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ABSTRACT

This paper presents a new method for the reconstruction of weak lensing mass maps. It uses the multiscale entropy concept, which is
based on wavelets, and the False Discovery Rate (FDR) which allows us to derive robust detection levels in wavelet space. We show
that this new restoration approach outperforms several standard techniques currently used for weak shear mass reconstruction. This
method can also be used to separate E and B modes in the shear field, and thus test for the presence of residual systematic effects.
We concentrate on large blind cosmic shear surveys, and illustrate our results using simulated shear maps derived from N-Body
ACDM simulations (Vale & White 2003) with added noise corresponding to both ground-based and space-based observations.
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1. Introduction

Weak Gravitational Lensing provides a unique method to
map directly the distribution of dark matter in the universe
(Bartelmann & Schneider 1999; Mellier 1999; Van Waerbeke
et al. 2001; Mellier 2002; Refregier 2003). This method is based
on the weak distortions that lensing induces in the images of
background galaxies as light travels through intervening struc-
tures. This method is now widely used to map the mass of clus-
ters and superclusters of galaxies and to measure the statistics of
the cosmic shear field on large scales.

Ongoing efforts are made to improve the detection of cosmic
shear on existing telescopes and future instruments dedicated to
survey cosmic shear are planned. Several methods are used to
derive the lensing shear from the shapes of background galax-
ies. But the shear measurements obtained are always noisy, and
when it is converted into a map of the projected mass «, the result
is dominated by the noise.

Several methods have been devised to reconstruct the pro-
jected mass distribution from the observed shear field. The first
non-parametric mass reconstruction was proposed by Kaiser &
Squires (1993) and further improved by Bartelmann (1995);
Kaiser (1995); Schneider & Seitz (1995); Squires & Kaiser
(1996). These methods are based on linear inversion methods
based on smoothing with a fixed kernel. Non-linear reconstruc-
tion methods were proposed using a maximum likelihood ap-
proach (Squires & Kaiser 1996; Bartelmann et al. 1996; Seitz
et al. 1998) or using the maximum entropy method (Bridle et al.
1998; Marshall et al. 2002).

In this paper, we describe a method for weak lensing mass re-
construction based on a wavelet decomposition. We use an iter-
ative filtering method with a multiscale entropy regularisation to
filter the noise. We discuss how this decomposition and regular-
isation functional is particularly well adapted to this problem. In
the process, we identify significant wavelet coefficients using the
False Discovery Rate method (Miller et al. 2001; Hopkins et al.
2002) and show how this is superior to the standard no thresh-
olding. The FDR method adapts its threshold to the features of
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the data. We concentrate on large blind cosmic shear surveys
and use the ray-tracing simulations of Vale & White (2003) to
test our results. We compare the performance of our method to
Gaussian and Wiener filtering for the reconstruction of the mass
field in these simulations. We consider conditions similar to both
ground-based and space-based cosmic shear surveys. We also
discuss how our method differs from other methods based on the
maximum entropy prior.

In Sect. 2, we present the weak shear mass reconstruction
problem. The earlier methods which have been proposed to
reconstruct the mass map are described in Sect. 3. Section 4
presents the Multiscale Entropy method and explains why it is
a good alternative to standard methods. We also propose a mod-
ification of the Multiscale Entropy, we use the False Discovery
Rate (FDR) method for detecting the significant wavelet coef-
ficients. A set of experiments designed to test our method are
described Sect. 5. Our conclusions are summarized in Sect. 6.

2. Weak lensing mass reconstruction
2.1. Weak lensing

In weak lensing surveys, the shear y;(6) with i = 1,2 is derived
from the shapes of galaxies at positions 6 in the image. The shear
field y;(6) can be written in terms of the lensing potential y/(6) as
(see e.g. Bartelmann & Schneider 1999)

=33

0102, (1)

Y2

where the partial derivatives d; are with respect to 6;. The con-
vergence «(6) can also be expressed in terms of the lensing po-
tential as
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and is related to the surface density X(6) projected along the line
of sight by

(0
)= =2 )
crit

where the critical surface density is given by

2 D,
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and G is Newton’s constant, c is the speed of light and Dy, D;
and Dy, are the angular-diameter distances between the observer
and the galaxies, the observer and the lens, and the lens and the
galaxies. In practice, the galaxies are not at a fixed redshift, and
the expression for « is an average of the redshift of the galaxies
(see e.g. Bartelmann 1995). The lensing effect is said to be weak
or strong if k < 1 or « ® 1, respectively.

