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ABSTRACT

We present a new method for the reconstruction of Sunyaev-Zel’dovich (SZ) galaxy clusters in future SZ-survey experiments using
multiband bolometer cameras such as Olimpo, APEX, or Planck. Our goal is to optimise SZ-Cluster extraction from our observed
noisy maps. None of the algorithms used in the detection chain is tuned using prior knowledge of the SZ-Cluster signal, or other
astrophysical sources (Optical Spectrum, Noise Covariance Matrix, or covariance of SZ Cluster wavelet coefficients). First, a blind
separation of the different astrophysical components that contribute to the observations is conducted using an Independent Component
Analysis (ICA) method. This is a new application of ICA to multichannel astrophysical data analysis. Then, a recent non linear
filtering technique in the wavelet domain, based on multiscale entropy and the False Discovery Rate (FDR) method, is used to
detect and reconstruct the galaxy clusters. We use the Source Extractor software to identify the detected clusters. The proposed
method was applied on realistic simulations of observations that we produced as mixtures of synthetic maps of the four brightest
light sources in the range 143 GHz to 600 GHz namely the Sunyaev-Zel’dovich effect, the Cosmic Microwave Background (CMB)
anisotropies, the extragalactic InfraRed point sources and the Galactic Dust Emission. We also implemented a simple model of optics
and noise to account for instrumental effects. Assuming nominal performance for the near future SZ-survey Olimpo, our detection
chain recovers 25% of the cluster of mass larger than 10'* M, with 90% purity. Our results are compared with those obtained with
published algorithms. This new method has a high global detection efficiency in the high-purity/low completeness region, being

however a blind algorithm (i.e. without using any prior assumptions on the data to be extracted).

Key words. cosmology: large-scale structure of Universe — cosmology: observations — galaxies: clusters: general —

methods: data analysis — methods: numerical

1. Introduction

Spectacular advances in cosmology have taken place through
observation of the sky at millimeter and sub-millimeter wave-
lengths. The Boomerang (Netterfield et al. 2002), MAXIMA
(Hanany et al. 2000), Archeops (Tristram et al. 2005), WMAP
(Hinshaw et al. 2003), CBI (Contaldi et al. 2002) and DASI
(Halverson et al. 2002) experiments measured the anisotropies
of the Cosmic Microwave Background with high precision.
Combined with other observations, such as distant supernovae
of Riess et al. (1999); Knop et al. (2003) and/or Clusters (White
et al. 1999; Pierpaoli et al. 2001) or the Large-Scale Structure
Observation (Eisenstein et al. 2005), these experiments allowed
one to place tight constraints on parameters of generic cos-
mological models. These results gave rise to new questions.
Consensus cosmological models assume that the large-scale evo-
lution of the Universe is driven by Dark Matter and Dark Energy.
Dark Matter has been sought for 30 yr, and most candidates have
been rejected in the light of experimental results. Dark Energy
will be one of the toughest challenges of modern cosmology.
One way to learn about the nature of dark energy is to study the
evolution of the Universe at late times, during which dark en-
ergy is thought to have impacted on the formation of large-scale
structures. Cluster surveys are an ideal tool for this purpose.
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1.1. Cluster detection in the SZ survey

Large-scale structures can be studied using several probes: op-
tical galaxy catalogs, X-ray cluster surveys such as XMM-
LSS (Pierre et al. 2004), SZ cluster surveys such as Olimpo
(Masi et al. 2003), APEX, AMI (Jones 2001), AMIBA
(AMIBA 2005-2007) and weak shear such as CFHT-LS “wide”.
The mass and redshift distribution of clusters of galaxies,
dN/dzdMdQ (where M, z and Q are the cluster mass and red-
shift, and the solid angle), is predicted with fair precision using
Halo models and N-body simulations. SZ cluster, X-ray and op-
tical surveys measure quantities related to cluster mass through
complex phenomena, such as interstellar gas heating processes,
clustering and processes of stellar formation and evolution that
are still not fully understood. The SZ signal from galaxy clusters
is believed to be the simplest direct observable of cluster mass,
though some uncertainties on extragalactic gas heating mecha-
nisms remain. Measuring the cluster mass function will require
these systematics to be understood. Pioneering SZ cluster sur-
veys will obtain their first data this year. The Planck satellite
survey will follow (Lamarre et al. 2004). In this paper we pre-
pare for their analysis using simulated data.

Melin (2004) and Schafer (2004), following Herranz et al.
(2002b,a), developed a cluster extraction tool based on an op-
timised filter. The filter is optimised to damp the noise as well

http://dx.doi.org/10.1051/0004-6361:20053820
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as the other astrophysical components. The SZ signal is small
compared to the other astrophysical sources, rendering the task
of filtering difficult. In addition a filter damps some of the signal
at the same time as it rejects parasites. We developed the idea
of a 3 step method using as a first step a source separation algo-
rithm. The source separation algorithm sorts the noisy SZ signal
from the other astrophysical components and the filtering step is
left with the easier task of improving the SZ cluster signal versus
noise. A detection algorithm extracts the SZ cluster candidates.

In the 100 to 600 GHz range, the brightest components of
the sky are the Cosmic Microwave Background (CMB), the
Infrared Point Sources, the Galactic dust emission and, swamped
by the previous ones, the SZ clusters. It follows that the true sky
map X™(13, ¢), in a given optic band centered on v, can be mod-
eled as a sum of distinct astrophysical radiations as in

X" (@, ¢) = CMB,(9,¢) + IR/(9, ¢)
+Gal,(9,¢) + S Z,(8, ¢) ¢))

where , ¢ denote spatial or angular indexes on 2D or spherical
maps. The observed sky map X, (¢, ¢) is the result of the con-
volution of the true sky with the optical beam of the telescope
plus the unavoidable contribution of instrumental noise N, (¢, ¢).
Multiband signal processing in astrophysical applications deals
with exploiting correlations between data maps at different v,
to enhance the estimation of specific objects of interest such as
the power spectrum of the CMB spatial fluctuations, or the mass
function of galaxy clusters. Considering the case where the ra-
diative properties of the sources are completely isotropic, in the
sense that they do not depend on the direction of observation, the
above model can be rewritten in the following factored form:

X,(@,9) = > anSid,¢) + Ny(®,¢) @)

1

where S; is the spatial template (i.e. the convolution of the
true component map with the instrumental beam at frequency
v) and a,,; the emission law of the ith astrophysical component.
Although this is a coarse approximation in the case of Infrared
Point Sources as described in Sect. 2.2, it is mostly valid for
the other three components. With observations available in m
channels, Eq. (2) can be written in matrix form:

X(@,9)=AS@,¢) + N@.¢) 3)

where X(1, ¢) is a vector in R™, A is an m X n matrix, n is
the number of contributing astrophysical components, S (1, ¢)
is now a vector in R” and N(¥, ¢) in R™. An important simpli-
fying assumption made here is that the instrumental beam does
not vary with the optical frequency v. This is acceptable with
Olimpo but definitely not for other multichannel experiments
such as Planck. Accounting for a varying instrumental beam re-
quires considering a more complex convolutive mixture model
for the observed multichannel data either with known or param-
eterized beams. Some methods have been developed to deal with
such mixtures but most of these move to the Fourier domain
and consider an instantaneous mixture model in this represen-
tation. This is not acceptable here as the component of interest
(i.e. SZ clusters) would be below the noise level in all chan-
nels in this representation: this is due to the non-locality of the
Fourier basis functions. Instead, we chose to move the data to the
wavelet domain. Wavelets are known to provide sparse represen-
tations of images with point singularities in an otherwise smooth
background. Thus enhancement of the SZ signal concentration
is expected. Then, once computed, in order to reconstruct the

S. Pires et al.: SZ cluster reconstruction

astrophysical component maps, the estimated separating filter is
applied onto the original data.

