2D Mass Mapping OU-LE3 Weak Lensing - Lausanne 2015

François Lanusse Jean-Luc Starck, Adrienne Leonard, Sandrine Pires

CosmoStat Laboratory Laboratoire AIM, UMR CEA-CNRS-Paris 7, Irfu, SAp, CEA-Saclay

Substructure recovery using Flexion

Introduction

Main issues in Weak-Lensing mass-mapping:

- Missing data (mask and limited number densities)
- Shape noise
- Reduced shear
- \implies Most approaches avoid these issues by **smoothing**

Our goal

Write the mass-mapping as a single optimization problem with a **multi-scale sparsity prior** addressing all these issues.

Substructure recovery using Flexion

Optimization problem

$$\min_{\kappa} \frac{1}{2} \parallel (1-\kappa)g - \mathbf{P}\kappa \parallel_{2}^{2} + \lambda \parallel \mathbf{\Phi}^{t}\kappa \parallel_{1}$$

- g : reduced shear
- λ : regularization parameter

• P : lensing operator

• Φ : wavelet dictionary

A few remarks:

- Recovers the convergence from the reduced shear
- P can be defined with and without binning the shear
- Picambe hisposed in case of missing data.
- Sparse regularization of noise and missing data
- We use isotropic wavelets for $\Phi \implies$ Adapted to the recovery of cluster signal

Substructure recovery using Flexion

Optimization problem

$$\min_{\kappa} \frac{1}{2} \underbrace{\parallel (1-\kappa)g - \mathbf{P}\kappa \parallel_{2}^{2}}_{\text{Data fidelity term}} + \lambda \parallel \mathbf{\Phi}^{t}\kappa \parallel_{1}$$

g : reduced shear

P : lensing operator

 λ : regularization parameter

• Φ : wavelet dictionary

A few remarks:

- Recovers the convergence from the reduced shear
- P can be defined with and without binning the shear
- P can be ill-posed in case of missing data
- Sparse regularization of noise and missing data
- We use isotropic wavelets for Φ ⇒ Adapted to the recovery of cluster si

Cluster density mapping

Substructure recovery using Flexion

Optimization problem

$$\min_{\kappa} \frac{1}{2} \parallel (1-\kappa)g - \mathbf{P}\kappa \parallel_{2}^{2} + \lambda \qquad \underbrace{\parallel \mathbf{\Phi}^{t}\kappa \parallel_{1}}_{\text{Sparsity term}}$$

- g : reduced shear
 - λ : regularization parameter

- P : lensing operator
- Φ : wavelet dictionary

A few remarks:

- Recovers the convergence from the reduced shear
- R can be defined with and without binning the sheap
- P can be ill-posed in case of missing data
- Sparse regularization of noise and missing data
- We use isotropic wavelets for Φ
 - \implies Adapted to the recovery of cluster signal

Substructure recovery using Flexion

Proximal minimization algorithm

Primal-dual splitting:

$$\begin{cases} \kappa^{(n+1)} = \kappa^{(n)} + \tau \left(\nabla F(\kappa^{(n)}) + \mathbf{\Phi} \alpha^{(n)} \right) \\ \alpha^{(n+1)} = \left(\mathrm{Id} - \mathrm{ST}_{\lambda} \right) \left(\alpha^{(n+1)} + \mathbf{\Phi}^t (2\kappa^{(n+1)} - \kappa^{(n)}) \right) \end{cases}$$

adapted from Vu (2013)

- Fast and flexible algorithm
- Sparsity constraint λ estimated locally by noise simulations \implies Accounts for **survey geometry**, **varying noise levels**
- Same algorithm used for all the problems presented here

Cluster density mapping

Substructure recovery using Flexion

Handling missing data:

(a) Input

(b) Galaxy catalogue with 30 gal/arcmin 2

Cluster density mapping

Substructure recovery using Flexion

Handling missing data:

(a) Input

b) Kaiser-Squires with 1' bins

Cluster density mapping

Substructure recovery using Flexion

Handling missing data:

(a) Input

(b) Kaiser-Squires with 0.05' bins

Cluster density mapping

Substructure recovery using Flexion

Handling missing data:

(a) Input

(b) Kaiser-Squires with 0.05' bins + 0.1' smoothing

Cluster density mapping

Substructure recovery using Flexion

Handling missing data:

Cluster density mapping

Substructure recovery using Flexion

Handling shape noise:

(a) Input

(b) Kaiser-Squires + 0.5' smoothing

Cluster density mapping

Substructure recovery using Flexion

Handling shape noise:

(a) Input

(b) Kaiser-Squires + 1.0' smoothing

Cluster density mapping

Substructure recovery using Flexion

Handling shape noise:

(a) Input

- So far, we have only considered mapping from shear alone.
- The framework can be expanded to include additional information, in particular **redshifts**.

 \implies Allows cluster density mapping¹ (assuming knowledge of lens and sources redshifts)

¹Lanusse F., Starck J.-L., Leonard A., and Pires S. (2015), *High Resolution Weak Lensing Mass Mapping combining Shear and Flexion*, in prep.

Why avoid binning the shear catalogue ?