The left panel of Fig. 1 shows a simulated convergence map
derived from ray-tracing through N-body cosmological simu-
lations performed by Vale & White (2003). The cosmological
model is taken to be a concordance ACDM model with param-
eters Q) = 0.3, Qx = 0.7, h = 0.7 and og = 0.8. The sim-
ulation contains 5123 particles with a box size of 3004~' Mpc.
The resulting convergence map covers 2 X 2 degrees with 1024 x
1024 pixels and assume a galaxy redshift of 1. The overdensities
correspond to the haloes of groups and clusters of galaxies. The
rms value of k binned in 0.12 arcmin pixels is o = 0.023. The
typical values of « are thus of the order of a few percent, apart
from the core of massive halos (see Fig. 1). The weak lensing
condition therefore holds in most regions of the sky and will be
assumed throughout this paper.

2.2. Mass inversion

The weak lensing mass inversion problem consists of recon-
structing the projected (normalized) mass distribution «(6) from
the measured shear field y;(f) by inverting Egs. (1) and (2).
(Magnification information can also be used to improve the re-
construction (see Bridle et al. 1998), but is typically more noisy
than the shear measurements and has not been considered in this
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Fig. 1. Left: simulated convergence map from
(Vale & White 2003) for a ACDM model. The
region shown is 2 X 2 square degree. Right:
shear map superimposed on the convergence
map, and right shear map. The size and direc-
tion of each line gives the amplitude and posi-
tion angle of the shear at this location on the
sky.

paper). For this purpose, we take the Fourier transform of these
equations and obtain

yi=Pik, i=1,2 ©))

where the hat symbol denotes Fourier transforms and we have
defined k* = k7 + k3 and

. K-k

Piky = ==

. 2kik

Pk = =5 6)

with P(ki, k) = 0 when k¥ = k2, and Py(ki,k2) = O when
k1 =0or k2 =0.

The shear map y; can be calculated from the convergence
map « using these expressions. The right panel of Fig. 1,
shows the shear field associated with the simulated conver-
gence field. As is customary, the direction and size of the line
segment represent the orientation and amplitude of the shear.
The rms shear in the 0.12 amin pixels of the resulting map
is oy = (y? +93)s = 0.023.

Note that to recover « from y; (resp. y»), there is a degen-
eracy when k¥ = k3 (resp. when k; = 0 or k, = 0). To re-
cover « from both y; and 7,, there is a degeneracy only when
ki = k, = 0. Therefore, the mean value of x cannot be recov-
ered from the shear maps. This is a special instance of the well
known mass-sheet degeneracy in the weak lensing reconstruc-
tion if only shear information is available (see e.g. Bartelmann
1995, for a discussion).

In practice, the observed shear 7; is obtained by averaging
over a finite number of galaxies and is therefore noisy. The re-
lations between the observed data yy;,y;, binned in pixels of
area A and the true mass map « are given by:

vib = Pixk + N; @)

where N; and N, are noise contributions with zero mean and
standard deviation o, =~ o/ \/ﬁg, where N; = ngA is the
average number of galaxies in a pixel and n, is the average
number of galaxies per arcmin®. The rms shear dispersion per
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galaxy o, arises both from measurement errors and the intrin-
sic shape dispersion of galaxies. In this analysis, we will as-
sume o, =~ 0.3 as is approximately found for ground-based and
space-based weak lensing surveys. Typical values for the surface
density of usable galaxies for weak lensing are

20 gal/arcmin? for ground-based surveys.
100 gal/arcmin? for space-based surveys.

_ng
_ng

From the central limit theorem, this means that for pixels with
A 2 1 amin?, the noise N; is, to a good approximation, Gaussian
in both cases and is uncorrelated (see Marshall et al. 2002,
for a direct treatment of individual galaxy shears using the
MEM method).

2.3. The inverse filter: E and B mode

We can easily derive an estimation of the mass map by inverse
filtering by noticing that

Bl+p =1 (8)
The least square estimator /?EE)
Fourier domain is:

27 = P+ Pryoy. )
The relation between this estimator and the true mass map is
f(gE) =K+ N, whereN = 151[\71 + 1321\7'2.

Just as any vector field, the shear field y;(8) can be decom-
posed into a gradient, or electric (E), component, and a curl, or
magnetic (B), component. Because the weak lensing arises from
a scalar potential (the Newtonian potential), it can be shown that
weak lensing only produces E-modes. On the other hand, resid-
ual systematics arising from imperfect correction of the instru-
mental PSF or telescope aberrations, generally generates both E
and B modes. The presence of B-modes is thus used to test for
the presence of residual systematic effects in current weak lens-
ing surveys.