Equation (3) shows that the observations consist of linear
mixtures of astrophysical components with different weights and
additive noise. Assuming no prior knowledge of A, the problem
of recovering the particular component of interest i.e. the SZ ef-
fect map of galaxy clusters, can be seen as a blind source separa-
tion problem which we approach in this paper using Independent
Component Analysis (ICA). Such methods have been previously
used quite successfully in the analysis of astrophysical data from
present or future multichannel experiments such as WMAP or
Planck (Moudden et al. 2005; Maino et al. 2002; Kuruoglu et al.
2003; Bobin et al. 2005) where the focus is on estimating the
map of CMB anisotropies. We concentrate here on separating
the SZ component, which has very different statistical proper-
ties compared to CMB and thus requires the use of other ICA
methods. Then, due to the additive instrumental noise, the source
separation process has to be followed by a filtering technique.

We use an iterative filtering based on Bayesian methods
to filter the noise (Starck et al. 2006). This method uses
a Multiscale Entropy prior which is only defined for non-
significant wavelet coefficients selected by the False Discovery
Rate (FDR) Method (Benjamini & Hochberg 1995). Then, we
identify SZ clusters in filtered maps using the Source Extractor
software SExtractor (Bertin 2003) which conveniently pro-
vides source extraction along with adequate photometry and de-
blending.

1.2. Outline of the paper

In the following, we first describe our sky model. We use the
Olimpo SZ-cluster survey (Masi et al. 2003) as an example of
a future ambitious SZ survey. We model the Olimpo instrument
and produce simulated observed maps. With minor parameter
changes, these algorithms will also allow us to simulate observed
local maps typical of other bolometer camera SZ surveys (i.e.
Planck or APEX observations). Then we explain the data pro-
cessing methods used to recover the map of SZ-cluster signal
and the “observed” cluster catalog. We quantify the efficiency
of our detection chain and compare it to a recently published
method. This paper is at the interface of astrophysics and ap-
plied mathematics.

2. Simulations of contributing astrophysical
components

The input of our simulation is a list of cosmological model
parameter values. We use a ACDM cosmological model with
Q =19, =03 Q, =004, Qy, =026,Q, =0.7,h=0.7,
og =0.85,n, = 1,7 = 0.1666 and a seed for the random number
generator. This simulation was fully written in C++, so that we
can mass produce our simulations on a PC farm, when needed.

2.1. Cosmic Microwave Background anisotropies

Big Bang cosmology models assume that the Universe has been
evolving from a hot and dense plasma. While it expands, its con-
tents cools. At some time, decoupling occured, when the tem-
perature of the Universe dropped below hv = kg7 =~ 0.2 eV
and the mean free path of photons suddenly became infinite so
that the large majority of them have been propagating freely
through the Universe ever since. These photons are nowadays
observed to have a black-body spectrum at temperature 2.728 K
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Fig. 1. Graphical summary of the simulation and detection chain presented in this paper.

(Hinshaw et al. 2003): the Cosmic Microwave Background
(CMB). Small anisotropies in the CMB are observed and inter-
preted as resulting from temperature and density fluctuations in
the primordial plasma at the decoupling time.

Bolometer cameras measure incoming power variations,
while scanning the sky. Thus the main blackbody spectrum
(monopole) will not be observed. In the following simulations
we also assume that the CMB dipole (Doppler effect due to the
Earth’s movement) has been subtracted from the data.

In order to simulate a map of CMB anisotropies, we first en-
ter the cosmological parameter list in the cmbeasy code (Doran
& Mueller 2004) and compute a Power Spectrum in Spherical
Harmonics up to multipole 5000 of the CMB fluctuations. Then
using a small field approximation (White et al. 1999), we gen-
erate a random spatially correlated Gaussian field of primordial

anisotropies with the previous power spectrum. Figure 2 shows
a typical simulated CMB anisotropy map in units of uK.

2.2. IR point sources

In our frequency range, infrared point sources are expected to be
a significant contamination. Borys et al. (2003) from the SCUBA
experiment published a list of infrared point sources at 350 GHz
and a log N/LogS law from this data. We extend this law to
lower brightness, and generate a catalog of IR point sources in
our field of view. We assume that their optical spectra follow a
grey body law parameterised as:

F(v) =v* « Planck(v, Ty). “4)

Where Planck stands for Planck’s black body spectrum, v stands
for frequency, T is the temperature of the black body and « is
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Fig. 2. The 4 physical components of the sky included in our simulation: upper right is a map of the CMB’s anisotropies in unit of uK, upper left
is the SZ Cluster map, in units of the Compton parameter on line of sight y, lower right is the IR point source map, convolved with a beam of
2 arcmin, in Jy at 350 GHz, lower left is the Galactic dust map in units of MJy/st at 100 ym.

by definition the spectral index. For each IR point source, the
spectral index was randomly picked between 1.5 and 2, and T
was set to 30 K. Thus each IR point source has a different opti-
cal spectrum. Then the IR point source is placed on our map as a
single pixel. IR sources are positioned randomly on the map but
a user chosen fraction of them can be positioned within clusters
of galaxies, and would make SZ-Cluster photometry more diffi-
cult. We obtain an IR point source map in units of Jy at 350 GHz
as shown in Fig. 2.

2.3. Galactic dust emission

We know from FIRAS and IRAS that the galactic interstellar
dust emits in the far infrared. For these simulations, we wanted
to generate truly random galactic dust maps. So, instead of us-
ing the maps published by Schlegel et al., we followed Bouchet
& Gispert (1999) and assumed that Galactic Dust was described
by a power spectrum of spatial correlations in C; o 1/, We
then randomly generated a map with the same algorithms as used
for the CMB map simulations. We assume a homogeneous op-
tical spectrum over our map given by Eq. (4) with @ = 2, and
Ty = 20 K. This is a reasonnable assumption since SZ-Cluster
observations will take place at high galactic latitudes, and we
will be working on small size maps. Finally, we normalise the
map rms at its observed values at high galactic latitude: at
A = 100 um, the rms flux is observed at 1 MJ/st. We obtain a
galactic Dust Emission Map, shown in Fig. 2 in natural units
of MJ/st at 100 ym.

2.4. Sunyaev-Zel'dovich clusters

Hot intracluster gas is observed as a plasma at a temperature
of 2 to 20 keV. A small fraction of CMB photons traveling
through clusters Compton-scatter on electron gas. Since the elec-
tron kinetic energy is much higher than the CMB photon energy,
CMB photons statistically gain energy when diffused. This ef-
fect, known as the thermal Sunyaev-Zel’dovich effect (1980), re-
sults in a small distortion in the CMB Black-Body spectrum, in
the direction of clusters of galaxies. The probability that a pho-
ton scatters while crossing a cluster is given by:
ko T

kT
y= f Sneordl = — f Tonedl. 3)
los MeC meC” Jios

The optical spectral dependance is given by:

B (kTp)®  x*e* by
B (ex—l)Z(tan h(x/2)—4)' ©

J)

In these expressions, T, ne, m, refer to the electron temperature,
density and mass, respectively; oor = 6.65 X 1073 c¢cm? is the
Thomson cross-section and x = kv/kTcump is the dimensionless
frequency of observation in terms of unperturbed CMB temper-
ature T =2.728 K.

