
The Astrophysical Journal, 723:1507–1511, 2010 November 10 doi:10.1088/0004-637X/723/2/1507
C© 2010. The American Astronomical Society. All rights reserved. Printed in the U.S.A.

WEAK LENSING MASS RECONSTRUCTION: FLEXION VERSUS SHEAR

S. Pires
1

and A. Amara
2

1 Laboratoire AIM, CEA/DSM-CNRS-Universite Paris Diderot, IRFU/SEDI-SAP, Service d’Astrophysique, CEA Saclay,
Orme des Merisiers, 91191 Gif-sur-Yvette, France

2 Department of Physics, ETH Zurich, Wolfgang-Pauli-Strasse 16, CH-8093 Zurich, Switzerland
Received 2010 June 28; accepted 2010 September 9; published 2010 October 22

ABSTRACT

Weak gravitational lensing has proven to be a powerful tool to map directly the distribution of dark matter in
the universe. The technique, currently used, relies on the accurate measurement of the gravitational shear that
corresponds to the first-order distortion of the background galaxy images. More recently, a new technique has been
introduced that relies on the accurate measurement of the gravitational flexion that corresponds to the second-order
distortion of the background galaxy images. This technique should probe structures on smaller scales than that of
shear analysis. The goal of this paper is to compare the ability of shear and flexion to reconstruct the dark matter
distribution by taking into account the dispersion in shear and flexion measurements. Our results show that the
flexion is less sensitive than shear for constructing the convergence maps on scales that are physically feasible for
mapping, meaning that flexion alone should not be used to do convergence map reconstruction, even on small scales.

Key words: dark matter

1. INTRODUCTION

Weak gravitational lensing is a powerful tool for mapping
the distribution of dark matter since it measures the matter
distribution directly without the need to make assumptions about
the way that light traces mass. Most approaches focus on shear,
which is the first-order distortion of the background galaxy
images caused by the bending of light from large-scale structure
(LSS). Several methods have been developed to reconstruct the
projected mass distribution from the observed shear field (e.g.,
Kaiser et al. 1993; Seitz et al. 1998; Bridle et al. 1998; Marshall
et al. 2002; Starck et al. 2006).

Recently, weak lensing techniques have been extended to
include higher-order distortions of background galaxies to
improve the constraints on the mass distribution on small
scales. The measurement of the second-order distortion of the
background galaxy images by means of the galaxy octopole
moments was introduced by Goldberg et al. (2002). This second-
order image distortion corresponding to a third-order effect in
gravitational potential (Bacon et al. 2006) is responsible for
the weakly skewed and arc-like appearance of lensed galaxies
and is expected to probe variations of the gravitational potential
field on smaller scales than those accessible by shear analysis
alone. Despite the fact that the measurement of the octopole
moments is more complex, their intrinsic dispersion due to the
random shapes of galaxies is expected to be much smaller than
the intrinsic ellipticity dispersion. In Goldberg et al. (2005),
the method has been further developed by using the shapelet
formalism to estimate the second-order lensing effect. At the
same time, a related approach using the galaxy sextupole
moments has also been explored (Irwin et al. 2003, 2005,
2006). In Okura et al. (2007), the authors suggest a new
method called HOLICs to measure the second-order lensing
effect based on the measurement of the octopole and higher-
order moments. In Goldberg et al. (2005), the second-order
lensing effect was detected for the first time and the term
“flexion” has been adopted to describe it. The formalism to
reconstruct the projected mass distribution from the flexion
measurements was introduced by Bacon et al. (2006) for the first
time.

This paper is structured as follows. In Section 2, we review
the basis of the weak gravitational lensing and the flexion
formalism. We then proceed with an introduction to the mass
inversion problem from shear and flexion measurements. In
Section 3, a comparison between shear and flexion is conducted
in order to compare their ability to reconstruct the convergence
map in the presence of noise. In Section 4, we have a discussion
about published results on mass map reconstruction from
flexion. In Section 5, we conclude on the implications of our
results on future flexion studies.

