease significantly above the transition scale we identified in
the last section around " # 1000 (see Fig. 4).

To compare both methods more quantitatively, we computed
the skewness and kurtosis of both reconstructed maps. Results
are shown in Fig. 6. We note that using map-making algorithms
to recover the skewness and kurtosis of the true signal is not at all
the optimal strategy: maximum likelihood estimators are more
appropriate. We used high-order statistics here only to compare
the relative merits of each method. It is striking to observe in
Fig. 6 that the Wiener reconstructed map strongly underestimate
the skewness and the kurtosis at small scale. This confirms quan-
titatively what was already visible in the maps (Fig. 5), namely
that the Wiener method strongly suppresses high peaks in the
map, affecting the tail of the probability distribution function. On
the other hand, the MRLens reconstructed map has asignificantly

http://dexter.edpsciences.org/applet.php?DOI=10.1051/0004-6361/200810657&pdf_id=4
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Fig. 5. Reconstruction of convergence maps with our 2 filtering techniques. The top panels show the 2.5◦ × 2.5◦ square map corresponding to
first zoom sequence of Fig. 1. The bottom panels are subset of the corresponding top images with linear size 45′. From left to right, we show the
original signal, the noisy image, the Wiener-filtered image and the the MRLens-filtered image.

Fig. 6. Skewness (blue lines) and kurtosis (red lines) for the original
convergence map (solid lines with error bars), compared to the same
high-order statistics for the Wiener reconstructed map (dotted lines) and
the MRLens reconstructed map (dashed lines).

higher skewness and kurtosis than the original map: this wavelet-
based method is only efficient in recovering high peaks in the
signal, affecting the reconstructed probability density function
in the opposite direction.

We now use the probability density function (PDF) of the
residual maps to compare each method (see Fig. 7). We confirm
our visual impression from Fig. 5 that MRLens performs more
efficiently than the Wiener method in recovering the high conver-
gence, nonlinear features in the map. The positive high residual

Fig. 7. Histogram of the residual maps for Wiener and MRLens
filtering.

tail is reduced significantly by MRLens, as well as the dozen
of strongly outlying pixels in the Wiener filterer map around
κ # 0.35 (see Fig. 7). MRLens, however, performs poorly for
small values of the convergence (κ # ±0.05), for which the
PDF is well approximated by a Gaussian, an optimal situation
for Wiener filtering.

The present analysis, based on using both the power spec-
trum of the residual maps and the high-order moments of the

http://dexter.edpsciences.org/applet.php?DOI=10.1051/0004-6361/200810657&pdf_id=5
http://dexter.edpsciences.org/applet.php?DOI=10.1051/0004-6361/200810657&pdf_id=6
http://dexter.edpsciences.org/applet.php?DOI=10.1051/0004-6361/200810657&pdf_id=7
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recovered map, strongly suggests that new methods should be
developed using an hybrid, multi-resolution formulation; for
instance, using spherical harmonics on large scales, while uti-
lizing wavelets coefficients on small scales. The methodology of
this combined approach could be based on the idea of Combined
Filtering introduced by Starck et al. (2006a).

6. Conclusion

Using the 70 billion particles of the Horizon N-body Simulation,
we have computed for the first time a realistic full-sky conver-
gence map with a pixel resolution of ∆θ # 0.74 arcmin2. We
have analyzed the resulting map using multi-resolution statistics
(variance, skewness, and kurtosis) and angular power-spectrum
analysis. We have shown that this simulated map spans 4 decades
of useful signal in angular scale, with 2 decades within the lin-
ear, Gaussian regime and 2 decades well into the nonlinear, non-
Gaussian regime. We have shown that, when considering a real-
istic sky cut, we can reliabily estimate high-order moments of the
map above " # 200. Using even higher resolution maps, angular
scales smaller than θ # 1′ could be explored in future works, al-
though the mass ditribution on these scales might be affected by
baryons physics (Jing et al. 2006), so that the present map might
already cover all cosmologically relevant scales.