The decomposition of the shear field into each of these com-
ponents can be easily performed by noticing that a pure E-mode
can be transformed into a pure B mode by a rotation of the shear
by 45°: y1 — —vy2, ¥2 — 1. As a result, we can form the fol-
lowing estimator for the B-mode “convergence” field

of the convergence k in the

2(B) 5 A~ 5 A

Ky~ = PyYip — Py * ¥, (10)
and check that it is consistent with zero in the absence of
systematics.

As follows from Eq. (8), the noise N® and N® in /?EE)

~(B)

and &, is still Gaussian and uncorrelated. The inverse filtering

~(E) ~(B)

does not amplify the noise, butk;”” and k;”” may be dominated by

the noise if N and N® are large, Wthh is the case in practice.
Figure 2 shows the reconstructed mass map using Eq. (9) when
arealistic Gaussian noise has been added to the shear maps plot-
ted in Fig. 1 right. As expected, it is dominated by noise. This
has motivated the development of different methods in the past
which we describe below.

3. Earlier mass inversion methods
3.1. Linear filtering

The standard method (Kaiser & Squires 1993) consists in con-

volving the noisy mass map K ”( ) with a Gaussian window G with
standard deviation og:

E(GE):G*I?ﬁE):G*Pl*71b+G*P2*7’2b' an
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Fig.2. In the previous region of 2 X 2 square degrees, noisy mass
map be) for the same simulation with n, = 100 gal/arcmin®, corre-
sponding to space-based observations. Even in this case, the unfiltered

mass map is dominated by noise.

The quality of the resulting estimation depends strongly on the
value of 0. Figure 3 shows the variation of the error between
the original mass map « shown in Fig. 1 and the filtered mass
map KG) For this simulation, the optimal value of o lies be-
tween 5 and 10 pixels (1 pixel = 0.12 arcmin) for space observa-
tions (i.e. ng = 100 gal/amin?) and lies between 20 and 25 pixels
for ground observations (i.e. ngy = 20 gal/amin?).

An alternative to Gaussian filtering is the Wiener filtering,
obtained by assigning the following weight to each k-mode

RO
k) = ——. 12
YO = or+ AP (12

Where |k(k)|> is a model of the true convergence power spec-
trum and is in practice derived from the data. Wiener filtering
is known to be optimal when both the signal and the noise are
a realization of a Gaussian Random Field. As can be seen from
Fig. 1, this assumption is not valid for weak lensing mass maps
which display non-Gaussian features such as galaxy clusters,
groups and filaments. Even in this case, Wiener Filtering nev-
ertheless leads to reasonable results, generally better than the
simple Gaussian filtering.

3.2. Maximum entropy method

The Maximum Entropy Method (MEM) is well-known and
widely used in image analysis in astronomy (see Bridle et al.
1998; Starck et al. 2001; Marshall et al. 2002; Starck & Murtagh
2002, for a full description). It considers both the data and the
solution as probability density functions and finds the solution
using a Bayesian approach and adding a prior (the entropy) on
the solution. Several definitions of entropy exist. The most com-
mon is the definition proposed in Gull & Skilling (1991):

k(X y)
N%ZZMWMW)WW%(w
where m is a model, chosen typically to be a sky background.
H, has a global maximum at k = m. MEM does not allow neg-
ative values in the solution, which is unnatural for wide field
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Fig.3. Reconstruction error as a function of
the kernel size o (in 0.12 amin pixels) for
the Gaussian smoothing method, with n, =

20 30 40 50 0 20

g

weak shear data or the CMB data, where we measure fluctu-
ations around zero. To overcome this, it has been proposed to
replace Hy (Maisinger et al. 2004) by:

Hy() = 3 ) 0(xny) = 2m
x oy

W(x, y) + k(x, y))

2m (13)

—k(x,y)In (

where y(x, y) = vKk2(x,y) + 4m?. Here m does not play the same

role. It is a constant fixed to the expected signal rms.

More generally MEM method presents many drawbacks
(Narayan & Nityananda 1986; Starck et al. 2001) and various
refinements of MEM have been proposed over the years (Weir
1992; Bontekoe et al. 1994; Pantin & Starck 1996; Starck et al.
2001). The last developments have led to the so called Multiscale
Entropy (Pantin & Starck 1996; Starck et al. 2001; Maisinger
et al. 2004) which is based on an undecimated isotropic wavelet
transform (2 trous algorithm) (Starck et al. 1998). It has been
shown that the main MEM drawbacks (model dependent solu-
tion, oversmoothing of compact objects, ...) disappear in the
wavelet framework. A full discussion and comparison between
different restoration methods can be found in Starck et al. (2002).