Simulation of SZ Cluster maps requires modelling large-
scale structure formation. For this we translated in C++ the
ICosmo semi-analytic model (Refregier & R. Massey 2004)
which, starting from a cosmological parameter set, allows
us to compute the cluster density versus mass and redshift:
dn/dzdMdQ(M, z). Several fits to data and physical assumptions
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Fig. 3. Simulated maps in Olimpo’s four frequency bands: upper right is the 147 GHz band, upper left is the 217 GHz band, lower right is the
385 GHz band: CMB anisotropies, IR point sources and Galactic Dust blend in this band. Lower left 500 GHz: IR point sources and Galactic Dust
are the dominant features at high frequencies. The SZ cluster signal is dominated by other astrophysical sources at all frequencies.

are involved and implemented in this computation. We run
C-ICosmo using the options of a concordance ACDM model and
the mass function from Sheth & Thormen (Sheth et al. 2001).
The virial radius of a cluster is computed assuming a spherical
collapse (Peebles 1993; Peacok 1999). This is the radius where
the average overdensity is Ac = 1 + 6 = 200 times the critical
density (chosen independent of redshift). Gas heating is mod-
eled according to Pierpaoli et al. (2003), with the additional pa-
rameter 7. Then we randomly generate a cluster catalog in our
field of view, according to density profile keeping those clus-
ters which have an integrated Compton parameter Y larger than
3 x 107!2 st (corresponding to a mass cut of 10'* Solar Mass).

An ellipticity is attributed to each cluster according to exper-
imental observations (Cooray 2000). We assume that the cluster
gas density follows an elliptical beta model. For the time being,
clusters are positioned on the map randomly and the orientation
of the main axis of each ellipse is also chosen randomly. We
project to account for two point correlations in cluster positions
in the near future. A typical SZ cluster map in natural units of
y-Compton is shown in Fig. 2.

3. Modeling observations
3.1. Instrumental effects

A detailed model of observations can only be developed after
data acquisition. In the following, we choose to use a very sim-
ple observation model, nevertheless representative of an ongoing

project, the Olimpo balloon experiment. The Olimpo cam-
era will observe the sky at 4 frequencies, 143, 217, 385 and
600 GHz. The millimeter-wave filter bandwiths will be close to
30 GHz and are assumed to have a top-hat shape. The beams
at the 4 frequencies are assumed to be symmetric, Gaussian
and of 3, 2, 2 and 2 arcmin FHWM respectively. The optical
efficiency (mirrors, filters), the photon noise and the bolome-
ter sensitivities and noise contributions are summarized by an
equivalent observed noise temperature neqr on the Sky in unit of
uKcyp/Hz™ /2, Based on the BOOMERanG experiment, typical
values in the four channels of Olimpo are expected at 150, 200,
500, and 5000 uKcms JHz /2 respectively.

3.2. Noise model

The simplest and most optimistic model is to assume that the
observed noise along bolometer timelines will be white, in which
case, after projection (or coaddition, Yvon & Mayet 2005) on
2D maps, pixel noise can be very easly computed as:

NOLSpix = NeqT * /INBol * fpix N

where N stands for the number of bolometers working in a
particular frequency band, and #,; is the observation length on
this pixel. High resolution SZ bolometer surveys will cover their
large survey adding up small patches of the sky. Noise map pat-
terns are likely to be complex, and will only be known after data
has been acquired. We chose in this first paper to begin with a
simple case of homogeneous white noise on the full field of view.
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Frequency [GHz] 143 | 217 | 385 | 600
FWHM [arcmin] 3 2 2 2

White noise level [uK/VHz] | 150 | 200 | 500 | 5000

3.3. Mixing model

We now have all the tools to compute simulated observed sky
maps. For each frequency band, we compute a conversion fac-
tor from the maps in their natural units into the observed unit
at the bolometer level namely pW/m?/st. The exception is the
IR point source map where, because of the random spectral in-
dexes of the point sources, a conversion factor is computed for
each point source. We sum the four physical components into a
“true” sky map which is then convolved with the experimental
beam. Then we add the noise. We end up with one map per fre-
quency band (Fig. 3). These maps would be what the analysis
team would recover from the data, after pointing reconstruction,
parasite removal, de-correlation of instrumental systematics in
the data, and map-making: much analysis work. In the following,
we explain a set of algorithms optimised for recovering SZ clus-
ter signals in the observed maps.

4. Separation of astrophysical components

The simulated observations generated according to the method
described in the previous section consist of linear mixtures of
the four main sources of diffuse radiation as expected in the
four channels of the Olimpo instrument. Focusing on separat-
ing the SZ map, we want to make the most of the data in the
four frequency bands (centered on 143, 217, 385 and 600 GHz)
and exploit the fact that each map is actually a different point of
view on the same scene: multichannel data requires processing
these maps in a coherent manner. We now provide an overview
of the general principles of ICA for component separation from
multichannel data. Then, we give a more detailed description of
JADE, the specific ICA algorithm we used.

4.1. Independent component analysis

Blind Source Separation (BSS) is a problem that occurs in multi-
dimensional data processing. The overall goal is to recover un-
observed signals, images or sources S from mixtures of these
sources X observed typically at the output of an array of m sen-
sors. The simplest mixture model takes the form of Eq. (3):

X=AS + N (8)

where X and S are random vectors of respective sizes m X 1,
n X 1 and A is an m X n matrix. The entries of S are assumed to
be independent random variables. Multiplying S by A linearly
mixes the n sources into m observed processes.

Independent Component Analysis methods were developed
to solve the BSS problem, i.e. given a batch of T observed sam-
ples of X, estimate the mixing matrix A or its inverse and re-
construct the corresponding 7 samples of the source vector S,
relying mostly on the statistical independence of the source pro-
cesses. Inverting the mixing process requires that the number of
mixtures m be greater than or equal to the number of sources n.
Solving the under-determined case where m < n requires some
more a priori information on the sources. This is an currently ac-
tive area of research with close ties to the ideas of sparse repre-
sentation (Lee et al. 1999; Lewicki & Sejnowski 2000; Georgiev
et al. 2005). Note that with the above model, the independent
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sources can only be recovered up to a multiplication by a non-
mixing matrix i.e. up to a permutation and a scaling of the en-
tries of S. Although independence is a strong assumption, it
is in many cases physically plausible. This exceeds the simple
second order decorrelation obtained for instance using Principal
Component Analysis (PCA): decorrelation is not enough to re-
cover the source processes since any rotation of a white random
vector remains a white random vector.

Algorithms for blind component separation and mixing ma-
trix estimation depend on the a priori model used for the proba-
bility distributions of the sources (Cardoso 2001) although rather
coarse assumptions can be made (Cardoso 1998; Hyvirinen et al.
2001). In a first set of techniques, source separation is achieved
in a noiseless setting, based on the non-Gaussian nature of all
but possibly one of the components. Most mainstream ICA tech-
niques belong to this category: JADE (Cardoso 1999), FastICA,
Infomax (Hyvirinen et al. 2001). In a second set of blind tech-
niques, the components are modeled as Gaussian processes and,
in a given representation (Fourier, wavelet, etc.), separation re-
quires that the sources have diverse, i.e. non proportional, vari-
ance profiles. For instance, the Spectral Matching ICA method
(SMICA) (Delabrouille et al. 2003; Moudden et al. 2005) con-
siders the case of mixed stationary Gaussian components in a
noisy context: moving to a Fourier representation, colored com-
ponents can be separated based on the diversity of their power
spectra.

