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*AIM, CEA/DSM-CNRS-Universite Paris Diderot, IRFU/SEDI-SAP, Service

d’Astrophysique, CEA Saclay, Orme des Merisiers, 91191 Gif-sur-Yvette, France

17th March 2011

Abstract This chapter reviews the data mining methods recently developed to

solve standard data problems in weak gravitational lensing. We detail the differ-

ent steps of the weak lensing data analysis along with the different techniques

dedicated to these applications. An overview of the different techniques currently

used will be given along with future prospects.
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1. Introduction

Until about thirty years ago astronomers thought that the Universe was composed

almost entirely of ordinary matter: protons, neutrons, electrons and atoms. The field of

weak lensing has been motivated by the observations made in the last decades showing

that visible matter represents only about 4-5% of the Universe (see Fig. 1). Currently,

the majority of the Universe is thought to be dark, i.e. does not emit electromagnetic

radiation. The Universe is thought to be mostly composed of an invisible, pressureless

matter - potentially relic from higher energy theories - called “dark matter” (20-21%) and

by an even more mysterious term, described in Einstein equations as a vacuum energy

density, called “dark energy” (70%). This “dark” Universe is not well described or even

understood; its presence is inferred indirectly from its gravitational effects, both on the

motions of astronomical objects and on light propagation. So this point could be the next

breakthrough in cosmology.

Today’s cosmology is based on a cosmological model that contains various parameters

that need to be determined precisely, such as the matter density parameter Ωm or the

dark energy density parameter ΩΛ. Weak gravitational lensing is believed to be the most
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2 Weak Gravitational Lensing

Figure 1. Universe content

promising tool to understand the nature of dark matter and to constrain the cosmological

parameters used to describe the Universe because it provides a method to map directly

the distribution of dark matter (see (Bartelmann and Schneider, 2001; Mellier, 1999;

Schneider, 2003; Albrecht et al., 2006; Munshi et al., 2008)). From this dark matter

distribution, the nature of dark matter can be better understood and better constraints

can be placed on dark energy, which affects the evolution of structures. Gravitational

lensing is the process by which light from distant galaxies is bent by the gravity of

intervening mass in the Universe as it travels towards us. This bending causes the images

of background galaxies to appear slightly distorted, and can be used to extract important

cosmological information.

Figure 2. Strong Gravitational Lensing effect observed in the Abell 2218 cluster (W. Couch et

al, 1975 - HST). Photo used with permission from NASA, ESA and the ERO team.

In the beginning of the twentieth century, A. Einstein predicted that massive bod-

ies could be seen as gravitational lenses that bend the path of light rays by creating

a local curvature in space-time. One of the first confirmations of Einstein’s new theory

was the observation during the 1919 solar eclipse of the deflection of light from distant

stars by the sun. Since then, a wide range of lensing phenomena have been detected. The

gravitational deflection of light by mass concentrations along light paths produces mag-

nification, multiplication, and distortion of images. These lensing effects are illustrated

by Fig. 2, which shows one of the strongest lens observed: Abell 2218, a very massive and

distant cluster of galaxies in the constellation Draco. The observed gravitational arcs are
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actually the magnified and strongly distorted images of galaxies that are about 10 times

more distant than the cluster itself.

These strong gravitational lensing effects are very impressive but they are very rare.

Far more prevalent are weak gravitational lensing effects, which we consider in this chap-

ter, and in which the induced distortion in galaxy images is much weaker. These gravita-

tional lensing effects are now widely used, but the amplitude of the weak lensing signal

is so weak that its detection relies on the accuracy of the techniques used to analyze the

data. Future weak lensing surveys are already planned in order to cover a large fraction

of the sky with high accuracy, such as Euclid (Refregier et al., 2010). However improv-

ing accuracy also places greater demands on the methods used to extract the available

information.

2. Weak Lensing theory

A gravitational lens is formed when the light from a very distant galaxy is deflected

around a massive object between the source and the observer. The properties of the

gravitational lensing effect depend on the projected mass density integrated along the

line of sight and on the cosmological angular distances between the observer, the lens

and the source (see Fig. 3). The bending of light rays around massive objects makes the

images of distant galaxies appear deformed. The gravitational lensing causes a tangential

alignment of the source. From the measurement of these distortions, the distribution of

the intervening mass can be inferred.

Figure 3. Illustration of the gravitational lensing effect by large scale structures: the light coming

from distant galaxies (on the right) traveling toward the observer (on the left) is bent by the

structures (in the middle). This bending causes the image of background galaxies to appear

slightly distorted. The structures causing the deformations are called gravitational lenses by

analogy with classical optics.

The deflection angle

Light rays propagate along null geodesics, which correspond to the shortest path between

two points in a curved spacetime. Therefore, to exactly compute the deflection of light
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rays around a massive object, it is necessary to determine the geometry of the Universe

around that object by solving General-Relativistic equations. However, the problem can

be simplified by making use of Fermat’s principle, which states that light rays propagate

along the path that minimises the light travel time between to points. Even though,

according to the formalism of General Relativity, the path followed by light rays is an

intrinsic property of space-time, while the travel time is an observer-dependent notion,

the motion of light rays in a curved space time can still be described by this principle. A

possible interpretation is to consider that light slows down in a gravitational field. The

refractive index n in a gravitational field Φ is given by:

n = 1 +
2
c2
|Φ| (1)

where c is the speed of light and Φ the 3D Newtonian potential, supposed to be weak

(Φ � c2).

Although the light speed in a vacuum is a constant c in General Relativity, we assume

that the speed of light in this disturbed region becomes:

c′ =
c

n
=

c

1 + 2
c2 |Φ|

(2)

Then, the light ray is bent and the deflection angle α can be obtained by integrating

the (perpendicular component of the) refractive index along the light path:

α(ξ) = −
∫
∇⊥n(r)dz (3)

where ξ is the impact parameter in the lens plane (see Fig. 4) and ∇⊥ is the perpendic-

ular component of the gradient operator.

The lens equation

In theory, light rays are bent by all the matter encountered along the light path between

the source and the observer. Given that mass concentrations tend to be localised within

the Universe, we may use the so-called thin lens approximation to simplify the problem.

In this approximation, the lensing effect is supposed to come from a single matter inho-

mogeneity located on a plane between the source and the observer. This approximation

is valid as long as the physical extent of the mass concentration is small compared to

the lens-source, lens-observer and source-observer distances. The system is then divided

into three planes: the source plane, the lens plane and the observer plane. The light ray

is assumed to travel without deflection between these planes with just a slight deflection

α while crossing the lens plane (see Fig. 4). In the limit of a thin lens, all the physics of

the gravitational lensing effect is contained in the lens equation, which relates the true

position of the source θS to its observed position(s) on the sky θI :

θS = θI −
DLS

DOS
α(ξ), (4)
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where ξ = DOLθI and DOL, DLS and DOS are the distance from the observer to the

lens, the lens to the source, and the observer to the source, respectively. From equation

3, the deflection angle α is related to the projected gravitational potential φ obtained by

the integration of the 3D Newtonian potential Φ(r) along the line of sight:

α(ξ) =
2
c2

∫
∇⊥Φ(r)dz = ∇⊥

(
2
c2

∫
Φ(r)dz,

)
︸ ︷︷ ︸

φ

. (5)

Figure 4. The thin lens approximation.

We can distinguish two regimes of gravitational lensing. In most cases, the bending

of light is small and the background galaxies are just slightly distorted. This corresponds

to the weak lensing effect. Occasionally (as seen previously) the bending of light is so

extreme that the light travels along several different paths to the observer, and multiple

images of one single source appear on the sky. Such effects are collectively termed strong

lensing, and are typically seen where the angular position of the source is closely aligned

with that of the centre of the mass concentration. In this chapter, we address only

the weak gravitational lensing regime, in which sources are singly imaged and weakly

distorted.

The distortion matrix A

The weak gravitational lensing effect results in both an isotropic dilation (the conver-

gence, κ) and an anisotropic distortion (the shear, γ) of the source. To quantify this

effect, the lens equation has to be solved. Assuming θI is small, we may approximate the

lens equation by a first order Taylor series expansion:

θS,i = AijθI,j , (6)

where

Ai,j =
∂θS,i

∂θI,j
= δi,j −

∂αi(θI,i)
∂θI,j

= δi,j −
∂2φ(θI,i)
∂θI,i∂θI,j

, (7)
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Ai,j are the elements of the matrix A and δi,j is the Kronecker delta. The first order

lensing effects (the convergence κ and the shear γ) can be described by the Jacobian

matrix A, called the distortion matrix:

A = (1− κ)

 1 0

0 1

− γ

 cos 2ϕ sin 2ϕ

sin 2ϕ − cos 2ϕ

 , (8)

where γ1 = γ cos 2ϕ and γ2 = γ sin 2ϕ are the two components of the gravitational shear

γ.