2. REVIEW OF WEAK GRAVITATIONAL LENSING
FORMALISM

2.1. Shear Formalism

2.1.1. The Second Order of the Gravitational Lensing Potential ψ

Shear γi(θ ) with i = 1, 2 is measured from the shapes of
galaxies at positions θ in an image. The shear field γi(θ ) can
be written in terms of the lensing potential ψ(θ ) as (see, e.g.,
Bartelmann et al. 1999)

γ1 = 1

2

(
∂2

1 − ∂2
2

)
ψ,

γ2 = ∂1∂2ψ, (1)

where the partial derivatives ∂i are with respect to θi . The
convergence κ(θ ) can also be written in terms of the lensing
potential as

κ = 1

2

(
∂2

1 + ∂2
2

)
ψ. (2)

The convergence κ corresponds to the projected (normalized)
mass distribution.

The left panel of Figure 1 shows a simulated convergence
map derived from ray-tracing through N-body cosmological
simulations (Teyssier 2002). The cosmological model is taken
to be a concordance ΛCDM model with parameters ΩM = 0.3,
ΩΛ = 0.7, h = 0.7, and σ8 = 0.9. The simulation contains
2563 particles with a box size of 160 h−1 Mpc. The resulting
convergence map covers 2◦×2◦ with 512 × 512 pixels and
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Figure 1. Three convergence maps have been smoothed with a Gaussian kernel of 15′′. Left: the simulated convergence map κ for a ΛCDM model. The field is
2◦ × 2◦ and is obtained from N-body simulations with 2563 particles for a blocksize of 160 h−1 Mpc. Middle: the convergence map κn reconstructed from noisy
shear measurements corresponding to space-based observations (σγ

ε = 0.3 and ng = 50 galaxies arcmin−2). Right: the convergence map κn reconstructed from noisy
flexion measurements corresponding to space-based observations (σF

ε � 0.04 arcsec−1 and ng = 50 galaxies arcmin−2).

assumes a galaxy redshift of 1. The typical standard deviation
values of κ are thus of the order of a few percent.

2.1.2. Shear Inversion Problem

The shear mass inversion problem consists of reconstructing
the convergence field κ(θ ) from the measured shear field γi(θ )
by inverting Equations (1) and (2). There are a number of
approaches for doing this in the literature, and a comparison
between the different local inversion methods has been carried
out by Seitz et al. (1996).

To simplify the comparison with flexion, we will use the
global shear inversion method that is presented in Starck et al.
(2006) because a similar formalism exists for flexion. For this
purpose, we take the Fourier transform of the previous equations
and obtain

γ̂i = P̂i κ̂, i = 1, 2, (3)

where the hat symbol denotes the Fourier transforms and

P̂1(k) = k2
1 − k2

2

k2
1 + k2

2

,

P̂2(k) = 2k1k2

k2
1 + k2

2

. (4)

The ideal shear maps γi without noise can then be estimated
from the convergence map κ .

By noting that P̂ 2
1 + P̂ 2

2 = 1, an estimator of the mass
distribution κ can easily be derived by inversion

κ̂n = P̂1γ̂1 + P̂2γ̂2. (5)

The deformation induced by weak gravitational lensing on a
single galaxy is very weak compared to its intrinsic ellipticity.
The lensing signal therefore must be extracted from the galaxy
image ellipticity by assuming that the intrinsic ellipticity is
randomly oriented in the absence of gravitational lensing. The
observed shear γi,n is then obtained by averaging over a finite
number of galaxies and, therefore, is noisy. The relationship
between the observed data γ1,n, γ2,n binned in pixels of area A

and the true convergence map κ is given by

γi,n = Pi ∗ κ + N
γ

i , (6)

where N
γ

1 and N
γ

2 are white Gaussian noise with zero mean
and standard deviation σn � σ

γ
ε /

√
Ng , where Ng = ngA is

the average number of galaxies in a pixel (ng is the average
number of galaxies per area unit and A is the pixel area in the
same unit). The rms shear dispersion per galaxy σ