4. Multiscale entropy restoration
4.1. The multiscale entropy

The Undecimated Isotropic Wavelet Transform (UIWT) decom-
poses an n X n image I as a superposition of the form

J
Ik, 1) = cjpy + Z Wk
=

where c¢; is a coarse or smooth version of the original image /
and w; represents the details of / at scale 27/ (see Starck et al.
(Starck et al. 1998; Starck & Murtagh 2002) for details). Thus,
the algorithm outputs J + 1 sub-band arrays of size n X n. We
will use an indexing convention such that j = 1 corresponds
to the finest scale (high frequencies). The Multiscale Entropy
concept (Pantin & Starck 1996) consists in replacing the stan-
dard MEM prior (i.e. the Gull and Skilling entropy) by a wavelet
based prior. The entropy is now defined as

Z h(wjg.).
Tl

In this approach, the information content of an image is viewed
as sum of information at different scales. The function & defines

J-1

H(y=Y"

J=1

(14)

g

20 gal/amin® (leff) and ng = 100 gal/amin?
(right).

30 40 50

the amount of information relative to a given wavelet coefficient.
Several functions have been proposed for A:

— LOG-MSE: The Multiscale Entropy function used in (Pantin
& Starck 1996) (we call it LOG-MSE in the following) is
defined by:

where oy is the total noise standard deviation of the data
and o; is the noise standard deviation at scale j. K, is a
user-supplied parameter.

ENERGY-MSE: The entropy can be defined as the function
of the square of the wavelet coefficients (Starck et al. 2001):

[w gl
KmO'j

5)

o
J
hwjr)) = — (wiks = mj = wjgl 10g(
Oy

w? "
h(wjr) = =5 (16)
J
The same multiscale entropy function was also derived in
Maisinger et al. (2004).
NOISE-MSE: In Starck et al. (2001), the entropy is derived
using a modeling of the noise contained in the data:

)du

where P,(w;x,) is the probability that the coefficient wjy;
can be due to the noise: P,(wjx;) = Prob(W > |w;l). For
Gaussian noise, we have:

Oh(x)
ox

{w; il
h(wjg) = f Pn(le,k,ll—u)( (17)
0

2 +00
Py(wiry) = f exp (-W?/202)dW
! \/EO' i VNwjkl !
|wjkl|]
= erfc| —— (18)
( \/EO'j
and
1 Wkl Wi —u
h(wjg) = _2f u erfc(%]du (19)
750 V2o,

LOG-MSE presents an indeterminacy when the wavelet coef-
ficient is equal or close to 0 and the model used in Eq. (15)
is somewhat ad hoc. This point was raised in Maisinger et al.
(2004). A better choice for the LOG-MSE would be the Herbert
and Leaby function (Hebert & Leahy 1989) (see also the discus-
sion in Sect. 4.4):
[w gl .
o

h(wjk,) o log (1 + (20)
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The ENERGY-MSE is quadratic and leads to a strong penaliza-
tion even for wavelet coefficients with high signal-to-noise ratio.
Such penalization terms are known to oversmooth the strongest
peaks and should not be used for the weak lensing mass recon-
struction. The NOISE-MSE is very close to the /; norm (i.e.
absolute value of the wavelet coefficient) when the coeflicient
value is large, which is known to produce good results for the
analysis of piecewise smooth images (Donoho & Elad 2003).
We therefore choose the NOISE-MSE entropy as the most ap-
propriate for the weak lensing reconstruction problem. Figure 5
shows the /; norm penalization function, the ENERGY-MSE
and NOISE-MSE. The NOISE-MSE penalization presents a
quadratic behavior for small coefficients and a linear one for
larger coefficients. More details are given in Sect. 4.4.

4.2. Significant wavelet coefficients using the FDR

In Pantin & Starck (1996), it has been suggested to not apply
the regularization on wavelet coefficients which are clearly de-
tected (i.e. significant wavelet coefficients). The new Multiscale
Entropy is:

hn(wjgs) = M(j, k, Dh(wjx)

where M(j, k,I) = 1 — M(j, k1), and M is the multiresolution
support (Murtagh et al. 1995):

2L

1 if wjx, is significant

M(j kD) = { 0 (22)

if wjy; is not significant.