The convergence term κ magnifies the images of background objects, and the shear

term γ stretches them tangentially around the foreground mass.

The gravitational shear γ

The gravitational shear γ describes the anisotropic distortions of background galaxy

images. It corresponds to a two component field, γ1 and γ2, that can be derived from

the shape of observed galaxies: γ1 describes the shear in the x and y directions and γ2

describes the shear in the x = y and x = −y directions. Using the lens equation, the two

shear components γ1 and γ2 can be related to the gravitational potential φ by:

γ1 =
1
2

[
∂2φ(θI)
∂θ2

I,1

− ∂2φ(θI)
∂θ2

I,2

]

γ2 =
∂2φ(θI)

∂θI,1∂θI,2
. (9)

If a galaxy is initially circular with a diameter equal to 1, the gravitational shear will

transform the galaxy image to an ellipsoid with a major axis a = 1
1−κ−|γ| and a minor

axis b = 1
1−κ+|γ| . The eigenvalues of the amplification matrix (corresponding to the

inverse of the distortion matrix A) provide the elongation and the orientation produced

on the images of lensed sources (Mellier, 1999). The shear γ is frequently represented by

a line segment representing the amplitude and the direction of the distortion (see Fig.

5).

The convergence κ

The convergence κ, corresponding to the isotropic distortion of background galaxy im-

ages, is related to the trace of the distortion matrix A by:

tr(A) = δ1,1 + δ2,2 −
∂2φ(θI)
∂θ2

I,1

− ∂2φ(θI)
∂θ2

I,2

,

tr(A) = 2−∆φ(θI) = 2(1− κ). (10)

κ =
1
2

(
∂2φ(θI)
∂θ2

I,1

+
∂2φ(θI)
∂θ2

I,2

)
(11)
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Figure 5. Simulated convergence map by (Vale and White, 2003) covering a 2◦ x 2◦ field with

1024 x 1024 pixels. The shear map is superimposed to the convergence map. The size and the

direction of the line segments represent the amplitude and the direction of the deformation

locally.

The convergence κ is defined as half the Laplacian of the projected gravita-

tional potential ∆φ, and is directly proportional to the projected matter density of the

lens (see Fig. 5). For this reason, κ is often referred to as the mass distribution of the lens.

The dilation and distortion of images of distant galaxies are directly related to the dis-

tribution of the (dark) matter and thus to the geometry and the dynamics of the Universe.

As a consequence, weak gravitational lensing offers unique possibilities for probing the

statistical properties of dark matter and dark energy in the Universe. The weak lensing

effect is typically very small, therefore the constraints that can be obtained on cosmol-

ogy from the weak lensing effect rely strongly on the quality of the techniques used to

analyze the data. In the following, an overview of the different techniques currently used

to process weak lensing data will be presented.

3. Shear estimation

As described previously, the weak gravitational lensing effect distorts the images of

background galaxies. The deformations can be split into two terms, the shear γ and the

convergence κ. The shear term stretches the background galaxies tangentially around the

foreground mass and the convergence term magnifies (or demagnifies) them by increasing

(or decreasing) their size.

In this section, we describe the methods used to measure the shear field γ. In the next

section, we will explain how the convergence field κ is derived from the shear field. Either

the shear field or the convergence field can be used to constrain the cosmological model
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(see §6), but whatever the method used, the constraints on the cosmological model will

depend on the shear measurement accuracy.

3.1. Basics

To first approximation, the gravitational shear γ can be traced from the ellipticity of

the galaxies that can be expressed as a function of the quadrupole moments of the light

distribution of the galaxy image Mi,j :

ε1 =
M1,1 −M2,2

M1,1 + M2,2
, (12)

ε2 =
2M1,2

M1,1 + M2,2
. (13)

where Mi,j are defined by:

Mi,j =
∫

d2θW (θ)I(θ)θiθj∫
d2θW (θ)I(θ)

, (14)

where W is a Gaussian function of scale length r estimated from the object size, I is the

surface brightness of the object and θ is the angular distance from the object center.

The induced shear is small, typically around an order of magnitude smaller than the

RMS ellipticity seen in background galaxies, therefore the weak lensing effect cannot

be measured on a single galaxy. To measure the shear field, it is necessary to measure

the ellipticities of many background galaxies and construct a statistical estimate of their

systematic alignment. The fundamental problem is that galaxies are not intrinsically

circular, so the measured ellipticity is a combination of their intrinsic ellipticity and

the gravitational shear. By assuming that the orientations of the intrinsic ellipticities of

galaxies is random, any systematic alignment between multiple galaxies is assumed to be

caused by gravitational lensing.

The amplitude of the cosmic shear can be quantified statistically by computing the

two-point correlation functions of the shear :

ξi,j(θ) = 〈γi(θ′)γj(θ′ + θ)〉, (15)

where i, j = 1, 2 correspond repectively to the tangential and radial component of the

shear and the averaging is done over pairs of galaxies separated by angle θ = |θ|. By

isotropy ξ1,1 and ξ2,2 are functions only of θ and ξ1,2 = ξ2,1 = 0 is due to the scalar origin

of the gravitational lensing effect and to the fact that galaxy ellipticity components

are uncorrelated. This measurement demonstrates that the component of the galaxy

ellipticities of well separated galaxies are uncorrelated, and it is in some sense a strong

indication that our signal at small scales is of cosmological origin.

However, the weak lensing effect is so small that it requires the control of any

systematic error that can mimic the lensing signal.
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3.2. Biases

Instrumental and atmospheric bias

A major source of systematic errors in surveys of weak gravitational lensing comes from

the point spread function (PSF) due to instrumental and atmospheric effects, which

causes the observed images to be smeared. Each background galaxy image is convolved

by the PSF of the imagery system H to produce the image that is seen by the instru-

ment. The point spread function (PSF) describes the response of an imaging system to

a point source. For ground-based observations, atmospheric turbulence dominates the

contribution to the PSF. For space-based observations, the PSF is essentially dependent

on the quality of the imaging system. An ideal PSF for weak lensing observations should

be small and isotropic. A large PSF tends to make small objects appear more isotropic,

destroying some of the information about their true ellipticity. An anisotropic PSF adds

a small level of ellipticity to observed background galaxies that can mimic a true lensing

signal. Even for the most modern telescopes, the anisotropy of the PSF is usually at least

of the same order of magnitude as the weak gravitational shear, and is often much larger.

PSF debiasing requires to have an estimation of the PSF at the location of each

galaxy in the field. Stars present in the field (which correspond to point sources) provide

a direct measurement of the PSF, and they can be used to model the variation of the

PSF across the field, as long as a sufficient number of stellar images are present in the

field.

Broadly, there are four groups of methods to correct for instrumental and atmospheric

distortions (Massey et al., 2007a) distinguished by their solution to the two most impor-

tant tasks in shear estimation. The first task is how to correct for the PSF. Some methods

subtract the ellipticity of the PSF from the ellipticity of each galaxy, while other methods

attempt to deconvolve each galaxy from the PSF before measuring the ellipticity. The

second task is how to measure the shear. Some methods do a direct measurement of the

shear while others shear a model until it closely resembles the observed galaxy.

The most widely adopted method belongs to the first category, and is the result of a

series of successive improvements of the original KSB method proposed by Kaiser, Squires

& Broadhurst (Kaiser, 1995). The core of the method is based on the measurement of

the weighted ellipticity of the background galaxies and stars from equation 13. The PSF

correction is obtained by subtracting the star weighted ellipticity ε∗i from the observed

galaxy weighted ellipticity εobs
i . The corrected galaxy ellipticity εi is given by:

εi = εobs
i − P sm(P sm∗)−1ε∗i , (16)

where i=1,2 and P sm and P sm∗ are the smear susceptibility tensors for the galaxy and

star given by (Kaiser, 1995), which can be derived from higher-order moments of the

images (Luppino and Kaiser, 1997; Hoekstra et al., 1998). This method has been used

by many authors, although different interpretations of the method have introduced dif-
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ferences between the various implementations. One drawback of the KSB method is that

for non-Gaussian PSFs, the PSF correction is poorly-defined, mathematically. In (Kaiser

et al., 2000), the authors propose a method to better account for realistic PSF by con-

volving images with an additional kernel to eliminate the anisotropic component of the

PSF. Nevertheless, KSB method is thought to have reached its limits and it has been

superseded by new competitive methods.