As a first step towards a realistic map-making procedure,
we have tested two de-noising schemes on a simplified fictitious
dataset derived from the full-sky map, namely Wiener filtering
and the MRLens method (Starck et al. 2006b). We have shown
quantitatively that Wiener filtering is the most effective method
on large scales, although some signal is lost on small scales.
MRLens performs more effectively on small scales and recovers
the dense clumps associated with dark matter halos, but deals
less accurately with low frequency waves in the map. Hence,
this work demonstrates the need for hybrid multi-resolution ap-
proach, e.g., by combining spherical harmonics and wavelet co-
efficients. The present analysis will be extended in future work to
map-making algorithms dealing directly with galaxy shears. The
simulated convergence map may prove to be an effective tool for
the design of new map-making methods and for the preparation
of the next generation weak-lensing surveys6.
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Appendix A: Computing the convergence maps
from simulations

We first recall how to compute the convergence in the Born ap-
proximation, and then present our new ray-tracing scheme.

A.1. Born approximation

We start by the formula relating the convergence to the density
contrast:

κ(n̂) =
3
2
Ωm

∫ zs

0

dz
E(z)
D(z)D(z, zs)
D(zs)

1
a(z)
δ(

c
H0
D(z)n̂, z) ,

6 The convergence map is freely available for download at http://
www.projet-horizon.fr

which is valid for sources at a single redshift zs, and D(z) =
H0
c χ(z) is the dimensionless, comoving, radial coordinate (dD =

dz/E(z)). We now rewrite this formula in a form that is more
suited to integration over redshift slices in a simulation:

κ(θpix) ≈ 3
2
Ωm

∑

b

Wb
H0

c

∫

∆zb

cdz
H0E(z)

δ

(
c

H0
D(z)n̂pix, z

)
,

where

Wb =

(∫

∆zb

dz
E(z)
D(z)D(z, zs)
D(zs)

1
a(z)

)
/

(∫

∆zb

dz
E(z)

)

is a slice-related weight, and the integral over the density con-
trast reads

I =
∫

∆zb

cdz
H0E(z)

δ

(
c

H0
D(z)n̂pix, z

)
,

=

∫

∆χb

dχδ(χn̂pix, χ) ,

≈ V(sim)
Npart(sim)

(
Npart(θpix, zb)

S pix(zb)
− ∆χb

)
,

where

S pix(zb) =
4π

Npix

c2

H2
0

D2(zb)

is the comoving surface of the spherical pixel. Interpreting all
together, we obtain the following formula for the convergence
map (omitting the ∆χb term that corresponds to a constant term):

κ(θpix) =
3Ωm

2
Npix

4π

(H0

c

)3 V(sim)
Npart(sim)

∑

b

Wb
Npart(θpix, zb)
D2(zb)

· (A.1)

This is the equation used to derive the convergence map in the
Born approximation.

A.2. Ray-tracig using multiple planes

We discuss here the formulae needed for the multi-plane com-
putations, where we consider the lensing by a number of thin
lenses located at {zb}. We define

κfac =
3
2
Ωm

Npix

4π

(H0

c

)3 V(sim)
Npart(sim)

,

and

ζ(zb, θ) = κfacω(zb)
Npart(θ, zb)
D2(zb)

, (A.2)

with

ω(zb) =
(∫

∆zb

dz
E(z)
D(z)
a(z)

)
/

(∫

∆zb

dz
E(z)

)
·

To follow the light rays, we are interested in computing the an-
gular displacement field for each ray i due to a slice at zb. We
then define

αb
i =
(
−2∇∆−1 (ζ(zb))

)
(θi), (A.3)

where the gradient and Laplacien are computed using angular
covariant derivatives on the (unit) sphere, and θi is the current
direction of light ray i when it is incident on the slice b. Now, we
start from light rays that are back-propagated from the observer
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at z = 0 towards the source (here at z = 1). We denote by {θ1}
the location of the Healpix centres, which corresponds to the
initial directions of the back-propagated rays emanating from the
observer. The tangent vectors to each light ray will be modified
by the deflection field at each lens plane, defined by Eq. (A.3).
Then, computing the displacement of the rays at slice b reads

αb
i =
(
−2∇∆−1(ζ(zb)

)
(θbi ).

We then update the direction βb
i of the rays according to the fol-

lowing rotation, R:

βb
i = R(nb

i × αb
i , ‖αb

i ‖)βb−1
i (A.4)

where β0
i = n1

i (light rays emanate from the observer, thus in
a direction perpendicular to the first slice), and nb

i is the vec-
tor normal to slice b at the intersection of light-ray i on slice b.
Equation (A.4) can be simplified by noting that α is expressed
naturally in the local (eθ, eφ) basis of the tangent plane at position
(θ, φ):

α = ‖α‖(cos δeθ + sin δeφ).