This describes, in a Boolean way, whether the data contains
information at a given scale j and at a given position (k, /).
Commonly, wj; is said to be significant if the probability that
the wavelet coeflicient is due to noise is small, i.e. if P(W >
wjil) < €, where P is a given noise distribution function. In the
case of Gaussian noise, this amount to state that wjy; is signif-
icant if [w;x| > ko ;, where o ; is the noise standard deviation
at scale j, and k is a constant, generally taken between 3 and 5
(Murtagh et al. 1995). With this definition, the number of false
detections depends on both the € value and the image size.

An alternative approach to this detection strategy is the False
Discovery Rate method (FDR) (Benjamini & Hochberg 1995).
This technique has recently be introduced for astronomical data
analysis (Miller et al. 2001; Hopkins et al. 2002). It allows us to
control the average fraction of false detections made over the to-
tal number of detections. It also offers an effective way to select
an adaptive threshold. The FDR is given by the ratio:
FDR = YV

a

(23)

where Vi, are the number of pixels truly inactive declared active
and D, are the number of pixels declared active.

This procedure controlling the FDR specifies a rate « be-
tween 0 and 1 and ensures that, on average, the FDR is no bigger
than a:

T;
E(FDR) < .o <a. (24)

The unknown factor Tv is the proportion of truly inactive pix-
els. A complete description of the FDR method can be found
in Miller et al. (2001). In Hopkins et al. (2002), it has been
shown that the FDR outperforms standard methods for sources

detection.
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Here, we use the FDR method; at each resolution level j of
the decomposition. We derive a detection threshold 7'; (from a
«; value). We have chosen to take a different @ value per scale.
To fix a @ value per scale, we used The Receiver Operating
Characteristic (ROC) (Genovese & Eddy 1997) curves in order
to quantify the quality of the detection at a given scale for dif-
ferent @ values. We found that the «; value must increase with
scale following the relation: @; = g * 2/ for the spatial obser-
vations and a; = ag * (1 .7)/ for the ground observations where
ap = 0.0125. We then consider a wavelet coefficient wj; as sig-
nificant if its absolute value is larger than T';.

4.3. Multiscale entropy restoration

Assuming Gaussian noise, the Multiscale Entropy restoration
method lead to the minimization of the functional,

ﬁz Z ha((WR) 1)
J=1

where o, the noise standard deviation in 3

~(E
7" -&IP “—K||2

J(®) = (25)

IE) J the number of
scales, (8 is the regularization parameter and ‘W is the Wavelet
Transform operator. The 8 parameter is calculated automatically
under the constraint that the residual should have a standard de-
viation equal to the noise standard deviation. Full details of the
minimization algorithm can be found in Starck et al. (2001), as
well as the way to determine automatically the regularization
parameter S.

4.4. Related work
4.4.1. The generalized wavelet regularization

Using a prior such that a pixel value is a function of its neigh-
borhood (see Molina et al. 2001, for more details on the Markov
Random Field model), the Bayesian solution consists in adding
the following penalization on the solution:

C®) = B, Y ($&(x.y) —’(x,y + DY’
Xy

+ P(R(x,y) - K(x + 1,))" .

The function ¢, called potential function, is an edge preserving
function. The term 8 3., 3., #(|[VI||(x, y)) can also be interpreted
as the Gibbs energy of a Markov Random Field. Generally, func-
tions ¢ are chosen with a quadratic part which ensures a good
smoothing of small gradients (Green 1990), and a linear behav-
ior which cancels the penalization of large gradients (Bouman &
Sauer 1993):

1. lim,_o ¢2 = 1, smooth faint gradients;
2. lim;,q ¢2—([') = 0, preserve strong gradients;
3. AU (’) is strictly decreasing.

Such functions are often called L, — L; functions. Examples
of ¢ functions:

1. ¢q(x) = x*: quadratic function;

2. ¢rv(x) =| x |: Total Variation;

3. ¢o(x) = 2V1 +x% — 2: Hyper-Surface (Charbonnier et al.
1997);

4. ¢3(x) = x*/(1 + x?) (Geman & McClure 1985);
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Fig. 5. Penalization functions: dashed, /; norm (i.e. p(w) = |w|); dot-

ted /, norm ¢(w) = ”72 (i.e. ENERGY-MSE); continuous, multiscale
entropy function (NOISE-MSE).

5. pa(x)=1-— e (Perona & Malik 1990);
6. ¢s5(x) = log (1 + x?) (Hebert & Leahy 1989).

Figure 4 shows different ¢ functions.