On the recent methods, some methods attempt a direct deconvolution of each galaxy

from the PSF. The deconvolution requires a matrix inversion, and becomes an ill-posed

inverse problem if the matrix H describing the PSF is singular (i.e. can not be inverted).

The (Massey and Refregier, 2005) shear-measurement method that belongs to a sec-

ond class of methods is attempting a full deconvolution by decomposing each galaxy

in shapelet basis functions convolved by the PSF. Some other methods belonging to a

third class, such as (Bernstein and Jarvis, 2002a; Kuijken, 2006), have been developed

to correct for the PSF without a direct deconvolution. These methods try to reproduce

the observed galaxies by modeling each unconvolved background galaxy (the background

galaxy as it would be seen without a PSF). The model galaxy is then convolved by the

PSF estimated from the stars present in the field and the galaxy model tuned in such

way that the convolved model reproduces the observed galaxy. Following a similar ap-

proach, the lensfit method (Miller et al., 2007; Kitching et al., 2008) measures the shear

by fitting realistic galaxy profiles in a fully Bayesian way. There is a last class of methods

(Bernstein and Jarvis, 2002b) where the PSF correction is obtained by subtraction after

the images have been convolved with an additional kernel to eliminate the anisotropic

component of the PSF. The shear is obtained by decomposing each galaxy in a distorted

shapelet basis functions.

Further improvements of these methods will be required to ensure high accuracy and

reliability in a the future weak lensing studies.

Intrinsic alignments and correlations

The intrinsic alignment of galaxies constitutes the major astrophysical source of sys-

tematic errors in surveys of weak gravitational lensing. Usually, the measurement of the

gravitational shear is obtained by averaging the ellipticity of several nearby galaxies by

assuming that the mean intrinsic ellipticity tend to zero. But in practice, the assump-

tion of randomly distributed galaxy shapes is unrealistic. Nearby galaxies are expected

to have experienced the same tidal gravitational forces, which is likely to cause a ra-

dial alignment of their intrinsic ellipticities, and therefore correlations in their observed

shapes and orientations.

There are two types of intrinsic alignments. The first type of alignment appears

adjacent background galaxies that form in the same large-scale gravitational potential,
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and which therefore share a preferred intrinsic ellipticity orientation. This is the so-called

Intrinsic-Intrinsic (II) correlation (see Fig. 6).

Figure 6. Intrinsic-Intrinsic alignment: When a large cloud of dark matter, gas and dust is

collapsing, the surrounding matter falls in to form a disc. The resulting galaxy becomes aligned

in the direction of the tidal field. Consequently, the intrinsic ellipticity of nearby galaxies will

be aligned with the local tidal field like the two galaxies in green.

The second type corresponds to the case where a matter structure causes a radial

alignment of a foreground galaxy and contributes at the same time to the lensing signal

of a background galaxy causing a tangential alignment of this background galaxy. In

this case, there is an anti-correlation between the foreground intrinsic ellipticity and the

background galaxy shear, known as the Gravitational-Intrinsic (GI) alignment (see Fig.

7).

Figure 7. Gravitational-Intrinsic alignment: When the tidal field generated by a (dark)

matter structure aligns a foreground galaxy (in green) and at the same time generates a gravita-

tional shear on a background galaxy (in blue), there is an anti-correlation between the intrinsic

ellipticity of a foreground galaxy (in green, in the screen) and the gravitational shear of a back-

ground galaxy (in blue, in the screen).

Intrinsic alignments are believed to introduce a significant bias in high-precision weak

lensing surveys that leads to a bias on cosmological parameters. For example, the shear

power spectrum Pγ(l) which is the most common method for constraining cosmological

parameters, is biased by the previously described intrinsic alignments:

Pγ(l) = PGG
γ (l) + P II

γ (l) + PGI
γ (l) (17)
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where the first term is the usual gravitational lensing contribution, the second term

arises from the intrinsic alignment of physically close galaxies and the last term arises

from Gravitational-Intrinsic alignments.

The shear power spectrum Pγ(l) is the Fourier transform of the shear two-point

correlation ξi,j(θ) defined in the previous section.

The use of galaxy distance information, obtained from either photometric or spectro-

scopic redshifts1, can be used to reduce these systematic errors. In studies (Massey et al.,

2007a; Schrabback et al., 2010a), the signal is evaluated as a function of the galaxy red-

shift, thanks to the photometric redshift information. But the cosmological constraints in

these recent papers have been calculated assuming there are no intrinsic alignments, al-

though the bias is non-negligible. To increase the precision of future surveys, it is essential

to eliminate intrinsic alignments. It has been shown (Heymans and Heavens, 2003; King

and Schneider, 2002, 2003; Takada and White, 2004) that the Intrinsic-Intrinsic correla-

tions can be almost completely removed by identifying physically close pairs of galaxies

and applying a weighting scheme based on photometric redshifts. The Gravitational-

Intrinsic effect is more problematic as it affects pairs of galaxies which are not physically

close. There are two main approaches to deal with GI alignments. The first approach

is model-independent; it is a purely geometrical method that removes the GI effect by

using a particular linear combination of tomographic shear power spectra, assuming the

redshifts of the galaxies are known (Joachimi and Schneider, 2008, 2009). The other

approach tries to model the expected intrinsic alignment contribution for a particular

survey. The parameters of the model can thus be varied and marginalized over to con-

strain cosmological parameters (Bridle and King, 2007; Bernstein, 2009; Joachimi and

Bridle, 2010).

3.3. Challenges

All methods involve estimating an ellipticity εi for each galaxy, whose definition can

vary between the different methods. The accuracy of the shear measurement method

depends on the technique used to estimate the ellipticity of the galaxies in the presence of

observational and cosmological effects. In the KSB method (Kaiser, 1995), the ellipticity

is derived from quadrupole moments weighted by a Gaussian function. This method has

been used by many authors but it is not sufficiently accurate for future surveys. The

extension of KSB to higher-order moments has been done to allow more complex galaxy

and PSF shapes (Bridle et al., 2002; Bernstein and Jarvis, 2002a; Kuijken, 2006). The

1 Photometric and spectroscopic redshifts are estimates for the distance of an astronomical

object such as a galaxy. The photometric redshift measurement uses the brightness of the object

viewed through various standard filters while the spectroscopic redshift measurement is obtained

from the spectroscopic observation of an astronomical object.
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shapelets (see (Massey et al., 2005)) can be seen as an extension of KSB to higher-order;

the first few shapelet basis functions are precisely the weighted functions used in KSB.

However, shapelet basis functions are constructed from Hermite polynomials weighted

by a Gaussian function and are not optimal at representing galaxy shapes that are closer

to exponential functions. By consequence, in the presence of noise, shear measurement

methods based on a shapelet decomposition are not optimal.

Many other methods have been developed to address the global problem of shear

estimation. To prepare for the next generation of wide-field surveys, a wide range of

shear estimation methods have been compared blindly in the Shear Testing Program

(STEP) ((Heymans et al., 2006; Massey et al., 2007a)). Several methods have achieved an

accuracy of a few percent. However, the accuracy required for future surveys is of the order

of 0.1%. Another challenge, called GREAT08 ((Bridle et al., 2009)), has been set outside

the weak lensing community as an effort to spur further developments. The primary goal

was to stimulate new ideas by presenting the problem to researchers outside the shear

measurement community. A number of fresh ideas have emerged, especially to reduce the

dependence on realistic galaxy modelling. The most successful astronomical algorithm

has been found to be the lensfit method (Miller et al., 2007; Kitching et al., 2008). In

the upcoming GREAT10 challenge, the image simulations are more sophisticated and

complex, in order to further improve the accuracy of the methods.

4. 2D mapping of the dark matter

The problem of mass reconstruction has become a central topic in weak lensing since

the very first maps have demonstrated that this method can be used to visualize the dark

side of the Universe. Indeed, weak gravitational lensing provides a unique way to map

directly the distribution of dark matter in the Universe. This is done by estimating the

convergence κ, which is directly proportional to the projected matter distribution along

the line of sight.

4.1. Inversion problem

The convergence, which corresponds to the isotropic distortion of background

galaxies images, is not easy to estimate directly because the initial size of galaxies is

not known. However, the convergence κ can be derived by inversion of the shear field.