After calculating the new value of β, one needs to compute the
intersection of the light rays with the next shell. We call xb

i the
Cartesian position of the intersection of light ray i with slice b,
then the next intersection will be given by the solution for λ of
the system:

xb+1
i = xb

i + λβ
b
i

λ2 + 2λ(xb
i · βb

i ) + R2
b − R2

b+1 = 0, λ > 0,

assuming that β remains strictly unitary, and Rb is the comov-
ing radius of slice b. Once xb+1

i is known, it is easy to compute
the new θb+1

i positions. The contributions to κ are then calcu-
lated following Eq. (A.1), but where the slice contributions are
interpolated at the displaced positions:

κ(θi=pix) =
3
2
Ωm

Npix

4π

(H0

c

)3 V(sim)
Npart(sim)

∑

b

Wb
Npart(θbi , zb)

D2(zb)
·

We note that θbi may fall into different pixels as a function of the
slice b.

References
Abrial, P., Moudden, Y., Starck, J.-L., et al. 2008, Stat. Method., 5, 289
Albrecht, A., & Bernstein, G. 2007, Phys. Rev. D, 75, 103003
Amara, A., & Refregier, A. 2006, ArXiv Astrophysics e-prints
Bahcall, J. N., & Soneira, R. M. 1980, ApJS, 44, 73
Basak, S., Prunet, S., & Benabed, K. 2008, Phys. Rev. D, [arXiv:0811.1677]
Benjamin, J., Heymans, C., Semboloni, E., et al. 2007, ArXiv Astrophysics

e-prints
Bertschinger, E. 2001, ApJS, 137, 1
Colombi, S., Jaffe, A., Novikov, D., & Pichon, C. 2009, MNRAS, 393, 511
Das, S., & Bode, P. 2008, ApJ, 682, 1
Eisenstein, D. J., & Hu, W. 1999, ApJ, 511, 5
Fosalba, P., Gaztanaga, E., Castander, F., & Manera, M. 2008, MNRAS, 391,

435
Fu, L., Semboloni, E., Hoekstra, H., et al. 2008, A&A, 479, 9
Górski, K. M., Hivon, E., Banday, A. J., et al. 2005, ApJ, 622, 759
Hamana, T., Colombi, S., & Suto, Y. 2001, A&A, 367, 18
Hoekstra, H. 2003, ArXiv Astrophysics e-prints
Hu, W., & Tegmark, M. 1999, ApJ, 514, L65
Huterer, D. 2002, Phys. Rev. D, 65, 063001
Jain, B., & Seljak, U. 1997, ApJ, 484, 560
Jain, B., Seljak, U., & White, S. 2000, ApJ, 530, 547
Jing, Y. P., Zhang, P., Lin, W. P., Gao, L., & Springel, V. 2006, ApJ, 640, L119
Munshi, D., Valageas, P., Van Waerbeke, L., & Heavens, A. 2006, ArXiv

Astrophysics e-prints
Pires, S., Starck, J., Amara, A., et al. 2008, ArXiv e-prints
Prunet, S., Pichon, C., Aubert, D., et al. 2008, ApJS, 178, 179
Refregier, A. 2003, ARA&A, 41, 645
Réfrégier, A., Boulade, O., Mellier, Y., et al. 2006, in Space Telescopes and

Instrumentation I: Optical, Infrared, and Millimeter, ed. J. C. Mather, H. A.
MacEwen, & M. W. M. de Graauw, Proc. SPIE, 6265, 62651Y

Spergel, D. N., Bean, R., Doré, O., et al. 2007, ApJS, 170, 377
Starck, J.-L., Moudden, Y., Abrial, P., & Nguyen, M. 2006a, A&A, 446, 1191
Starck, J.-L., Pires, S., & Réfrégier, A. 2006b, A&A, 451, 1139
Teyssier, R. 2002, A&A, 385, 337
Van Waerbeke, L., Hamana, T., Scoccimarro, R., Colombi, S., & Bernardeau, F.

2001, MNRAS, 322, 918
White, M., & Vale, C. 2004, Astropart. Phys., 22, 19

a

	Introduction
	The horizon N-body simulation
	Light cone and convergence map
	High-order moments and realistic sky cut
	Map-making using multi-resolution filtering
	Conclusion
	Computing the convergence maps from simulations
	Born approximation
	Ray-tracig using multiple planes

	References