In the case where the main component of interest is well
modeled by a peaked distribution with long tails (e.g. a Laplace
distribution) as is the case with SZ maps, methods from the first
set are expected to yield better results. Next we provide a de-
scription of JADE, the non-Gaussian ICA method we used.

4.2. JADE

The Joint Approximate Diagonalization of Eigenmatrices
method (JADE) assumes a linear mixture model as in (8) where
the independent sources S are non-Gaussian iid' random pro-
cesses with the additional assumption of a high signal to noise
ratio (i.e. N = 0).The mixing matrix is assumed to be square and
invertible so that (de)mixing is just a change of basis. Although
the noiseless assumption may not be true in the problem at hand,
the algorithm may still be applied and a proper change of rep-
resentation can move us closer to such a setting, as discussed in
the next Sect. 4.3.

As mentioned above, second order statistics do not retain
enough information for source separation in this context: finding
a change of basis in which the data covariance matrix is diagonal
will not in general enable us to identify the independent sources
properly. Nevertheless, decorrelation is half the job (Cardoso
1998) and one may seek the basis in which the data is repre-
sented by maximally independent processes among those bases
in which the data is decorrelated. This leads to so-called orthog-
onal algorithms: after a proper whitening of the data by multipli-
cation with the inverse of a square root of the covariance matrix
of the data W, one seeks a rotation R (which leaves things white)
so that § defined by

S=W'Y=W'RXunie=W'RWX 9)

! The letters iid stand for independently and identically distributed
meaning that each of the entries of X at a given position ¢ are indepen-
dent of X at any other position ¢ and that the distribution of X does not
depend on position.
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Fig. 4. SZ component map extracted by JADE from the four observed
noisy maps. The SZ cluster signal, subdominant at all observed frequen-
cies, now appears clearly. No obvious leftovers from other astrophysical
sources are seen. Remaining noise is small, because we prefiltered data
before JADE processing, and we simulated the nominal noise levels of
an ambitious project: Olimpo.

and B = A-! = W' RW are estimations of the sources and of
the inverse of the mixing matrix.

JADE is such an orthogonal ICA method and, like most
mainstream ICA techniques, it exploits higher order statistics so
as to achieve a non linear decorrelation. In the case of JADE,
statistical independence is assessed using fourth order cross cu-
mulants defined by:

Fijw = cum(y;, Y, Y, Y1)
= Sy yryn) — Eyiy NE(Yryr)
=EWiynNEWY jyr) — EWiy)EWY jyi)

where & stands for statistical expectation and the y; are the en-
tries of vector Y modeled as random variables. Then, the cor-
rect change of basis (i.e. rotation) is found by diagonalizing the
fourth order cumulant tensor. If the y; were independent, all the
cumulants with at least two different indices would be zero. As a
consequence of the independence assumption of the source pro-
cesses S and of the whiteness of Y for all rotations R, the fourth
order tensor F is well structured: JADE was precisely devised to
take advantage of the algebraic properties of F. JADE objective
function is given by

J1ape(R) = Z Z cum(yy, Y, Y Y1)°

ij k£l

(10)

11

which can be interpreted as a joint diagonalization criterion.
Fast and robust algorithms are available for the minimization of
Jiape(R) with respect to R based on Jacobi’s method for ma-
trix diagonalization (Pham 2001). More details on JADE can be
found in Cardoso (1999, 1998); Hyvirinen et al. (2001).

4.3. JADE in wavelet space

We chose to use JADE after a Wavelet transform. Wavelets
come into play as a sparsifying? transform. Moving the data to
a wavelet representation does not affect its information content

2 Data is sparse on a basis when this basis allows one to describe that
signal with a small number of coefficients. This is a highly desirable
property, since noise is not expected to be sparse at the same time in
such a basis. Choosing a sparsifying basis thus allows one to enhance
signal to noise ratio.
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and applying a wavelet transform on both sides of (8) does not
affect the mixing matrix and the model structure is preserved.
Howeyver, the statistical distribution of the data coefficients in
the new representation is different: wavelets are known to lead
to sparse approximately iid representations of structured data.
Further, the local (coefficient wise) signal to noise ratio depends
on the choice of a representation. A wavelet transform tends to
grab the informative coherence between pixels while averaging
the noise contributions, thus enhancing structures in the data.
Although the standard ICA model is for a noiseless setting, the
derived methods can be applied to real data. Performance will
depend on the detectability of significant coefficients i.e. on the
sparsity of the statistical distribution of the coefficients. Moving
to a wavelet representation will often lead to more robustness
to noise. We used the bi-orthogonal wavelet transform based
on the Antonini 7/9 filters (Antonini et al. 1992). Although this
choice may not be optimal for the source separation objective, it
does enhance separation. Finding the optimal representation of
the data for component separation is not a trivial task given the
diversity of structures encountered in the different component
maps. Some very recent work in BSS considers exploiting the
morphological diversity of the source processes by resorting to
highly overcomplete dictionaries (i.e. unions of several bases) to
enhance source separation in some specific cases (Zibulevsky &
Pearlmutter 2001; Starck et al. 2004; Bobin et al. 2005; Starck
et al. 2005). How this could be useful for astrophysical com-
ponent separation in experiments such as Olimpo or Planck is
currently being investigated.

Once the data has been transformed to a proper representa-
tion (e.g. wavelets but also ridgelets and curvelets (Starck et al.
2003), if the 2D or 3D data is strongly anisotropic), we apply
the standard JADE method to the new multichannel coefficients.
Once the mixing matrix is estimated, the initial source maps are
obtained using the adequate inverse transform (Fig. 4).

5. Clusters restoration method — noise filtering

JADE has been used to separate the signals from four mixtures
and four sources in the presence of Gaussian noise. We have
added the expected experimental level of Gaussian noise to each
observed mixture map. In order to prevent bias induced by pix-
elisation in our simulation and detection algorithms, we overpix-
elised our observed maps, and thus pixel noise is enhanced. But
all algorithms for BSS that require whitening are sensitive to ad-
ditive noise. In order to minimise the impact of this noise at the
ICA step, we chose to convolve our observed map before JADE
with a Gaussian of optical beams width. To optimise signal re-
covery, we perform a filtering to remove the remaining noise. We
tested different methods to remove noise. Thanks to the original
simulated SZ map (without noise), we can easily compare the
results of those filterings in the next part.

5.1. Linear filtering
5.1.1. Gaussian filter

A rather common linear filtering technique uses a Gaussian filter,
generally isotropic. The standard method consists of convolving
the observed map S ops With a Gaussian window G with standard

deviation og:
S6 =G * 8 gbs. (12)

The filtering depends strongly on the value of 0. This value is
adjusted arbitrarly or based on a priori information.
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5.1.2. Wiener filter

An alternative to Gaussian filtering is Wiener filtering which is
a method that attempts to minimize the mean squared error be-
tween the original and the restored signal. Wiener filtering con-
volves the observed map S o»s With a weight function i.e. by as-
signing the following weight to each mode in Fourier Space:

N 1S (u, v)|?
w(u,v) = — A
IS (ue, v)I> + IN(u, v)I?