In order to do this, a shear field averaged on a regular grid is required. The grid needs

to be sufficiently coarse that several galaxies fall in each cell of the grid, otherwise the

shear field is only defined on an irregular grid defined by the galaxy positions, yet not

so coarse that the shear changes sufficiently across the grid cell.
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Global inversion

A global relation between κ and γ can be derived from the relations (9) and (10). Indeed,

it has been shown by (Kaiser and Squires, 1993) that the least square estimator ˆ̃κn of

the convergence κ̂ in the Fourier domain is:

ˆ̃κn(k1, k2) = P̂1(k1, k2)γ̂obs
1 (k1, k2) + P̂2(k1, k2)γ̂obs

2 (k1, k2), (18)

where γobs
1 and γobs

2 represent the noisy shear components. The hat symbols denote the

Fourier transform and:

P̂1(k1, k2) =
k2
1 − k2

2

k2
1 + k2

2

(19)

P̂2(k1, k2) =
2k1k2

k2
1 + k2

2

,

with P̂1(k1, k2) ≡ 0 when k2
1 = k2

2, and P̂2(k1, k2) ≡ 0 when k1 = 0 or k2 = 0. The most

important drawback of this method is that it requires a convolution of shears to be

performed over the entire sky. As a result, if the observed shear field has a finite size or

a complex geometry, the method can produce artifacts on the reconstructed convergence

distribution near the boundaries of the observed field. Masking out the bright stars in

the field is common practice in weak lensing analysis, therefore the global inversion

requires a proper treatment of the gaps in the shear map.

Local inversion

There exist local inversions, which have the advantage to address the problems encoun-

tered by global relations: the missing data problem and the finite size of the field. A

relation between the gradient of K = log(1− κ) and combinations of first derivatives of

g = γ
1−κ have been derived by (Kaiser, 1995) :

∇K ≡ u

−1
1− |g|2

 1− g1 −g2

−g2 1 + g1

 g1,1 + g2,2

g2,1 − g1,2

 ≡ u (20)

This equation can be solved by line integration and there exist an infinite number of local

inverse formulae which are exact for ideal data on a finite-size field, but which differ in

their sensitivity to observational effects such as noise. The reason why different schemes

yield different results can be understood by noting that the vector field u (the right-hand

side of equation 20) contains a rotational component due to noise because it comes from

observational estimates. In (Seitz and Schneider, 1996), the authors have split the vector

field u into a gradient part and a rotational part and they derive the best formula that

minimizes the sensitivity to observational effects by convolving the gradient part of the

vector field u with a given kernel.

The local inversions reduce the unwanted boundary effects but whichever the formula

is used, the reconstructed field will be more noisy than that obtained with a global
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inversion. Note also that the reconstructed dark matter mass map still has a complex

geometry that will complicate the later analysis.

4.2. E and B modes decomposition

Just as a vector field can be decomposed into a gradient or electric (E) component,

and a curl or magnetic (B) component, the shear field γi(θ) can be decomposed into

two components which for convenience we also call (E) and (B). The decomposition of

the shear field into each of these components can be easily performed by noticing that a

pure E mode can be transformed into a pure B mode by a rotation of the shear by 45◦:

γ1 → −γ2, γ2 → γ1.

Because the weak lensing arises from a scalar potential (the Newtonian potential Φ),

it can be shown that weak lensing only produces E modes. As a result, the least square

estimator of the E mode convergence field is simply:

κ̃(E) =
∂2
1 − ∂2

2

∂2
1 + ∂2

2

γ1 +
2∂1∂2

∂2
1 + ∂2

2

γ2, (21)

On the other hand, residual systematics arising from imperfect correction of the

instrumental PSF, telescope aberrations or complex geometry, generally generates both

E and B modes. The presence of B modes can thus be used to test for the presence of

residual systematic effects in current weak lensing surveys.

4.3. Missing data

As mentioned previously, analyzing an image for weak lensing inevitably involves the

masking out of regions to remove bright stars from the field. The measured shear field is

then incomplete. Although the masking out of the stars is common practice , depending

on the tools used to analyze this incomplete field, the gaps present in the field will require

proper handling.

At present, the majority of lensing analyses use the two-point statistics of the cosmic

shear field introduced §3.1 because this method is not biased by missing data. However,

this method is computationally intensive and could not be used for future ultra wide

lensing surveys. Measuring the power spectrum is significantly less demanding compu-

tationally, but is strongly affected by missing data. Higher-order statistical measures of

the cosmic shear field, such as three or four-point correlation functions have been studied

and have shown to provide additional constraints on cosmological parameters but could

not be reasonably estimated in future survey.

A solution that has been proposed by (Pires et al., 2009b) to deal with missing data

consists in judiciously filling in the masked regions by using an “inpainting” method

simultaneously with a global inversion. Inpainting techniques are methods by which an
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extrapolation of the missing information is carried out using some priors on the solution.

This new method uses a prior of sparsity in the solution introduced by (Elad et al., 2005).

It assumes that there exists a dictionary (i.e. a representation) D in which the complete

data are sparse whilst the incomplete data are less sparse. This means that we seek a

dictionary α = ΦT X of the signal X in the representation Φ where most coefficients αi

are close to zero, while only a few have a significant absolute value. If the signal is a

sinusoid, its sparsest representation will be the Fourier representation because the signal

can be represented by a unique coefficient in the Fourier domain. In many applications

- such as compression, denoising, source separation and, of course, inpainting - a sparse

representation of the signal is necessary to improve the quality of the processing. Over the

past decade, traditional signal representations have been replaced by a large number of

new multiresolution representations. Instead of representing signals as a superposition of

sinusoids using classical Fourier representation, we now have many available alternative

represnetations such as wavelets (Mallat, 1989), ridgelets (Candès and Donoho, 1999)

or curvelets (Starck et al., 2003; Candès et al., 2006), most of which are overcomplete.

This means that some elements of the dictionary can be described in terms of other

ones, therefore a signal decomposition in such a dictionary is not unique. Although this

can increase the complexity of the signal analysis, it gives us the possibility to select

among many possible representations the one which gives the sparsest representation of

our data.

The weak lensing inpainting method consists in recovering a complete convergence

map κ from the incomplete measured shear field γobs
i . The solution is obtained by mini-

mizing:

min
κ
‖DT κ‖0 subject to

∑
i

‖ γobs
i −M(Pi ∗ κ) ‖2≤ σ, (22)

where Pi is defined by the relation 20, DT is the DCT (Digital Cosine Transform), σ

stands for the noise standard deviation and M is the binary mask (i.e. Mi = 1 if we have

information at pixel i, Mi = 0 otherwise). We denote by ||z||0 the l0 pseudo-norm, i.e. the

number of non-zero entries in z, and by ||z|| the classical l2 norm (i.e. ||z||2 =
∑

k(zk)2).

If DT κ is sparse enough, the l0 pseudo-norm can be replaced by the convex l1 norm

(i.e. ||z||1 =
∑

k |zk|) (Donoho and Huo, 2001). The solution of such an optimization task

can be obtained through an iterative thresholding algorithm called MCA (Morphological

Component Analysis) (Elad et al., 2005):

κn+1 = ∆D,λn

(
κn + M [P1 ∗ (γobs

1 − P1 ∗ κn) + P2(γobs
2 − P2 ∗ κn)]

)
, (23)

where the nonlinear operator ∆D,λ(Z) consists in:

- decomposing the signal Z on the dictionary D to derive the coefficients α = DT Z.

- threshold the coefficients with a hard-thresholding (α̃ = αi if |αi| > λn and 0 other-

wise). The threshold parameter λn decreases with the iteration number.
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- reconstruct Z̃ from the thresholded coefficients α̃.

The MCA algorithm has been originally designed for the separation of linearly

combined texture and cartoon layers in a given image. By incorporating a binary mask

in the model, it leads to an inpainting method. MCA relies on an iterative thresholding

algorithm, using a threshold which decreases linearly towards zero along the iterations.

This algorithm requires to perform at each iteration a forward transform, a thresholding

of the coefficients and an inverse transform.

This method enables one to reconstruct a complete convergence map κ that can be

used to perform further analyses of the field. The method can also be used to reconstruct

the dark matter distribution and do comparisons with other probes. These comparisons

are usually done after a filtering of the dark matter map, whose quality is improved by

the absence of missing data.

4.4. Filtering

The convergence map obtained by inversion of the shear field is very noisy (infinite

variance) (Kaiser and Squires, 1993) even with a global inversion. The noise comes

from the shear measurement errors and the residual intrinsic ellipticities present in

the shear maps that propagate during the weak lensing inversion. An efficient filter-

ing is required to map the dark matter and to compare its distribution with other probes.