It has been shown that this concept can be generalized in
the wavelet domain, leading to a multiscale wavelet penaliza-
tion term (Jalobeanu 2001):

Co®) =B ) $UWR) il

Jik.l

(26)

When ¢(x) = x and p = 1, it corresponds to the /; norm of the
wavelet coefficients. In this framework, the multiscale entropy
deconvolution method is only one special case of the wavelet
constraint deconvolution method.

Figure 5 shows the multiscale entropy penalization function.
The dashed line corresponds to a /; penalization (i.e. ¢p(w) = |w|),
the dotted line to a /; penalization ¢(w) = “’72 and the continuous
line to the multiscale entropy function. We can immediately see
that the multiscale entropy function presents a quadratic behav-
ior for small values, and is closer to the /; penalization function
for large values. Penalization function with a [, — I; behavior are
known to be a good choice for image restoration.

4.4.2. Multiscale MEM and ICF

The multichannel ICF-MEM method (Weir 1991, 1992) con-
sists in assuming that the visible-space image O is formed
by a weighted sum of the visible-space image channels O},

J.-L. Starck et al.: Weak lensing mass reconstruction

0= Z';];‘] p;O; where N, is the number of channels and O is the
result of the convolution between a hidden image ; with a low-
pass filter ICF) C}, called ICF (Intrinsic Correlation Function)
(i.e. Oj = Cj * hj). In practice, the ICF is a Gaussian. The
MEM-ICF constraint is:

S Il
Cicr = )yl = mj = Ihjflog| = ).

=1 J

27)

In Maisinger et al. (2004), it was argued that the multiscale en-
tropy is merely a special case of the intrinsic correlation function
approach, where we replace the ICF kernel by a wavelet func-
tion. From the strict mathematical point of view, this is right, but
this vision minimizes completely the improvement related to the
wavelets. All the concepts of sparse representation (which is the
key of the wavelet success in many applications), fast decom-
position and reconstruction, zero mean coefficients (which al-
lows us to get wavelet coefficients which are independent of the
background and to derive a robust noise modeling) do not exist
in the ICF-MEM approach. Furthermore, ICF-MEM approach
requires to estimate accurately the background, which may be
sometimes a very difficult task, and it has be shown (Bontekoe
et al. 1994) that the solution depends strongly on this estima-
tion. On the contrary, Multiscale MEM needs only an estimation
of the noise standard deviation, which is easy to determine.

For all these reasons, we prefer to keep our vision of the
multiscale entropy method as a specific case of the generalized
wavelet regularization techniques rather than as an extension of
the ICF approach.

5. Results
5.1. Comparison of methods

We have used a simulated data set obtained using a standard
A-CDM cosmological model. A part of the x mass map and the
shear maps is shown in Fig. 1. The field size is 2 X 2 square
degrees, sampled with 1024 x 1024 pixels.

Noisy shear maps, corresponding to both spatial (i.e. ngy =
100 galsamin™) and ground-based observations (i.e. n, =
20 gals amin~2), are created using Eq. (7). Then we have recon-
structed the two noisy mass maps from Eq. (9) and applied the
following methods:

1. Gaussian filtering with a standard deviation equal to og =
1 amin.

2. Gaussian filtering with a standard deviation equal to og =
2.5 amin.

3. Wiener filtering.

4. Maximum Entropy Method (MEM) using the LensEnt2
package. As this code has not been designed for manipu-
lating large images, we had to restrict the restoration by this
method to a field size of 0.5 x 0.5 square degree, sampled
with 256 x 256 pixels. Since the LensEnt2 maps are pos-
itivity constrained, as recommended by the author of the
LensEnt2 package, we have recovered a physical mass by
transforming the outputs such that the minimum conver-
gence in the central quarter of the reconstruction is zero. To
optimize the ICF, we have maximized the Bayesian evidence
value as a function of ICF width, and found that maximum
evidence is around 210 arcsec for ground observations and
around 180 arcsec for space observations.

5. Multiscale Entropy method.
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Table 1. Standard deviation of the reconstruction error with five different methods.

Method Error (n, = 20 gal/amin®) | Error (n, = 100 gal/amin?)
Gaussian Filtering (oG = 1 amin) 1.108 0.775
Gaussian Filtering (g = 2.5 amin) 0.9138 0.868
Wiener Filtering 0.888 0.770
MEM-LensEnt2 1.091 0.821
Multiscale Entropy Filtering 0.888 0.746

T110F

Error

Goussion filter (s=22)
--=-- Wiener filter

- = - MEM

Multiscale Entropy filter

Goussian filter (s=8)

- - Wiener filter

L| =~ — - MEM (ICFwidth=180)
Multiscale Entropy filter

Fig. 6. Standard deviation versus scale for the

0.60E | | . .

ground-based simulation (left) and the space-
based simulation (right).