13)

where u, v are the spatial frequencies, 1S (u, v)[? is a model of the
map power spectrum and is in practice derived from the data.
The weight function makes it possible to attenuate or to remove
part of the frequencies if the signal-to-noise ratio is low. The
filtering depends on the model of the noise. The Wiener filter
is the optimal filter if both the signal and the noise are well
modeled as Gaussian Random Fields. This condition is not ver-
ified for SZ maps which display highly non-Gaussian features.
Nevertheless, Wiener filtering generally outperforms the simple
Gaussian filtering.

In the following paragraphs, we have tested a state of the art
non-linear filtering method in order to improve signal recovery.

5.2. Multiscale entropy method using False Discovery Rate
(FDR)

5.2.1. Maximum Entropy Method (MEM)

The Maximum Entropy Method (MEM) is commonly used in as-
tronomy for image processing (see Starck et al. 2001; Marshall
et al. 2002; Starck & Murtagh 2002, for a full description). It is
based on entropy and Bayesian methods. The Bayesian approach
provides the means to incorporate prior knowledge in data anal-
ysis. Choosing the prior is one of the most critical aspects of
Bayesian analysis. Here an entropic prior is used. In data filter-
ing, an entropy functional assesses the information content of
a data set. Among several possible definitions of entropy, the
most commonly used in image processing is the Gull & Skilling
(1991) definition:

S(k,1
Hy(S) = ; [s (k, 1) — m(k, 1) — S (k, ) In (mik z; )}

(14)

where k and [ are respectively the position and the scale index. m
is a model, chosen typically to be the sky background. H has a
global maximum at S = m. However, MEM does not allow neg-
ative values in the solution, which is a problem in experimental
SZ data analysis, where we measure fluctuations about zero. To
overcome this problem, it has been proposed (Maisinger et al.
2004) to replace H, by:

15)

Hi(S)—kZJd/(k,l) 2m S(k,l)ln( o )

where y(k, ) = +/S2(k,I) + 4m?. Here m does not play the same

role as in (14). It is a constant fixed to the expected signal rms.

To overcome the difficulties encountered by the MEM to re-
store images containing both high and low frequencies, Pantin
& Starck (1996) have suggested a definition of entropy in a mul-
tiscale framework which we describe in the next section. It has
been shown that the main drawbacks of the MEM (i.e. model
dependent solution, oversmoothing of compact objects, ... ) dis-
appear.

5.2.2. Multiscale Entropy

1. Multiscale Entropy definition: the Multiscale Entropy
method is based on the standard MEM prior derived from
the wavelet decomposition of a signal. In this section, we use
the “a trous” algorithm, with the B3-Spline filter that matches
well our cluster shapes and is fast to compute. The idea is to
consider the entropy of a signal as the sum of the information
at each scale of its wavelet transform. The information of a
wavelet coefficient is related to the probability of its being
due to noise. The Undecimated Isotropic Wavelet Transform
(UIWT) decomposes an n X n image S as in:

7
Sk, D) = Cryy + Z Wjn

=1

where k, [ are the position index and j is the scale index. C;
is a coarse or smooth version of the original image S and w;
represents the details in S at scale 27/ (see Starck & Murtagh
for details). Thus, the algorithm outputs J+1 sub-band arrays
of size n X n. We will use an indexing convention such that
J = 1 corresponds to the finest scale (high frequencies).
Denoting as H(S) the information relative to the signal and
h(w;(k, I)) the information relative to a single wavelet coeffi-
cient, the entropy is now defined as:

J n
H(S) = h(Cylk, D) + ) > h(w;(k, D)

J=1 k=1

(16)

where [ is the number of scales and » is the size of map.

2. Entropy definition: the function £ in (16) assesses the amount

of information carried by a specific wavelet coefficient.
Several functions have been proposed for 4. A discussion
and comparison between different entropy definitions can be
found in Starck et al. (2006). We choose the NOISE-MSE
entropy Starck et al. (2001) for the SZ reconstruction prob-
lem in which the entropy is derived using a model of the
noise contained in the data:

{w;(k,DI
h(wj(k, D)) = fo P, (| wik. ) | —u) (%)

where P,(w;(k,l)) is the probability that the coefficient
w;(k,l) can be due to the noise: P,(wj(k,)) = Prob(W >|
wj(k, ) ). For Gaussian noise, we have:

du (17)

xX=

Po(wjk, 1)) exp(-W?/207) dW

2 +00
V2no; fwj(k,l)

| wilk, D) |
= erfc| L2~ 18
er c( \/ZO—]‘ J (18)
and Eqgs. (17) becomes (19)
Hwk.D) 1 f"”f("”)' " [I w;(k, 1) | _u)d (19)
wik, ) =— u erfc| ———— |du.
J O'? 0 \/EO']

The NOISE-MSE is very close to the /; norm (i.e. absolute
value of the wavelet coeflicient) when the coeflicient value is
large, which is known to produce good results for the anal-
ysis of piecewise smooth images (Donoho & Elad 2003). In
the case of non-Gaussian or spatially inhomogeneous noise,
our implementation will take a noise map as input. Then we
can easily derive its entropy using the above definition.
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3. Signal and noise information: the SZ component obtained by

blind separation is swamped by noise. The following algo-
rithm assumes that the observed map can be decomposed as:

Sobs =S +N. (20)

Then, we can decompose the information contained in our
image in two components, the first one (H;) corresponding
to the non-corrupted part, and the other one (H,,) describing
a component which contains no information for us:

H(S obs(k, 1)) = Hy(S obs(k, 1)) + Hy (S obs(k, D). 2y

For each wavelet coefficient wj(k, [), we have to estimate the
fractions 4, and h; of h:

J n
H(S kD) = Y D hy(wj(k, D)

J=1 k=1

J n
+ hy(wj(k, D). (22)
Jj=1

k=1

5.2.3. Multiscale Entropy Filtering

1. Filtering: the problem of filtering the observed map S ops can

be expressed as follows. We look for a filtered map S¢ such
that the difference between S¢ and S ons minimizes the infor-
mation due to the signal (to recover all the signal) and such
that S+ minimizes the information due to the noise (we want
no noise). These two requirements are competing. A tradeoff
is necessary, because, on the one hand, we want to remove
all the noise (heavy filtering) and on the other hand, we want
to recover the signal with fidelity. In practice, we minimize
for each wavelet coefficient w;(k, [):

Wk, D) = hy(wj(k, [) = wj(k, ) + Bhn (D j(k, D)

where w;(k,[) are the wavelet coefficients of the observed
map Sobs, Wj(k,[) the wavelet coefficients of the filtered
map S¢ and S is the so-called regularization (trade-off) pa-
rameter.

. Selecting significant Wavelet coefficients: whatever the fil-
tering, the signal is always substantially modified. We want
to fully reconstruct significant structures, without imposing
strong regularization while eliminating the noise efficiently
The introduction of the multiresolution support (Murtagh
et al. 1995), helps to do so. It applies the previous regu-
larization (i.e. filtering) only on the non-significant (noisy)
wavelet coefficients (Pantin & Starck 1996). Thus the choice
of the regularization parameter is not a critical point. The
other components of the maps are left untouched. The new
Multiscale Entropy becomes:

iz(wj(k, D) = M(j, k, Dh(w(k, 1)) (23)

where M(j, k,1) = 1—M(j, k, I), and M is the “multiresolution
support” defined as:

. _J 1 ifwjk,I)is significant
Mk D ‘{ 0 if w(k, I) is not significant (24)
M describes, in a Boolean way, whether the data con-
tains information at a given scale j and at a given posi-
tion (k, ). w;(k, 1) is said to be significant if the probability
that the wavelet coefficient is due to noise is small. In the
case of Gaussian noise, a coefficient w;(k, /) is significant if

lwj(k, )| > ko j, where o is the noise standard deviation at
scale j, and k is a constant. Without an objective method
for selecting the threshold, it is adjusted arbitrarly, generally
taken between 3 and 5 (Murtagh et al. 1995).