γ
ε arises both

from measurement errors and the intrinsic shape dispersion of
galaxies. In this analysis, we will assume σ

γ
ε � 0.3 as is approx-

imately found for ground-based and space-based weak lensing
surveys (Brainerd e al. 1996). Typical values for the galaxy sur-
face density for weak lensing are ng ∼ 10 galaxies arcmin−2

for ground-based surveys and ng ∼ 50 galaxies arcmin−2 for
relatively deep space-based surveys. In the presence of noise,
the estimator of the convergence κ is

κ̂n = P̂1γ̂1n + P̂2γ̂2n. (7)

2.2. Flexion Formalism

2.2.1. The Third Order of the Gravitational Lensing Potential

As for shear, the flexion estimation can be calculated with
shapelets (Goldberg et al. 2005; Bacon et al. 2006; Massey et al.
2007) or by directly measuring the higher-order moments of the
galaxy image (Okura et al. 2007). Flexion has two components,
F and G. A third-order inversion can be performed to recover
the convergence field κ(θ ) from the flexion field F or G. It has
been shown by Okura et al. (2007) that the measurements of
the second component of flexion G are more noisy than the first
component F . In what follows, we will only be interested in F .

The flexion Fi(θ ) is derived from the second-order shape of
galaxies at positions θ in the image. The flexion field Fi(θ ) can
be written in terms of the lensing potential ψ(θ ) as

F1 = 1

2

(
∂3

1 + ∂1∂
2
2

)
Ψ,

F2 = 1

2

(
∂3

2 + ∂2
1 ∂2

)
Ψ. (8)
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2.2.2. Flexion Inversion Problem

The flexion mass inversion problem consists of reconstructing
the convergence field κ(θ ) from the measured flexion field Fi(θ )
by inverting Equations (2) and (8). The Fourier transform of the
relation Fi = ∂iκ gives

F̂1 = −ik1κ̂(k),

F̂2 = −ik2κ̂(k). (9)

Then, an estimator of the convergence κ can be estimated as

κ̂ = ik1

k2
1 + k2

2

F̂1(k) +
ik2

k2
1 + k2

2

F̂2(k). (10)

In the same way as for shear maps, a measurement error can
be associated with the flexion maps. The relations between the
flexion measurements F1,n, F2,n and the convergence map κ are
given by

Fi,n = ∂iκ + NF
i , (11)

where NF
1 and NF

2 are the noise contributions with a mean
equal to zero and an rms equal to σn = σF

ε /
√

Ng . The flexion
measurement error σF

ε is between σF
ε = 0.01 arcsec−1 (at

z = 0) and σF
ε = 0.1 arcsec−1 (at z = 1). We choose

σF
ε � 0.04 arcsec−1 as in Bacon et al. (2006). In our study,

the distribution of the flexion measurements is assumed to be
Gaussian, although it is not the case in real data. However, this
will not affect the conclusions.

In the presence of noise the estimator of the convergence κ is

κ̂n = ik1

k2
1 + k2

2

F̂1,n(k) +
ik2

k2
1 + k2

2

F̂2,n(k). (12)

3. COMPARISON

Flexion should dominate over shear on small scales (Bacon
et al. 2006) since flexion effects are higher-order deformation
of the gravitational potential. Small-scale mass distributions
should therefore be covered with higher fidelity with flexion.
But what happens when measurement errors are added to the
data?

3.1. Shear Noise Properties

The intrinsic ellipticity and the measurement errors on the
shear estimation of background galaxies result in an additive
Gaussian noise on each shear component (see Equation (6)).
The standard dispersion on the shear measurement is σ

γ
ε � 0.3

(Brainerd e al. 1996). The noise on the convergence map κn is
an additive noise Nγ :

κ̂n = κ̂ + N̂γ , (13)

where
N̂γ = P̂1N̂1

γ
+ P̂2N̂2

γ
. (14)

The noise N̂ in κ̂n is still white, Gaussian, and uncorrelated.
The noise is not amplified by the inversion, but κ̂n can be
dominated by noise if N̂ is large, which happens in practice.