Linear filters

Linear filters are often used to eliminate or attenuate unwanted frequencies.

– Gaussian filter:

The standard method (Kaiser and Squires, 1993) consists in convolving the noisy

convergence map κ with a Gaussian window G with standard deviation σG:

κG = G ∗ κn = G ∗ P1 ∗ γobs
1 + G ∗ P2 ∗ γobs

2 . (24)

The Gaussian filter is used to suppress the high frequencies of the signal. However, a

major drawback of this method is that the quality of the result depends strongly on

the value of the width σG of the Gaussian filter, which controls the level of smoothing.

– Wiener filter:

An alternative to Gaussian filter is the Wiener filter (Bacon and Taylor, 2003; Teyssier

et al., 2009) obtained by assigning the following weight to each k-mode:

w(k1, k2) =
|κ̂(k1, k2)|2

|κ̂(k1, k2)|2 + |N̂(k1, k2)|2
. (25)

In theory, if the noise and the signal follow a Gaussian distribution, the Wiener filter

provides the minimum variance estimator. However, the signal is not Gaussian. In
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fact, on small scales, the convergence map deviates significantly from Gaussianity.

However, the Wiener filter leads to reasonable results, with a better resolution than

a simple Gaussian filter.

Linear filters are very common and easy to design, but improved results can be obtained

using non-linear filtering.

Bayesian methods

– Bayesian filters

Some recent filters are based on Bayesian theory which considers that some prior

information can be used to improve the solution. Bayesian filters search for a solution

that maximizes the a posteriori probability using Bayes’ theorem :

P (κ|κn) =
P (κn|κ)P (κ)

P (κn)
, (26)

where :

– P (κn|κ) is the likelihood of obtaining the data κn given a particular convergence

distribution κ.

– P (κn) is the a priori probability of the data κn. This term, called the evidence,

is simply a constant that ensures that the a posteriori probability is correctly

normalized.

– P (κ) is the a priori probability of the estimated convergence map κ. This term

codifies our expectations about the convergence distribution before acquisition of

the data κn.

– P (κ|κn) is called the a posteriori probability.

Searching for a solution that maximizes P (κ|κn) is the same that searching for a

solution that minimizes the quantity Q :

Q = − log(P (κ|κn)), (27)

Q = − log(P (κn|κ))− log(P (κ)).

If the noise is uncorrelated and follows a Gaussian distribution, the likelihood term

P (κn|κ) can be written:

P (κn|κ) ∝ exp(−1
2
χ2), (28)

with :

χ2 =
∑
x,y

(κn(x, y)− κ(x, y))2

σ2
κn

. (29)

Equation (28) can then be expressed as follows:

Q =
1
2
χ2 − log(P (κ)) =

1
2
χ2 − βH, (30)
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where β is a constant that can be seen as a parameter of regularization and H

represents the prior that is added to the solution.

If we have no expectations about the convergence distribution, the a priori probability

P (κ) is uniform and the maximum a posteriori is equivalent to the well-known max-

imum likelihood. This maximum likelihood method has been used by (Bartelmann

et al., 1996; Seljak, 1998) to reconstruct the weak lensing field, but the solution needs

to be regularized in some way to prevent overfitting the data. This has been done via

the a priori probability of the convergence distribution. The choice of this prior is one

of the most critical aspects of the Bayesian analysis. An Entropic prior is frequently

used but there exists many definitions of the Entropy (Gull, 2003). One that is cur-

rently used is the Maximum Entropy Method (MEM) (Bridle et al., 1998; Marshall

et al., 2002).

Some authors (Bartelmann et al., 1996; Seitz et al., 1998) have also suggested

reconstructing the gravitational potential φ instead of the convergence distribution

κ, still using a Bayesian approach, but it is clearly better to reconstruct the mass

distribution κ directly because it allows a more straightforward evaluation of the

uncertainties in the reconstruction.

– Multiscale Bayesian filters

A multiscale maximum entropy prior has been proposed by (Marshall et al., 2002)

which uses the intrinsic correlation functions (ICF) with varying width. The mul-

tichannel MEM-ICF method consists in assuming that the visible-space image I is

formed by a weighted sum of the visible-space image channels Ij , I =
∑Nc

j=1 pjIj where

Nc is the number of channels and Ij is the result of the convolution between a hidden

image hj with a low-pass filter Cj , called the ICF (Intrinsic Correlation Function)

(i.e. Ij = Cj ∗ oj). In practice, the ICF is a Gaussian. The MEM-ICF constraint is:

HICF =
Nc∑
j=1

| oj | −mj− | oj | log
(
| oj |
mj

)
. (31)

Another approach, based on a sparse representation of the data, has been used by

(Pantin and Starck, 1996) that consists of replacing the standard Entropy prior by

a wavelet-based prior. Sparse representations of signals have received considerable

interest in recent years. The problem solved by the sparse representation is to search

for the most compact representation of a signal in terms of linear combination of

atoms in an overcomplete dictionary.

The entropy is now defined as :

H(I) =
J−1∑
j=1

∑
k,l

h(wj,k,l). (32)

In this approach, the information content of an image I is viewed as the sum of the

information at different scales wj of a wavelet transform. The function h defines the
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amount of information relative to a given wavelet coefficient. Several functions have

been proposed for h.

In (Starck et al., 2006), the most appropriate entropy for the weak lensing reconstruc-

tion problem has been found to be the NOISE-MSE entropy:

h(wj,k,l) =
1
σ2

j

∫ |wj |

0

u erfc(
| wj,k,l | −u√

2σj

)du, (33)

where σj is the noise standard deviation at scale j. The NOISE-MSE exhibits a

quadratic behavior for small coefficients and is very close to the l1 norm (i.e. the

absolute value of the wavelet coefficient) when the coefficient value is large, which is

known to produce good results for the analysis of piecewise smooth images.

A Multiscale Bayesian filter, called MRLens (Multi-Resolution for weak Lensing) (Starck

et al., 2006), based on the above method, has shown to outperform other techniques

(Gaussian, Wiener, MEM, MEM-ICF) in the reconstruction of dark matter. It has been

used to reconstruct the largest weak lensing survey ever undertaken with the Hubble

Space Telescope (Massey et al., 2007b). The result is shown Fig. 8, this map is the most

precise and detailed dark matter mass map, covering a large enough area to see extended

filamentary structures.

Figure 8. Map of the dark matter distribution in the 2-square degrees COSMOS field by (Massey

et al., 2007b): the linear blue scale shows the convergence field κ, which is proportional to the

projected mass along the line of sight. Contours begin at 0.004 and are spaced by 0.005 in κ.

In the paper (Teyssier et al., 2009), a study using a simulated full-sky weak lensing

map has shown that the Wiener filter is optimal to filter the large-scale structures but

not the non-Gaussianity of the field such as the clusters. On the contrary, the MRLens
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filter is very efficient to reconstruct the clusters but not the large-scale structures. From

these results, the authors indicate that an optimal method could be obtained by a smart

combination of these two filters.

5. 3D mapping of the dark matter

In this section, we will discuss methods to reconstruct the 3D dark matter field from

shear measurements.

5.1. Formalism

Following the flat-sky approach, the 3D convergence field can be reconstructed by

sorting the galaxies in several redshift bins. A convergence map can be computed from the

shear at each redshift bin using the relation 18. But, this reconstruction is unsatisfactory

because there are correlations between the convergence maps reconstructed at different

redshift bins. The reconstruction of a 3D dark matter map without correlations requires

to estimate the 3D density contrast δ or the 3D gravitational potential Φ, which is related

to the density contrast δ by Poisson’s equation:

∇2Φ = 4πGρmδa2 =
3
2
λ−2

H Ωma−1δ, (34)

where a is the cosmological scale factor, δ = (ρ− ρ̄)/ρ̄ is the density contrast, λH = 1/H0

is the Hubble length and Ωm is the present-day mass-density parameter.

The 3D gravitational potential Φ can be reconstructed using the weak lensing mea-

surements together with the redshifts for all galaxies of the field (Taylor, , 2003; Bacon

and Taylor, 2003; Heavens, 2003; Taylor et al., 2004). Indeed, assuming the Born approx-

imation (i.e. assuming the light path is unperturbed), the lensing potential φ is given by

:

φ(r) = 2
∫ r

0

dr′
(

fK(r)− fK(r′)
fK(r)fK(r′)

)
Φ(r′), (35)

where fK(r) is the angular diameter distance, which is a function of the comoving radial

distance r and the curvature K. This relation may be inverted to yield (Taylor, ):

Φ(r) =
1
2
∂rr

2∂rφ(r). (36)

But the lensing potential φ is not an observable. The observable is the reduced shear

gi(θ) = γi(θ)
1−κ(θ) . In the weak lensing regime, κ can be neglected and the observable becomes

the shear γi corresponding to the distortion of the lensed images of background galaxies.