6

Multiscale Entropy Filter
MEM (ICF = 210)

MEM

Multiscale Entropy Filtering ———
MEM
120) ------

ICF 180

ICF

Log Power Spectrum of the Error

Log Power Spectrum of the Error

Fig.7. Log Power Spectrum of the Error by

‘ ‘ ‘ Multiscale Entropy Filter and MEM for the
0 10 20 30 40 50 0 10 20 30 40 50  ground-based simulation (/eft) and the space-
Frequency Frequency based simulation (right).

The evaluation is done by i) visual inspection of the images,
ii) calculating the standard deviation between the original x mass

map and the reconstructed map (i.e. E = SgTD]()’Z;)’?)), iii) calculat-

ing the standard deviation for each of their wavelet scales (i.e.
TD —~(WR), . .
E;= %W) and iv) calculation the power spectrum of

the error E (for MEM and multiscale entropy methods).

The values oG = 1 amin and g = 2.5 amin have been cho-
sen to optimize the Gaussian filtering for ny = 100 gals arcmin™
and ny = 20 gals arcmin2, respectively. Table 1 gives the stan-
dard deviation of the error for the four reconstructed mass maps.
It shows that i) the Wiener filtering is better than the Gaussian
filtering and the MEM-LensEnt2 method and ii) the Multiscale
Entropy outperforms the three other methods.

Figure 6 shows the error versus the scale (each wavelet scale)
for both simulations using the Gaussian filtering (continuous
line), the Wiener filtering (dotted line), the MEM-LensEnt2 fil-
tering (dashed line) and the Multiscale Entropy filtering (dotted-
dashed line). The wavelet scales 1 to 6 correspond to scales
0f0.12,0.23,0.47,0.94, 1.87,3.75 amin respectively. We can see
that the Multiscale Entropy method produces better results for all
scales.

Figure 7 shows the log power spectrum of the error. It is
very consistent with the previous one. Indeed, the MEM error

becomes very important toward the smallest frequencies (largest
wavelet scales). The same experiment has been done with a
smallest ICF (ICF = 120 for the spatial simulation), but the re-
sult is worse, which is not surprising since the ICF value was
chosen to get the best results.

Figure 8 shows from top to bottom the reconstructed maps
for the Gaussian, the Wiener and Multiscale Entropy filtering.
Figure 8 left corresponds to ground-based observations (i.e. ng =
20) and Fig. 8 right corresponds to spatial observations (i.e. ng =
100).

Figure 9 shows the denoising results on a portion of the pre-
vious image. Figure 9 shows the original noise free simulated
image of the 0.5 x 0.5 square degrees field (upper left), the
Multiscale Entropy Filtering for the spatial simulated observa-
tions (ng = 100) (upper right), the MEM-LensEnt2 restoration
for the ground based observations (bottom left) and the spatial
observations (bottom right).

The computation time for the 1024x1024 pixels map is 4 min
for the Multiscale Entropy method, 26 s for the Wiener filtering
and 4 s for the Gaussian smoothing. The computation time for
the 256 X 256 pixels map is around 60 min (it depends on the
convergence of the result) using the MEM-LensEnt2 package.
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Fig. 8. Restoration of the 2 x 2 square degrees ground-based observation (leff) and spatial observation (right). From top to bottom, Gaussian

filtering, Wiener filtering and Multiscale Entropy filtering.

5.2. Robustness to missing data

During the observations, various problem can cause a loss of
data in the image. For example, it can be due to a defect of the
camera CCD, generating a dark line or a dark row in the image,
or to the presence of a bright star in the field of view which forces
us to remove part of the image. In order to study this problem, we
mask two rectangular areas, setting all pixel values to 0, in the
shear maps y; and y,. By inverse filtering, we have derived the
noisy mass map x; in which we can also visualize the lack of data
(Fig. 10 upper left). Then we have applied the three methods,
Gaussian filtering, Wiener filtering and Multiscale Entropy, to
the noisy mass map and the results can be seen respectively in
Fig. 10 upper right, Fig. 10 bottom left and bottom right. We
can see that all three methods are robust to the missing data.
Note however that, for the Wiener filtering, we have assumed
perfect knowledge of the power spectrum of «, while, in practice,
its estimation is made more complicated by the complex field
geometry.