To simulate space observations, a realistic white Gaussian
noise has been added to simulated shear maps. The reconstructed
convergence map is dominated by a white Gaussian noise (σn =
0.181). The middle panel of Figure 1 shows the reconstructed

Figure 2. Noise power spectrum on the convergence map from shear measure-
ments (in black) and from flexion measurements (in red) with realistic disper-
sions (σγ

ε = 0.3 and σF
ε = 0.04 arcsec−1) and assuming that the galaxy density

is the same for shear and flexion measurements (ng = 50 galaxies arcmin−2).

convergence map smoothed by a Gaussian kernel of 15′′. The
smoothing is used to enable the detection of some clusters.

3.2. Flexion Noise Properties

The measurement errors on the flexion estimation of back-
ground galaxies result in an additive Gaussian noise on each
flexion component Fi (see Equation (11)). The dispersion on
the flexion measurement that comes essentially from the flexion
measurement errors is chosen to be σF

ε � 0.04 arcsec−1. The
noise appears on the convergence map κn as an additive noise
N:

κ̂n = κ̂ + N̂F , (15)

where

N̂F = ik1N̂
F
1 + ik2N̂

F
2

k2
1 + k2

2

. (16)

The flexion measurement errors then result in an additive colored
Gaussian noise whose power is a function of 1/k. The right
panel of Figure 1 shows a convergence map recovered from
the simulated flexion measurements Fi,n. As expected, the
convergence map appears contaminated by a colored Gaussian
noise whose power is inversely proportional to the frequency
k. No cluster is detected despite the fact that the map has been
smoothed by a Gaussian kernel.

3.3. Comparison Between Shear Noise and Flexion Noise

In this paper, we compare the ability of flexion and shear to
reconstruct the dark matter distribution. Since flexion dominates
on small scales, we calculate here the scale at which flexion
becomes dominant over shear. To do this, in Figure 2, we
compare the noise power spectrum on the convergence map
obtained from shear measurements (solid black line) to the one
obtained from flexion measurements (solid red line). The two
solid lines have been obtained with realistic values of dispersion
for space-based observations. The crossing of these two curves
gives us the scale at which flexion becomes dominant over shear.
As expected, the shear noise power spectrum is flat and the
flexion noise power spectrum is inversely proportional to the
frequency k.
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Relations (14) and (16) can be used to derive the analytic
shear and flexion noise power spectrum:

|N̂γ |2 ∝
⎛
⎝ σ

γ
ε√
N

γ
g

⎞
⎠

2

and

|N̂F |2 ∝
⎛
⎝ σF

ε√
NF

g k

⎞
⎠

2

. (17)

If the average number of galaxies in a pixel (Ng) is kept the same
between shear and flexion measurements, the intersection of the
two noise power spectra kT is given by kT = σF

ε

σ
γ
ε

. If the standard

values are used for shear and flexion dispersion (σγ
ε = 0.3 and

σF
ε = 0.04 arcsec−1, kT = 0.1333 arcsec−1), this corresponds

to a scale of 7.5 arcsec. Thus, the flexion becomes interesting
for scales smaller than 7.5 arcsec. To have at least a mean of
1 galaxy per pixel (with a pixel size of 7.5 arcsec), the galaxy
density should be significantly larger than ng ∼ 70 galaxies
arcmin−2. Even if one has this galaxy density, all the pixels will
not have a galaxy that falls inside it, and one will have to deal
with the problem of missing data.

Concerning the poor reconstruction of the convergence map
from flexion (right panel of Figure 1), we note that attention has
to be paid to the resolution of our simulation. The resolution of
the simulation that we use for the study is 14 arcsec, but many
of the scales of interest for flexion are below this resolution.
However, even with better resolution simulations these scales
are not reachable when mapping with real data—especially if
the missing data problem is not resolved.