An estimate of the lensing potential φ̃ from the shear field is given by the following

relation (Kaiser and Squires, 1993):

φ̃(r) = 2∂−4∂i∂jγij(r) (37)
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with γij =

 γ1 γ2

γ2 −γ1

 = (∂i∂j − 1
2δij∂

2)φ is the shear matrix.

The lensing potential φ is related to the convergence field by the following relation :

∇2φ = 2κ(θ) (38)

The density contrast δ is related to the convergence κ by a line of sight integral over

the lensing efficiency function W̄ :

[κi]k =
3H2

0

2c2
Ωm

∫ ∞

0

dr
W̄ i(r)fK(r)

a(r)
δ(fK(r)θk, r),

W̄ i(r) =
∫ ∞

0

dr′
fK(r′ − r)

fK(r′)

[
p(i)

z (z)
dz

dr

]
z=z(r′)

, (39)

where pi
z represents the ith bin of the probability distribution of sources as a function of

redshift.

With these sets of equations the 3D lensing potential, the 3D gravitational potential,

the 3D convergence and the 3D matter density fields can all be generated from combined

shear and redshift information.

Some authors have attempted to reconstruct the 3D lensing potential or the 3D grav-

itational potential (Bacon and Taylor, 2003; Massey et al., 2007b) in order to reconstruct

the 3D matter density field. But in the majority of papers relating to 3D lens mapping

(Hu and Keeton, 2002; Simon et al., 2009; VanderPlas et al., 2011), the reconstruction

of the 3D matter density field is derived from the convergence tomography. It consists

of two linear steps: a 3D convergence field is first derived from the shear measurements

sorted in several redshift bins using the relation 18; then, the 3D density contrast is

obtained by inversion of the relation 39. The resulting reconstruction is very noisy and

requires a regularization of the solution.

5.2. Filtering

Linear map-making can be expressed in terms of the general inverse problem:

db = Pbasa + nb (40)

where we seek an estimate ŝa from a data vector db that is a linear projection Pba of

the signal with measurement noise nb. sa can be the 3D density contrast or the 3D

gravitational potential and db can be the 3D shear field or the 3D convergence field.

Linear filters

A first linear approach is the maximum likelihood that searches for an estimate of the

signal ŝa that minimizes χ2:

χ2 = (db − Pbaŝa)tN−1
bb (db − Pbaŝa), (41)
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where Nbb is the noise covariance. Minimizing χ2 returns the linear estimator:

ŝa = Rabdb, (42)

where :

Rab = [P t
baN−1

bb Pba]−1P t
baN−1

bb . (43)

If Pba is invertible then Rab = P−1
ba and the estimator becomes independent of both

the signal and the noise. Note that minimizing χ2 is not the same as minimizing the

reconstruction noise Naa = 〈(ŝa − sa)(ŝa − sa)t〉. It minimizes Naa subject to the

constraint RabPba = I

A Bayesian approach can be used to set a penalty function H on the solution using

prior knowledge of the statistical properties of the signal and the noise. An estimate

of the signal can then be sought by minimizing χ2 + H. Defining the penalty function

H = ŝt
wS−1

aa ŝw, the minimization of χ2 +H returns the Wiener filtered estimate of the

signal ŝw = Rwbdb, where:

Rwb =
[
S−1

aa + P t
baN−1

bb Pba

]−1
P t

baN−1
bb (44)

Rwb = SaaP t
ba

[
PbaSaaP t

ba + Nbb

]−1
.

The classical Wiener filter definition (see equation 25) can be recovered by assuming the

data may be expressed as db = Isa + nb. Equation 45 then becomes:

Rwb = Saa [Saa + Nbb]
−1

, (45)

where Saa = 〈sast
a〉 and Nbb = 〈nbn

t
b〉. The Wiener filter reduces the reconstruction noise

Naa by using the expected noise properties as a prior on the solution (Hu and Keeton,

2002).

In the literature, no 3D Wiener filter has yet been proposed to process the full 3D

matter density field. In (Hu and Keeton, 2002), the authors apply a Wiener filter along

each individual line-of-sight, ignoring the correlation between different line of sights

(radial Wiener filter). In (Simon et al., 2009), the authors use two types of pseudo-3D

Wiener filter: a “radial Wiener filter” and a “transverse Wiener filter”. Both filters are

well adapted to filter the large-scale regime because the signal is Gaussian, but small

scales require a more efficient filtering. Moreover, both filters show a systematic shift

and stretch of the structures in the radial direction, and fail to account for correlations

either along the line of sight (transverse filter) or in the transverse direction (radial filter).

Non-Linear filters

Several non-linear filters have been proposed to filter the 3D matter density field.

The MEM filter that has been presented in section 4.4 has been introduced by (Hu and
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Keeton, 2002) to reconstruct dark matter halos in 3D matter distribution. The MEM filter

that is based on the Bayesian theory has already been applied in 2D matter distribution

(see (Bridle et al., 1998; Marshall et al., 2002)). In this filter the penalty function is an

entropy that is estimated from the full 3D weak lensing field. A fundamental problem

with the MEM filter is the difficulty in assessing the errors in the reconstruction.

Another non-linear approach that is a full-3D filter has been proposed by (Hu and

Keeton, 2002; VanderPlas et al., 2011), and consists in expressing the data in a new

set of uncorrelated orthogonal basis elements that are ranked by their signal-to-noise

ratio. This method is known as the Karhunen-Loeve transform or Singular Value

Decomposition, assuming the modes are the eigenvectors of the covariance matrix. A

direct noise reduction which does not require knowledge of the statical properties of the

signal is obtained by eliminating the lower signal-to-noise singular values.

The full reconstruction of the 3D dark matter distribution from weak lensing has only

been considered recently (Hu and Keeton, 2002; Taylor, 2003) because the finite size of

the earlier surveys did not allow for 3D mapping. Recently, the COSMOS survey (Massey

et al., 2007b,c) has been able to reconstruct the first 3D weak lensing map. Although the

results were limited by the finite size of the survey, they provide a framework for future

large weak lensing surveys like the future Euclid mission. The next step, is to develop

a full 3D Wiener filter, to extend the MRLens method from 2D to 3D, and possibly to

develop a combined filtering method.

6. Cosmological model constraints

Measurement of the distortions in images of background galaxies caused by large-

scale structures provides a direct way to study the statistical properties of the evolution

of structures in the Universe. Weak gravitational lensing measures the mass and can

thus be directly compared to theoretical models of structure formation. But because we

have only one realization of our Universe, a statistical analysis is required to do the

comparison. The estimation of the cosmological parameters from weak lensing data can

be seen as an inverse problem. The direct problem consisting of deriving weak lensing

data from cosmological parameters can be solved using numerical simulations, but the

inverse problem cannot be solved so easily because the N-body equations used by the

numerical simulations can not be inverted.

6.1. Methodology

A solution is to use analytical predictions for statistics of cosmic shear and to compare

with the values estimated from the data. A statistical analysis of the weak lensing field

is then required to constrain the cosmological parameters.
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The method that is usually used to constrain cosmological parameters from statistical

estimation is the maximum likelihood (see §4.4). Let’s estimate the statistic η(x, y) in

the weak lensing field to constrain the cosmological parameters p1 and p2. By assuming

the noise follows an uncorrelated and Gaussian distribution, the likelihood function L is

defined as follows:

L(p1, p2, p3) ≡ P (ηobs|ηmod) ∝ exp(−1
2
χ2(p1, p2, p3)), (46)

with:

χ2(p1, p2, p3) =
∑
x,y

(ηobs(x, y)− ηmod(x, y; p1, p2, p3))2

σ2(x, y)
, (47)

where ηmod is the analytic prediction depending on the two cosmological parameters (p1,

p2) and a nuisance parameter (p3). ηobs is the statistic estimation from the data. χ2 is

then a function of three parameters. A two-dimensional probability distribution can be

obtained by marginalizing the three-dimensional probability distribution function over

p3:

L(p1, p2) =
∫

dp3P (p3) exp(−1
2
χ2(p1, p2, p3)), (48)

Here P (p3) is the prior distribution function for the parameter p3, which is assumed to be

a known Gaussian distribution. Using L(p1, p2), we can define the 1, 2 and 3σ contours

on the two-dimensional (p1, p2) parameter space. The best-fit values for p1 and p2 can

also be easily determined by maximizing the likelihood function. Recent cosmic shear

results obtained from maximum likelihood maximization are given in (Fu et al., 2008;

Schrabback et al., 2010b).