3. Selecting significant Wavelet coefficients using the FDR: the
False Discovery Rate (FDR) is a new statistical procedure
by Benjamini & Hochberg (1995) which offers an effec-
tive way to select an adaptative threshold to compute the
multiresolution support . This technique has been described
by Miller et al. (2001); Hopkins et al. (2002); Starck et al.
(2006) with several examples of astrophysical applications.
The FDR procedure provides the means to adaptively con-
trol the fraction of false discoveries over total discoveries.
The FDR is given by the ratio (25), that is, the proportion of
declared active pixels which are false positives:

Vi
D,

where Vj, is the number of pixels truly inactive declared ac-
tive, and D, is the number of pixels declared active. The FDR
formalism ensures that, on average, the False Discovery Rate

is no larger than @ which lies between 0 and 1. This proce-
dure guarantees control over the FDR in the sense that:

FOR = (25)

E(FDR) < %a <a. (26)

The unknown factor Tv is the proportion of truly inactive pix-
els. A complete description of the FDR method can be found
in Miller et al. (2001). In Hopkins et al. (2002) and Starck
et al. (2006), it has been shown that the FDR outperforms
standard method for source detection. In this application, we
use the FDR method in a multiresolution framework (see
Starck et al. 2006). We select a detection threshold 77; for
each scale. The different values of @ at each scale were set as
in Starck et al. (2006) and left untouched during our work:
aj=ap* 27/ where g = 0.0125.

A wavelet coefficient w;(k, [) is considered significant if its
absolute value is larger than 77 as seen below.

4. Multiscale Entropy Filtering algorithm: assuming Gaussian
noise, the Multiscale Entropy restoration method reduces
to finding the image S¢ that minimizes J(S¢), given the
map S ,ps Output of source separation with:

” Sobs =S¢ ”2
2072

J n
+B Z Z hn((WS £)jx0) (27)

J=1 &l

J(Sp) =

where o, is the noise standard deviation in S s, J is the
number of Wavelet scales, ‘W is the Wavelet Transform op-
erator and /1,(w ;) is the multiscale entropy only defined for
non-significant coefficients (outside the support selected by
the FDR thresholding). Full details of the minimization al-
gorithm can be found in Starck et al. (2001).

The results presented in the next section are obtained on a
SZ map with a uniform Gaussian white noise but the method
still holds for a non-uniform Gaussian noise over the map.

6. Cluster detection
6.1. Extraction algorithm — SExtractor

We use a public source software for extraction of SZ-Cluster
candidates from the filtered maps: SExtractor (Bertin 2003).
SExtractor turned out to be fast, convenient, and easy to config-
ure. It handles conveniently Cluster Extraction, with observed
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sizes ranging from a few pixels up to angular diameters of a
degree. We used the Noiseless configuration, assuming that our
filters are efficient enough for this assumption to be valid. We
mainly use the source identification capability and the deblend-
ing algorithms that be very useful when extracting large-mass
clusters. In order to recover as many candidates as possible, we
set DEBLEND_MINCONT = 0 and DETECT_MINAREA =5
(the smallest cluster size after optical beam dilution is over 9 pix-
els). Photometry of Cluster candidates is done using SExtractor’s
FLUX_AUTO Mode. SExtractor photometry performs very well
on our data: the recovery error on integrated Compton flux Y
is smaller than 4 percent, for Y larger than 2.5 x 10~"%sr (id
3 x 1073 arcmin?). Thus SExtractor outputs a catalog of Cluster
candidates with their position, flux and size. This catalog is
likely to be contaminated by false detections due to residual
noise, or spurious point sources that have survived the Source
Separation step. While processing observed data, we will have to
live with this contamination. Using simulations, we quantify in
the following the SZ-Cluster selection function (Completeness)
and this contamination.

6.2. Completeness and Purity of the recovered catalog

In order to identify true SZ Clusters from contamination in our
catalog, we used an association criterion: for each candidate
cluster, we scan the generated cluster catalog (see Sect. 2.4) for
the closest cluster and store the angular distance between the
two. Doing so, we observed a distribution with a strong peak at
a distance smaller than 4 pixels (3.5 arcmin), corresponding to
the true detected clusters, and a long flat tail corresponding to
random associations. We then decided to tag candidates as true
when their distance to the closest cluster in the simulated cata-
log is less than 4 pixels, neglecting the small fraction of random
associations passing this test. This criterion can and will be en-
hanced using an improved distance involving recovered cluster
flux and spatial distance.

Purity is defined as the ratio of true detections to the total
number of detections:

true detections

purity = (28)

total detections‘

Completeness is defined as the ratio of true detections to the total
number of clusters in the simulation:

true detections

completeness = (29)

Number of simulated clusters

Completeness and purity are the main performance criteria of a
detection chain and should be maximised. We will use them to
compare detection chains in the results section.

7. Results

In the following, we will quantify the performance of our algo-
rithm chain in two steps. We will focus on the SZ map recon-
struction: first the source separation step with JADE and then
the additional FDR-MultiScale Entropy Method (ME-FDR) fil-
tering step. The ME-FDR filter will be compared first to the
classical Gaussian and Wiener filters. Then we will discuss as-
sumptions and performances of our method relative to the one
published in Pierpaoli et al. (2005).

The comparison between two methods for astrophysical im-
age reconstruction can be performed in several ways. One may
initially investigate the characteristics of residuals. This tech-
nique is typically used by mathematicians. An astrophysicist

S. Pires et al.: SZ cluster reconstruction

may be more inclined to assess how well the objects of interest
(SZ cluster of galaxies, in this case) are recovered: how many of
them are found, and with what precision. Finally, a cosmologist
would want to know to what extent the reconstruction procedure
limits the ability to estimate cosmological parameters. This im-
plies consideration of the purity and completeness as functions
of cluster mass threshold, as well as precision in the reconstruc-
tion of the (central or integrated) Compton parameter for such
masses. In what follows, we will compare the map’s reconstruc-
tion error. Then we will focus on the SZ Cluster detection per-
formance of the full detection chain, by comparing the recovered
source catalogs to the Simulated SZ cluster catalog, in terms of
purity and Completeness as defined in Sect. 6.2. This allows a
parameter-free quantification of performances and trade-offs in-
volved in cluster detection, being mostly independent of pho-
tometry details. Note also that the cluster detection efficiency
does not convey information on the spread of the input/output y
parameter. A more detailed description of the selection function,
contamination, a discussion on photometry issues and methods
and of cosmological implications will be given in a following
paper (Juin et al. 2005).

7.1. JADE

Figure 4 shows the recovered SZ map, after source separation.
JADE performs very well on our maps: the SZ signal that sub-
dominant at all scales now appears clearly. No obvious residuals
from other astrophysical sources are seen. JADE assumes and re-
quires that input data have zero mean. This point is easy to meet
in bolometer experiments since our bolometer cameras measure
flux variations while the telescope scans the sky.