4. DISCUSSION ABOUT PUBLISHED RESULTS ON
CONVERGENCE RECONSTRUCTION FROM FLEXION

In the literature, several papers have tried to use the flexion
to reconstruct the convergence map. Here is a discussion about
the different studies.

4.1. Non-parametric Convergence Map Reconstruction

Reconstructions of convergence maps using flexion measure-
ments were first introduced by Bacon et al. (2006). In their pa-
per, a (non-parametric) convergence map is reconstructed from
simulated flexion measurements. The simulations have a galaxy
density of ng = 60 galaxies arcmin−2 and a reported flexion
dispersion of σF

e = 0.04 arcsec−1. However, an error in the re-
construction code meant that the true flexion dispersion was σF

e= 0.007 arcsec−1, which would only be achievable for the high-
est signal-to-noise galaxies3. Figure 3 compares the noise power
spectrum on the convergence map obtained from realistic shear
measurements (solid black line) and from realistic flexion mea-
surements (solid red line). The dashed red line gives the result
from the optimistic flexion measurements used by Bacon et al.
(2006; σF

e = 0.007 arcsec−1 and ng = 60 galaxies arcmin−2).
These values are optimistic since to achieve this dispersion the
flexion of the highest signal-to-noise galaxies should be mea-
sured, which lead to a galaxy density significantly smaller than

ng = 60 galaxies arcmin−2. Doing so increases the ratio σF
ε

σ
γ
ε

, but

3 D. Bacon 2010, private communication.

Figure 3. Noise power spectrum on the convergence map obtained from
realistic shear measurements corresponding to space-based observations (solid
black line). The solid red line corresponds to the noise power spectrum
on the convergence map obtained from the realistic flexion measurements
reported in Bacon et al. (2006; σF

e = 0.04 arcsec−1) and the dashed red line
corresponds to the noise power spectrum obtained from the very optimistic
flexion measurements that have really been used incorrectly in Bacon et al.
(2006; σF

e = 0.007 arcsec−1). We assume that the galaxy density is the same
for shear and flexion measurements, and we adopt the optimistic galaxy density
of Bacon et al. (2006) (ng = 60 galaxies arcmin−2).

decreases the ratio n
γ
g

nF
g

(see Equation (17)) because of the small

number of high signal-to-noise galaxies. At the end, the scale kT

should remain almost the same. In Bacon et al. (2006), the re-
construction fidelity from flexion measurements is therefore too
optimistic and the result of the reconstruction should be closer
to the right panel of Figure 1.

In Okura et al. (2007), the authors also use a (non-parametric)
convergence map reconstruction from simulated flexion mea-
surements. But the data are simulated with a rather optimistic
galaxy density ng = 100 galaxies arcmin−2, and a very opti-
mistic value has been chosen for the flexion measurement error
σF

ε = 0.009 arcsec−1. The dashed red line of Figure 4 shows
the noise power spectrum that should be obtained with this opti-
mistic value of flexion dispersion. The intersection with the solid
black line gives the scale below which the flexion dominates
(kT = 50 arcsec). As shown in Okura et al. (2007), the recon-
struction of a binned convergence map by combining shear and
flexion measurements with this optimistic flexion dispersion is
interesting because the flexion dominates for scales smaller than
50 arcsec. But using real data with a realistic flexion dispersion,
the result of the reconstruction of a binned convergence map
from flexion measurements should be close to what is shown in
the right panel of Figure 1.

In Okura et al. (2008), this convergence map reconstruction
method is applied to real data (ground-based Subaru data). The
flexion dispersion is found to be σF

e = 0.11245 arcsec−1. The
galaxy density is very small at ng = 7.75 galaxies arcmin−2