The different cosmological parameters can be quantified using a variety of statistics

estimated either in the shear field or in the convergence field. Most lensing studies do

the statistical analysis in the shear field to avoid the inversion. But most of the following

statistics can also be estimated in the convergence field if the missing data are carefully

accounted for. A description of the different statistics that can be used to constrain

cosmological parameters is provided below.

6.2. Second-order statistics

The most common method for constraining cosmological parameters uses second-

order statistics of the shear field calculated either in real or Fourier space (or Spherical

Harmonic space). Whatever the second-order statistic that is considered, it can be eas-

ily related to the theoretical 3D matter power spectrum P (k, χ) by means of the 2D

convergence power spectrum Pκ(l).

– The convergence and shear power spectra Pκ(l) and Pγ(l):

The 2D convergence power spectrum Pκ(l) only depends on l = |l|, and is defined by:

〈κ̂(l)κ̂(l′)〉 = (2π)2δ(l− l′)Pκ(l), (49)
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where κ̂ is the Fourier transform of the 2D convergence κ.

The 2D convergence power spectrum Pκ(l) can be expressed as a function of the

3D matter power spectrum P (k, χ), the mass fluctuations δρ/ρ and cosmological

parameters (Refregier, 2003):

Pκ(l) =
9
16

(
H0

c

)4

Ω2
m

∫
dχ

[
g(χ)
ar(χ)

]2
P

(
l

r
, χ

)
, (50)

where a is the cosmological scale factor, H0 is the Hubble constant, Ωm is the matter

density parameter, χ the comoving distance, r = a−1DA with DA being the angular

diameter distance and g the lensing efficiency function.

Furthermore, in the case of weak lensing, the power spectra for the shear Pγ(l) and

the convergence Pκ(l) are the same.

In general there are advantages for cosmological parameter estimation in using Fourier

(or Spherical harmonic) statistics, because the Fast Fourier Transform (FFT) algo-

rithm can be used to estimate these power spectra rapidly, and the correlation prop-

erties are more convenient to express in Fourier space. However, for surveys with

complicated geometry due to the removal of bright stars, the spatial stationarity

is not satisfied and the missing data need proper handling. The problem of power

spectrum estimation from weak lensing data with missing data has been studied by

(Hikage et al., 2010). But real space statistics are largely used because they are easier

to estimate, although statistical error bars are harder to estimate.

– Shear variance 〈γ2(θ)〉 :

An example of real space second-order statistic is the shear variance 〈γ2(θ)〉, defined

as the variance of the average shear γ̄ evaluated in circular patches of varying radius

θs. The shear variance 〈γ2(θ)〉 can be related to the underlying 3D matter power

spectrum via the 2D convergence power spectrum Pκ by the following relation:

〈γ2(θ)〉 =
∫

dl

2π
lPκ(l)

J2
1 (lθs)
(lθs)2

, (51)

where Jn is the Bessel function of order n. The shear variance has been frequently

used in weak lensing analysis to constrain cosmological parameters (Maoli et al., 2001;

Hoekstra et al., 2006; Fu et al., 2008).

– Shear two-point correlation function ξi,j(θ) :

Another real space statistic is the shear two-point correlation function ξi,j(θ) defined

in §3, which is widely used because it is easy to implement and can be estimated even

for complex geometry. The shear two-point correlation function can also be related to

the underlying 3D matter power spectrum via the 2D convergence power spectrum Pκ.

The shear two-point correlation function is the Fourier transform of the convergence

power spectrum Pκ, which becomes a Hankel transform (also called Fourier-Bessel

transform) considering the isotropy of the Universe:

ξ+(θ) = ξ1,1(θ) + ξ2,2(θ) =
∫ ∞

0

dl

2π
lPκ(l)J0(lθ), (52)
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where J0 corresponds to the Bessel function at zero order.

The two-point correlation function is the most popular statistical tool used in weak

lensing analysis. It has been used in many recent weak lensing analyses to constrain

cosmological parameters (see for example (Benjamin et al., 2007; Hoekstra et al.,

2006; Fu et al., 2008)).

The simplest way to compute a two-point correlation function consists in counting the

number of background galaxy pairs separated by a distance d. But this brute force

approach has a complexity of O(N2), which becomes an important computational

load for large surveys. Recently, some progress has been made in this field, and new

methods have been developed to speed up the calculation of the two-point correlation

function by reducing the complexity to O(NlogN). These algorithms are based on

ordered binary trees that are an interesting data structure to scan the galaxy pairs

(Zhang and Pen, 2005; Moore et al., 2001). But to reach this complexity some ap-

proximations are required, such as neglecting large scales or binning the two-point

correlation function (Jarvis et al., 2004a; Zhang and Pen, 2005).

– Shear Tomography ξk,l
i,j (θ) :

The constraints on cosmological parameters can be significantly improved if the shape

measurements are combined with photometric redshifts. The 2D shear correlation

formalism can be extended to 3D shear by splitting the galaxy sample into redshift

bins from which the auto- and cross-correlations can be calculated. It is the so-called

cosmic shear tomography (Hu, 1999; Amara and Réfrégier, 2007). The shear cross-

correlation functions ξk,l
i,j (θ) between the bins k and l are defined as follows:

ξk,l
i,j (θ) = 〈γk

i (θ′)γl
j(θ

′ + θ)〉. (53)

The shear cross-correlation functions ξk,l
i,j (θ) can be related to the underlying 3D

matter power spectrum via the 2D convergence cross-power spectrum P k,l
κ by the

following relation:

ξk,l
+ (θ) =

∫ ∞

0

dl

2π
lP k,l

κ (l)J0(lθ), (54)

with:

P k,l
κ (l) =

9
16

(
H0

c

)4

Ω2
m

∫
dχ

gk(χ)gl(χ)
(ar(χ))2

P

(
l

r
, χ

)
, (55)

Shear tomography has been applied to real data (e.g. (Bacon et al., 2005; Schrabback

et al., 2010b)) to improve the constraints on cosmological parameters. The separation

of source galaxies into tomographic bins improves significantly the constraints on

cosmological parameters, and particularly those of dark energy that drives cosmic

expansion.

– Second-order statistics to separate E and B modes :

If the shear, estimated from the image shapes of distant galaxies, was only due to
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gravitational lensing, then it should consist only of a pure E-mode shear (see §4.2).

But the estimated shear may contains systematic errors. Therefore, the splitting of

the observed shear field into its E- and B-modes is of great importance to isolate the

gravitational shear from the shear components most likely not due to lensing. The

standard technique for this separation is the variance of the aperture mass 〈M2
ap〉

(Schneider et al., 1998), which corresponds to an average shear two-point correla-

tion.This statistic is the result of the convolution of the shear two-point correlation

with a compensated filter. Several forms of filters have been suggested which trade

locality in real space with locality in Fourier space. By considering the filter defined

by (Schneider, 1996) with a scale of θs, the variance of the aperture mass can be

expressed as a function of the 2D convergence power spectrum as follows:

〈M2
ap(θs)〉 =

∫
dl

2π
lPκ(l)

576J2
4 (lθs)

(lθs)4
. (56)

This method has been used in many weak lensing analyses to constrain cosmological

parameters (see for example (Van Waerbeke et al., 2002; Semboloni et al., 2006;

Hoekstra et al., 2006; Fu et al., 2008)). However, the lack of knowledge of the shear

correlation function on very small scales introduces a systematic bias on the variance

aperture method. More recently, new second-order statistic, i.e. the ring statistic

(Schneider and Kilbinger, 2007) and COSEBIs (Complete Orthogonal Sets of E-/B-

mode Integrals) (Schneider et al., 2010) have been proposed to overcome the practical

problem encountered by the aperture mass method.

Second-order statistics measure the Gaussian properties of the field, which limits

the amount of information extracted, since it is known that the low redshift Universe

is highly non-Gaussian on small scales. Indeed, gravitational clustering is a non linear

process and, in particular, at small scales the mass distribution is highly non-Gaussian.

Consequently, if only second-order statistics are used to place constraints on the cosmo-

logical model, degenerate constraints are obtained between some important cosmological

parameters (see for example (Hoekstra et al., 2002; Fu et al., 2008; Schrabback et al.,

2010b)).