Figure 11 shows the error versus the scale for both simula-
tions using the Gaussian filtering (continuous line), the Wiener

filtering (dotted line) and Multiscale Entropy. We can see that
the Multiscale Entropy still produces better results at all scales.
Bayesian methods such MEM could also take into account prop-
erly missing data, however not in a straightforward way as when
using wavelets.

5.3. Cluster detection

Another important aspect of the weak shear mass reconstruction
is the possibility to detect clusters and to build a catalog. Here,
using the FDR in the wavelet space, we detect as significant a set
of wavelet coefficients. We built an isophote map, where each
isophote level corresponds to the detection level in a given scale.
This isophote is overplotted on the true mass map, which allows
us to visually check the false detections and the missed detec-
tions. A cluster surrounded by two isophotes means that it has
been detected at two scales. Figure 12 left shows the isophote
map when we use the regular ko thresholding and Fig. 12 left
right shows the isophote map when we use the FDR method. We
see that the FDR is more sensitive than the ko method for the
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Fig.9. In a region of 0.5 x 0.5 square degrees, a
sixteenth of the original field: upper left, simulated
mass map, upper right, Multiscale entropy filtering
for n, = 100 gal/arcminz. Bottom left, MEM fil-
tering for n, = 20 gals/amin~> (ICF width =
210) and bottom right for ny = 100 gals/amin—2
(ICF width = 180).

Fig.10. Upper left, noisy shear map (n, =
100 gal/arcmin?). Upper right, Gaussian filtering.
Bottom left, Wiener filtering, and bottom right,
Multiscale Entropy filtering.
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Fig. 11. Standard deviation versus scale for the ground-based simulation (/eft) and the spatial simulation (right) with missing data.

Fig. 12. Isophotes of the detected wavelet coeflicients for the space-based simulation overplotted on the original mass map: left, using the ko

standard approach (with k = 3,4, 5) and right using the FDR method.

Fig. 13. Zoom of the previous maps.

detection, without being contaminated by a large number of false
detections. Figure 13 shows a zoom of these two maps. Figure 14
shows a comparison between the Gaussian filtering, the Wiener
filtering and FDR-Wavelet method for the detection of clusters.
In the Gaussian and Wiener maps, the isophotes corresponds to
a ko detection level where k = 3,4, 5. It shows clearly how the
FDR-Wavelet method outperforms the other methods.

5.4. E/B Decomposition

As explained in Sect. 2.3, a simple diagnostic test for a wide
range of systematic effects is to search for the presence of

B-mode in the lensing maps. In order to test it, we have sim-
ulated mass maps with a B-mode.

Figure 15 left shows a simulated mass map with a lensing
E-mode signal (left) and an arbitrary B-mode signal (left). As
usual, we have added a realistic space-based Gaussian noise to
the shear of this simulation. Figure 16 shows the noisy mass
map resulting. Using the Multiscale Entropy filtering, we have
then reconstructed the two components of the mass map (see
Sect. 2.3): E-mode in Fig. 17 left and B-mode in Fig. 17 right.
We see clearly that the wavelet separation of the E and B modes
is very good. Indeed, the two main features in the B-mode have
well been recovered, without interfering with the reconstruction
of the E-mode.
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Fig. 14. The isophotes represent
wavelet-FDR method.

Fig. 15. left mass map (E-mode), right mass map (B-mode).

Fig. 16. Noisy simulated mass map.

6. Conclusion

We have presented in this paper a new way to reconstruct weak
lensing mass maps. We have modified the Multiscale Entropy
method in order to take into account the FDR. We have shown
that this new method outperforms several standard techniques
currently used for the weak shear mass reconstruction. The vi-
sual aspect as well as objective criteria, such the rms of the error
or the rms per scale of the error, clearly show the advantages of
the proposed approach. Experiments have demonstrated that it is
also robust to missing data. We have also shown that a E/B mode
separation can also be performed using this method, thus provid-
ing a useful test for the spatial distribution of residual systemat-
ics. Our method allows us also to build a catalog of clusters and
the use of FDR leads to a clear improvement in sensitivity, com-
pared to what has been done previously with wavelets.



1150

J.-L. Starck et al.: Weak lensing mass reconstruction

Fig. 17. left filtered noisy mass map (E-mode), right filtered noisy mass map (B-mode).

Software

The software related to this paper, MR/Lens, and its full
documentation are available from the following web page:
http://jstarck. free.fr/mrlens.hmtl
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