(only the 791 brightest galaxies have been selected) and the
field is 9′ × 9′ sampled with a grid of 256×256 pixels. Its 791
galaxies are distributed among 65,536 pixels, which means that
only 1% of pixels have a galaxy inside. In this paper, there is
no mention about the convergence map reconstruction problem
from incomplete shear maps given that 99% of data are missing
(see Pires et al. 2009 for more details about the missing data
problem). No detections should be possible in convergence maps
obtained from these flexion measurements. But it is difficult
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Figure 4. Noise power spectrum on the convergence map obtained from realistic
shear measurements (solid black line) and from realistic flexion measurements
(solid red line). The dashed red line corresponds to the noise power spectrum
on the convergence map obtained from the optimistic flexion dispersion (σF

e =
0.009 arcsec−1) of Okura et al. (2007). We assume that the galaxy density is the
same for shear and flexion measurements and we adopt the optimistic galaxy
density of Okura et al. (2007) (ng = 100 galaxies arcmin−2).

to characterize the noise properties of the convergence maps
produced by this method and then to access the significance of
the detections.

In Leonard et al. (2009), an aperture mass is used to recon-
struct the convergence map from simulated flexion measure-
ments. The flexion dispersion is taken as σF

e = 0.1 arcsec−1

and the galaxy density as ng = 35 galaxies arcmin−2. The au-
thors claim to reconstruct substructures, but except for the peak
that is detected with more than a 3σ detection level, no sub-
structure is detected with more than a 2σ detection level. It
should also be noted that a fair comparison with the aperture
mass for shear is not carried out in this paper. By consequence,
no conclusions about the utility of flexion measurements to re-
construct substructures can be drawn from this study. However,
the authors are working on this and a paper will be submitted
later this year.4

4.2. Parametric Convergence Map Reconstruction

In Leonard et al. (2007), a parametric convergence recon-
struction is performed to reconstruct A1689 cluster (from
Hubble Space Telescope/Advanced Camera for Surveys space-
based data), which is one of the biggest and most massive
known galaxy clusters. The galaxy density is important (ng =
75 galaxies arcmin−2) because of the magnification effect.
The measurements were carried out on stacked images,
which resulted in better shape measurement accuracy (σF

e =
0.029 arcsec−1). In this study, the galaxy–galaxy flexion signal
has been used to show that foreground galaxies are well fitted
by a singular isothermal sphere with a characteristic dispersion
σv . Then, for each confirmed foreground galaxy, the dispersion
σv,i is estimated from their flexion effect on background galax-
ies. Therefore, the mass reconstruction is modeled as the sum
of the fits obtained for each foreground galaxy. This method is
rather reliable because it depends on the visible distribution of

4 A. Leonard 2010, private communication.

the cluster. It offers a way to include the flexion measurements
in the reconstruction method. However, the measure of the dis-
persion σv,i for each foreground galaxy remains very noisy and
the reconstruction takes no account for the possible presence of
dark halos in the cluster.

5. CONCLUSION

The aim of this paper is to compare the ability of shear and
flexion to reconstruct convergence maps. A comparison between
shear and flexion, taking into account the noise contributions,
has been carried out. Using noise simulations, we have shown
that flexion becomes more interesting than shear on scales
smaller than the scale containing one galaxy (pixel scale).
Consequently, the flexion measurements should not be used
alone to reconstruct a binned convergence map because the
flexion is dominating on scales beyond the pixel scale. The
literature contains several papers that try to use flexion to
reconstruct the convergence map but their results are not
convincing.

Nonetheless, flexion has already been detected and can still
be used to measure the statistical properties of substructures in
dark matter halos on very small scales (Bacon et al. 2009).

Concerning convergence map reconstruction, it is now clear
that flexion should not be used alone. However, it does help to
add the flexion of galaxies in mass reconstruction from shear
measurements. The question is: how should shear and flexion
be combined for optimal results? In Leonard et al. (2007) and
Shapiro et al. (2010), the authors propose a way of doing this
but moving beyond this, more work is still needed to find a
Bayesian reconstruction method for the inclusion of flexion.
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380, 229
Okura, Y., Umetsu, K., & Futamase, T. 2007, ApJ, 660, 995
Okura, Y., Umetsu, K., & Futamase, T. 2008, ApJ, 680, 1
Pires, S., Starck, J.-L., Amara, A., Teyssier, R., Réfrégier, A., & Fadili, J.
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