6.3. Non-Gaussian statistics

If the weak lensing signal was Gaussian, it would be fully described by its angular

power spectrum. However, in the standard model of structure formation, fluctuations

that are initially Gaussian are amplified by gravitational collapse to produce a highly

non-Gaussian matter distribution. Thus, except at large scale, the convergence field is

highly non-Gaussian. On small scales, we can observe structures like galaxies and clus-

ters of galaxies, and on intermediate scales, we observe some filamentary structures. The
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characterization of this non-Gaussianity can be used to constrain the cosmological param-

eters. A possible solution is to consider higher-order statistics of the shear or convergence

field. The statistics presented below are estimated in the convergence field because the

non-Gaussianity is clearly visible in the field.

Third-order statistics are the lowest-order statistics which can be used to detect non-

Gaussianity. Many authors have already addressed the problem of three-point statistics

and semi-analytical predictions for the three-point correlation function and the bispec-

trum have already been derived (e.g. (Ma and Fry, 2000a,b; Scoccimarro and Couchman,

2001; Cooray and Hu, 2001)). However, the correction for missing data in the full higher-

order Fourier statistics remains an outstanding issue. An alternative solution (see §4.3)

has been proposed by (Pires et al., 2009b) to derive second-order and third-order statis-

tics and possibly higher-order statistics from an incomplete shear map.

– The Convergence Bispectrum Bκ(|l1|, |l2|, |l3|):

By analogy with second-order statistics, whatever the third-order statistic considered,

it can be easily related to the convergence bispectrum Bκ(|l1|, |l2|, |l3|), which is the

Fourier analog of the three-point correlation function:

Bκ(|l1|, |l2|, |l3|) ∝ 〈κ̂(|l1|)κ̂(|l2|)κ̂∗(|l3|)〉. (57)

where κ∗ is the complex conjugate of κ. The bispectrum only depends on distances

|l1|, |l2| and |l3|. (Scoccimarro et al., 1998) proposed an algorithm to compute the

bispectrum from numerical simulations using a Fast Fourier transform but without

considering the case of incomplete data. This method is used by (Fosalba et al., 2005)

to estimate the bispectrum from numerical simulations in order to compare it with

the semi-predictions of the analytic halo model.

– Convergence three-point correlation function ξi,j,k(θ):

The three-point correlation function ξi,j,k is easy to estimate and can be estimated

even for complex geometry. It is defined as follows :

ξi,j,k(θ) = 〈κ(θ1)κ(θ2)κ(θ3)〉. (58)

The same relation can be derived for the shear. It has been shown that tighter con-

straints can be obtained with the three-point correlation function (Takada and Jain,

2003). Estimating three-point correlation function from data has already be done

(Bernardeau et al., 2002) but can not be considered in future large data sets because

it is computationally too intensive. In the conclusion of (Szapudi et al., 2001), the au-

thors briefly suggested to use the p-point correlation functions with implementations

that are at best O(N(log N)p−1). However, it was not clear if this suggestion is valid

for the missing data case.
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– Third-order moment of the convergence Sκ:

A simpler quantity than the three-point correlation function is provided by measuring

the third-order moment of the convergence κ, also named the skewness, that measures

the asymmetry of the distribution (Pires et al., 2009a):

Sκ =
N∑

i=1

(κi − κ)3

(N − 1)σ3
. (59)

The convergence skewness is primarily due to rare and massive dark matter halos.

The distribution will be more or less skewed positively depending on the abundance

of rare and massive halos.

– Fourth-order moment of the convergence Kκ:

We can also estimate the fourth-order moment of the convergence, also known as

kurtosis, that measures the peakiness of a distribution (Pires et al., 2009a): The

kurtosis of the convergence κ is defined as follows :

Kκ =
N∑

i=1

(κi − κ)4

(N − 1)σ4
− 3, (60)

which is known as excess kurtosis. A high kurtosis distribution has a sharper “peak”

and flatter “tails”, while a low kurtosis distribution has a more rounded peak.

– The skewness and the kurtosis of the aperture mass 〈Mn
ap〉:

Similarly to the aperture mass variance described in the previous section, the skewness

and the kurtosis of the aperture mass have also been introduced to weak lensing

analyses to constrain cosmological parameters (see for example (Jarvis et al., 2004b;

Schneider et al., 2005)).

– Peak Counting (PC)

As said previously, the convergence field is highly non-Gaussian. Another approach

to look for non-Gaussianity is to perform a statistical analysis directly on the non-

Gaussian structures present in the convergence field. For example, galaxy clusters,

which are the largest virialized cosmological structures in the Universe, can provide

a unique way to focus on non-Gaussianity present at small scales. One interesting

method is the Peak Counting, which searches the number of peaks detected on the

field that differs from the cluster abundance because of the projection of the large

scale structures. The peak counting has been used to measure the number of peaks

detected on the convergence field by (Jain and Van Waerbeke, 2000; Hamana et al.,

2004; Kratochvil et al., 2010). Peaks can be also counted on the shear field using a

filtered version of the shear (Dietrich and Hartlap, 2010).

It has been proposed by (Pires et al., 2009a) to do a comparison between several

statistics and several representations. The comparison shows that the wavelet transform

makes statistics more sensitive to the non-Gaussianity present in the convergence field.
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In the same paper, several non-Gaussian statistics have been compared and the peak

counting estimated in a wavelet representation, called Wavelet Peak Counting, has been

found to be the best non-Gaussian statistic to constrain cosmological parameters. In this

paper, the comparison with bispectrum was restricted to the equilateral configuration. In

(Bergé et al., 2010), the authors shows that bispectrum using all triangle configurations

outperforms peak counting as a function of clusters’ mass and redshift.

7. Conclusion

The weak gravitational lensing effect, which is directly sensitive to the gravitational

potential, provides a unique method to map the 3D dark matter distribution and thus

understand the process of structure formation. This can be used to set tighter constraints

on cosmological models and to better understand the nature of dark matter and dark

energy. But the constraints derived from this weak lensing effect depend on the techniques

used to analyze the weak lensing signal, which is very weak.

The field of weak gravitational lensing has recently seen great success in mapping

the distribution of dark matter (Fig. 8). The next breakthrough will certainly happen

in the next decade thanks to the future full-sky missions designed to weak gravitational

lensing: ground-based missions like LSST (Large Synoptic Survey Telescope) or space-

based missions like Euclid or WFIRST (Wide Field Infrared Survey Telescope). The

primary goal of these missions is precisely to map very accurately the geometry of the

dark universe and its evolution by measuring shapes and redshifts of galaxies over the

entire sky. It will provide a 3D full-sky map of the dark and visible matter in the Universe

and will permit one to set tighter constraints on Dark Energy and other cosmological

parameters. For this to happen, new methods are now necessary to reach the accuracy

required by this survey, and ongoing efforts are needed to improve the standard analyses.

This chapter attempts to give an overview of the techniques that are currently used to

analyze the weak lensing signal along with future directions. It shows that weak lensing

is a dynamic research area in constant progress.

In this chapter, we have detailed the different steps of the weak lensing data analysis,

thus presenting various aspects of signal processing. For each problem, we have systemat-

ically presented a range of methods currently used, from earliest to up-to-date methods.

This chapter highlights the introduction of Bayesian ideas that have provided a way to

incorporate prior knowledge in data analysis as a major milestone in weak lensing analy-

sis. The next major step might possibly be the introduction of sparsity. Indeed, we have

presented new methods based on sparse representations of the data that have already

had some success.
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Mellier, Y., Mobasher, B., Semboloni, E., Shopbell, P., Tasca, L., and Van Waerbeke,

L.: 2007c, ApJS 172, 239

Mellier, Y.: 1999, Annual Review of Astronomy and Astrophysics 37, 127

Miller, L., Kitching, T. D., Heymans, C., Heavens, A. F., and van Waerbeke, L.: 2007,

MNRAS 382, 315

Moore, A. W., Connolly, A. J., Genovese, C., Gray, A., Grone, L., Kanidoris, N. I.,

Nichol, R. C., Schneider, J., Szalay, A. S., Szapudi, I., and Wasserman, L.: 2001, in

A. J. Banday, S. Zaroubi, and M. Bartelmann (eds.), Mining the Sky, pp 71–+

Munshi, D., Valageas, P., van Waerbeke, L., and Heavens, A.: 2008, Phys. Rep. 462, 67

Pantin, E. and Starck, J.: 1996, A&AS 118, 575
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