Second, JADE loses calibration information while process-
ing data. Sky components are separated, but calibration of each
output map has to be restored. It is of common observational pro-
cedure to calibrate a survey on the brightest sources in the field
(which can be observed in follow up experiments). We chose in
the following to calibrate our SZ maps using the 100 brightest
clusters in the field. We average their recovered integrated flux
(SExtractor FLUX_AUTO mode), and scale the map to match
the average integrated flux of the 100 brightest simulated clus-
ters. In the following, before computing statistical tests, all the
maps have been normalised in this way. We will suppress this
feature by taking into account prior knowledge (the optical spec-
tral dependance of the SZ component) in future work.

Third, it is very important to minimise noise in the observed
maps before source separation (JADE). JADE was designed to
run on noiseless data. And it is quite sensitive to noise. We
chose to apply to the four observed maps, before JADE, a simple
Gaussian filter with the widths of the optical beams. If the noise
level is not reduced before JADE, then the recovered mixing ma-
trix will be inaccurate, and the SZ Cluster map will be polluted
by the remains of the other astrophysical components, inducing
efficiency loses. Once the mixing matrix has been carefully esti-
mated, one can apply it to the unfiltered observed maps to extract
the observed SZ cluster map, and then apply an optimised filter
and cluster detection algorithms to extract the cluster catalog.

We characterize in our simulations the residual error on the
estimated SZ map after component separation. The computed
error map has a variance of 0.888, a skewness of 0.0019, a
kurtosis of 0.0156 and is essentially white noise with no obvi-
ous visible structures. The foreground contribution to the noise
map has a variance of 0.00273 (skewness of 0.0019, kurtosis
of 0.0156) and shows that the component separation is very ef-
ficient on our simulated data, and strengthens the assumption of
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Fig. 5. Input SZ cluster map (upper left) map, and the 3 maps as recovered by Completeness and (upper right) Gaussian filtering o = 2.5 arcmin®,

2

bottom left, Wiener filtering and bottom right ME-FDR method. We chose to plot 25 deg? maps, to point out differences that do not appear on

400 deg® maps.

Gaussian noise made in the subsequent non-linear filtering and
data processing steps. Should the experimental noise be signifi-
cantly non-Gaussian, the presented detection chain could still be
used. The price to pay will be a lack of statistical efficiency. The
overall performance of the detection chain has to be assessed by
means of simulations as shown in our paper.

7.2. Filtering method performances

Additional filtering is then applied to recover smaller clusters.
We now quantify performances of the ME-FDR filter relative to
the simpler filtering methods (Gaussian and Wiener). We chose
to show results obtained with maps processed by JADE running
in wavelet space, our best method. We will quantify the results
by computing an error map, and its properties. Then we will
compare the output of the extraction procedures using the three
filters.

7.2.1. SZ map reconstruction

Figure 5 shows the maps after two classical filtering methods
and our FDR multiscale entropy method. All maps look simi-
lar in nominal noise conditions of such ambitious experiments
as future SZ Cluster survey, only statistical tests can discrim-
inate between the 3 filtering methods. We computed the error
map (filtered map, input map subtracted) for each filtered op-
tion. Computing the rms of the error maps divided by the rms

of the simulated SZ map (dimensionless rms) leads to 0Gauss =
0.617, owiener = 0.602 and ogpr = 0.570. The CPU time on a
1024 x 1024 pixels map was fGayss = 4 S, twiener = 26 s, and
trpr = 240 s. Thus our filtering algorithm is reasonably fast.

A more accurate test is to plot (see Fig. 6) the dimension-
less standard deviation of error maps (filtered map, input map
subtracted) at each scale of the wavelet decomposition:

O Err,L

(30)

gL =
O Sim,L

where o, 0gx . and osim ., are the standard deviation of the
error map and the input SZ map, selecting the scale L of our
wavelet transform. ME-FDR method performs better than sim-
pler filters at all scales. Running our algorithms while changing
the noise level showed that the higher the noise level, the larger
the advantage in using our ME-FDR filtering compared to sim-
ple Gaussian, or Wiener filters.

7.2.2. Full extraction chain

Then considering our goal of detecting clusters, the relevant test
is to compare the recovered catalog to the simulated cluster cat-
alog, the input of the simulated map. Observed cluster catalogs
are extracted and processed as explained in Sect. 6.2. In a fu-
ture paper, we will present the selection function, contamina-
tion, a discussion on photometry issues and constraints on cos-
mology. In this paper where we discuss detection procedures the
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Fig. 6. Dimensionless standard deviation of error maps (filtered map, in-
put SZ map subtracted) at each scale of the wavelet decomposition, for
the three studied filters options. ME-FDR filtering method (red squares)
is a significant improvement compared to simpler filtering methods
(Gaussian, black dots and Wiener, blue triangles).

relevant information is the curve of purity versus completeness
while raising the threshold on the cluster observed flux (Fig. 7).
As expected, the higher the threshold, the higher the purity, and
the lower the completeness. We see once more that ME-FDR out
performs the other filter options, allowing greater completeness
at any required level of purity.

7.3. Comparison with another Wavelet-based methodology

In what follows, we will compare the method described above
with the one presented in Pierpaoli et al. (2005). We will com-
pare the general performance of the two methods in reconstruct-
ing the SZ images and then assess the global purity and com-
pleteness, as defined in Sect. 6.2. As we are not assessing here
the goodness of the Y parameter reconstruction, a full compari-
son with the Pierpaoli et al. (2005) results (i.e. purity and com-
pleteness as a function of cluster mass threshold, spread of the
input/output Y parameter relation ) is not possible at this time.

We will first describe the Pierpaoli et al. (2005) method,
and then preform the comparison according to the mentioned
criteria.

7.3.1. Description of the alternative image reconstruction
method

The method presented in Pierpaoli et al. (2005) is formally a
non-blind component separation that has been optimized to re-
cover galaxy clusters. In this method component separation and
the deconvolution of the beam effect are done in one step by
computing the Bayes Least Square estimate under a Gaussian
scale mixture model of “neighborhoods” of wavelet coefficients.
These “neighborhoods” are sets of wavelet coefficients asso-
ciated with the same location and that behave in a coherent
manner. The optical frequency dependency of each component,
the beam size and the noise level for each observation are as-
sumed to be known. The procedure relies on the possibility
to discriminate between the different components (CMB, clus-
ters, infra-red point sources and galaxy dust) by modeling the
joint probability of these neighborhoods by Gaussian scale mix-
tures (see Pierpaoli et al. 2005 for details). A Gaussian scale
mixture is a random vector x = +/zZu, where u is a Gaussian
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Fig.7. Purity versus completeness for the three filtering options pre-
sented in this paper. Completeness + ME-FDR (red squares) out per-
forms the other filter options Gauss (black dots) and Wiener (blue tri-
angles), allowing more completeness at any required level of purity. In
the example presented here we simulated 9942 clusters according to
ACDM distribution, with a threshold value on Ycomp of 2 X 10712 st:
note that the completeness is normalized to this total number of sim-
ulated clusters. The insert is a zoom on the high purity region of the
graph.

vector independent of the scalar random variable z — allowed to
be non-Gaussian.

The model is determined by the probability distribution p,
and the covariance matrices of u. The covariance matrices have
to be adjusted at each scale of the wavelet decomposition as
a function of the resolution of the observed maps. They are
computed prior to running the algorithm on simulated maps of
each component at the correct resolution. The probability dis-
tribution p; is also component-dependent. Pierpaoli et al. (2005)
investigate several different possibilities for p,, showing that dif-
ferent distributions lead to very different results in the mass re-
construction. For example, the Gaussian assumption (Pierl in
the following) is most able to recover the maximum number of
clusters but is inefficient in reconstructing the appropriate central
intensity of these clusters; a non-Gaussian distribution modeled
on the simulated SZ map (Pier2) is most able to recover the in-
put Comptonisation parameter for bright clusters while missing
the reconstruction of very low intensity ones.

In Pierpaoli et al. (2005) the focus is on reconstructing the
signal of the most massive clusters, since those are the ones
which are likely to lead to the most precise constraints on cosmo-
logical parameters. To this aim, the distribution Pier?2 is prefer-
able to Pierl. As this paper is more focused on cluster detection
efficiency (also including low-intensity clusters) and disregards
the precision of the reconstruction, we will consider here the
Gaussian prior for p, (Pierl in what follows). A Gaussian prior
for p, reduces the estimator to a local Wiener filtering in Wavelet
space, as all information about the signal non-Gaussianity is lost.
The result of Pierpaoli et al. (2005) is a set of beam-deconvolved
maps (one for each physical component considered) which can
be directly compared with the input ones, or with other method’s.
The cluster’s y map is used here for comparison. As for cluster
detection, we will present results obtained with the code used in
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Fig. 8. Maps computed by two of the algorithms (25 deg? size). Left is the input SZ Cluster map. Centered is the map output of completeness after
ME-FDR filtering. Right is the map output of the Pierpaoli et al. method, using the Gaussian assumption for the probability distribution.
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Fig. 9. Standard deviation versus scale for SZ cluster maps recovered
by the completeness ME-FDR method (red squares) and Pierpaoli et al.
Pierl method (blue triangles). The top axis gives the wavelet’s typical
scale (in arcmin) corresponding to the index on the bottom axis.

Pierpaoli et al. (2005), as well as the SExtractor code adopted
here.

7.3.2. Map comparison

In Fig. 8 we present the maps that will be used for the com-
parison. While both maps recover well the intense clusters,
the Pierl processed map shows more low-intensity structure
than the ME-FDR map. This could be due to a better recon-
struction of low—intensity clusters, as well as undesirable noise.
Computing the Pierl error map rms, we find opi,; = 0.589,
which should be compared ME-FDR. An analysis of the resid-
uals’ normalised standard deviation for different wavelet scales
(shown in Fig. 9) shows that the two methods mainly differ at an-
gular scales equal and above 14 arcmin. The major contribution
to the difference in the total rms is therefore not associated with
the typical (low mass) cluster scale, but to much larger ones.

7.3.3. Detection efficiency

We compare here the detection efficiency defined in Sect. 6.2.
For consistency with our detection chain (see Sect. 7.1), we
recalibrate the Pierpaoli maps so that the average integrated
Compton flux of the 100 brightest clusters matches the value ob-
served in the input SZ cluster map (small correction). Figure 10
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Fig. 10. Purity versus completeness curves for the four software de-
tection chains studied in the following. We use red squares for
Completeness-FDR+SExtractor, black dots for Pierl and blue trian-
gles for Pier2 with peak detection, black diamonds for Pierl using
SExtractor for source detection. The inserted plot is a zoom on the high
purity region of the graph.

presents the curves of completeness versus purity for complete-
ness FDR-ME + SExtractor, Pierl, Pier2 using the peak finding
algorithm presented in Pierpaoli et al. (2005) to detect clusters
and the Pier]l method using SExtractor (PierNew). As expected,
Pier2 is not as good as the other methods at all purity, since
the probability p, used here is optimized for accurate recovery
of the most massive cluster’s central intensity and not for clus-
ter detection. Pierl (the Gaussian distribution) improves Pier2
results, especially when SExtractor is used to detect the clus-
ters (PierNew). At low threshold (low purity) PierNew recovers
more clusters than ME-FDR. The low-intensity structures visi-
ble in Fig. 8 contain a sizable number of clusters. As complete-
ness FDR-ME is designed to filter out noise better, it also filters
out some low-intensity clusters which then no longer contribute
to the detection rate. At high purities, PierNew and complete-
ness FDR-ME provide equivalent performance, given the statis-
tical uncertainly of the small number of clusters involved in the
high-threshold cut.
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8. Conclusion

We simulated observed sky maps at frequencies of a typical
large multiband bolometric SZ-Cluster survey. This simulation
includes the main features of the “background”: point sources
with varying spectral index and brightest sky components. We
implemented a complete software detection chain, working in
3 steps. First we use a source separation algorithm that is based
on a Wavelet transform and the JADE-ICA algorithm. Then,
we filter the SZ-Cluster map using an FDR-Multiscale Entropy
method. Finally, we detect the clusters on the filtered maps us-
ing the SExtractor software in a noiseless configuration. Despite
several simplifying assumptions detailed in the paper, our detec-
tion chain proves to be very efficient, yielding 25% of clusters of
mass larger than 10'* Mg, detected with 90% purity. We compare
our detection algorithm to a previously published method based
on wavelets (Pierpaoli et al. 2005). We restrict our comparison
criteria to the global detection efficiency, as defined in Sect. 6.2.
We find a detection efficiency in the high-purity region compa-
rable to the Gaussian probability case (Pierl method), which is
the model that provides the best performance for this comparison
among those presented in Pierpaoli et al. (2005). The ME-FDR
detection efficiency slightly degrades at lower cluster intensity
than the Pierl method, as ME-FDR filters out low-intensity
clusters during the denoising procedure. These results, however,
are impressive as ME-FDR, unlike Pierpaoli et al. (2005) meth-
ods, is a blind algorithm that makes no assumption on the phys-
ical properties of the signal to be recovered.

There remain few open issues concerning the use of the pro-
posed detection chain to process upcoming real observations.
Once configured, the detection chain was used without “close su-
pervision”. Also, the wavelet transform used jointly with JADE
was chosen a priori. JADE as well as the ME-FDR filter were run
as black box algorithms, while the SExtractor parameters were
set to fairly standard values, since the input data maps were pre-
filtered. We also left out the smallest scales in the ME-FDR maps
to reduce high frequency spatial noise. If the experimental data
are not as clean as in our simulations, how will these simplifica-
tions affect the result?

If the noise level is increased or if the noise displays strong
“striping” (as a result of low frequency noise in the bolometer
timelines), JADE is no longer appropriate for the component
separation step. Hence the experimental data processing will
have to include a good “destriper” in the map-making calcula-
tions. The proposed ME-FDR filter proved to be more robust
than the Gaussian or Wiener filter, when the noise level is in-
creased. Our last concern is that the Galactic Dust Maps in our
simulations are generated as spatially Gaussian, which is not true
of observed “Galactic dust clouds”. But the optical spectrum of
Galactic Dust being very different from SZ clusters, we foresee
that ICA will separate these features efficiently.

We will focus on improving the source separation step. We
will include optical spectrum knowledge in the source separation
algorithms. This will allow us to overcome the intrinsic scaling
indeterminacy of the blind linear mixture model and so prevent
loosing track of map calibration as in Sect. 7.1. Additionally,
JADE must run on noise-free data. We will design our source
separation algorithm to handle noisy data. We studied the per-
formance of our method in terms of detection efficiency. A fur-
ther assessment in terms of reconstruction accuracy and pho-
tometry is necessary since these are valuable for cosmology. Of
course detection efficiency doesn’t provide all the information
we want to know in order to do cosmology, as the accuracy of
the reconstruction and photometry issues are also important. In a

S. Pires et al.: SZ cluster reconstruction

following paper (Juin et al. 2005), we will use these algorithms
to compute selection functions, contaminations and constraints
on cosmology foreseen for the upcoming bolometric SZ-cluster
surveys.
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