- ightarrow Allows to include individual galaxy redshifts :
 - $\min \frac{1}{q} \parallel (1 \varepsilon \kappa_{\infty})g \varepsilon \mathbf{P} \kappa_{\infty} \parallel_{2}^{2} + \lambda \parallel \Phi^{t} \kappa_{\infty} \parallel$
- with $\mathbf{Z} = \Sigma^{\infty}_{critic}/\Sigma_{critic}(z_t)$ and $\Sigma_{lens} = \kappa_{\infty}\Sigma^{\infty}_{critic}$

Individual redshifts have two benefits:

- · Directly map the surface mass density of the lens
- Mitigate the **mass-sheet degeneracy** when *κ* becomes significant (Bradac et al. 2004)

Why avoid binning the shear catalogue ? $\implies \text{Allows to include individual galaxy redshifts :}$ $\min_{\kappa_{\infty}} \frac{1}{2} \parallel (1 - Z\kappa_{\infty})g - Z\mathbf{P}\kappa_{\infty} \parallel_{2}^{2} + \lambda \parallel \Phi^{t}\kappa_{\infty} \parallel_{1}^{2}$ with $\mathbf{Z} = \Sigma_{critic}^{\infty} / \Sigma_{critic} / \Sigma_{critic} (z_{i})$ and $\Sigma_{lens} = \kappa_{\infty} \Sigma_{critic}^{\infty}$

nu viula religitimo havo triu licitoria.

- Directly map the surface mass density of the lens
- Mitigate the **mass-sheet degeneracy** when κ becomes significant (Bradac et al. 2004)

Why avoid binning the shear catalogue ? $\implies \text{Allows to include individual galaxy redshifts :}$ $\min_{\kappa_{\infty}} \frac{1}{2} \parallel (1 - \mathbb{Z}\kappa_{\infty})g - \mathbb{Z}\mathbf{P}\kappa_{\infty} \parallel_{2}^{2} + \lambda \parallel \Phi^{t}\kappa_{\infty} \parallel_{1}$ with $\mathbf{Z} = \Sigma_{critic}^{\infty} / \Sigma_{critic}(z_{i})$ and $\Sigma_{lens} = \kappa_{\infty} \Sigma_{critic}^{\infty}$

- Directly map the surface mass density of the lens
- Mitigate the **mass-sheet degeneracy** when κ becomes significant (Bradac et al. 2004)

Why avoid binning the shear catalogue ? $\implies \text{Allows to include individual galaxy redshifts :}$ $\min_{\kappa_{\infty}} \frac{1}{2} \parallel (1 - \mathbf{Z}\kappa_{\infty})g - \mathbf{Z}\mathbf{P}\kappa_{\infty} \parallel_{2}^{2} + \lambda \parallel \Phi^{t}\kappa_{\infty} \parallel_{1}$ with $\mathbf{Z} = \sum_{critic}^{\infty} / \sum_{critic} (z_{i})$ and $\sum_{lens} = \kappa_{\infty} \sum_{critic}^{\infty}$

Individual redshifts have two benefits:

- Directly map the surface mass density of the lens
- Mitigate the mass-sheet degeneracy when κ becomes significant (Bradac et al. 2004)

Substructure recovery using Flexion

Simulation set:

- Density maps from Bolshoi simulations (Kyplin et al. 2011)
- Virial masses $[10^{14} h^{-1} M_{\odot}]$: 10.9 3.02 2.70
- Cluster redshift: $z_{clus} = 0.30$
- Field size: 10×10 arcmin² $\sim 2 \times 2$ h^{-2} Mpc²

Figure : Convergence maps for sources at $z \to \infty$

Substructure recovery using Flexion

Simulated deep space-based galaxy catalogue (HST/ACS):

- Uniform angular distribution with $n_{gal} = 80$ gal/arcmin²
- Redshift distribution $z_{med} = 1.75$
- Strongly lensed sources (|g| > 1) excluded
- Gaussian photo-z errors $\sigma_z = 0.05(1+z)$
- Gaussian shape noise $\sigma_{\epsilon} = 0.30$

 \Longrightarrow We generate 100 independent noise and galaxy distribution realisations

Substructure recovery using Flexion

Cluster density mapping

Substructure recovery using Flexion

Field	Input $M_{\rm ap}$	Measured $M_{\rm ap}$
	$10^{14}~h^{-1} \dot{M_{\odot}}$	$10^{14}~h^{-1} M_{\odot}$.
1	4.08	3.91 ± 0.18
2	1.88	1.90 ± 0.20
3	1.59	1.60 ± 0.18

Table : Aperture mass in the central 2' of each field.

Cluster density mapping

Substructure recovery using Flexion

- Shear is noise dominated on small scales
 Substructure is lost when mapping from shear alone.
- Small-scale substructure can be recovered from strong lensing when available.
- Gravitational **Flexion** is useful in the intermediate regime.

Figure : Shear (left) and first flexion (right) (Bartelmann 2010)

Cluster density mapping

Figure : Noise power spectra for convergence estimator from shear and flexion

- Recent forward fitting method developed by Cain et al. (2011) and flexion mapping paper on substructure recovery Cain et al. (2015).
- We can integrate flexion in our reconstruction framework \implies Jointly fit shear and flexion

$$\min_{\kappa} \frac{1}{2} \parallel (1-\kappa) \begin{bmatrix} g \\ F \end{bmatrix} - \begin{bmatrix} \mathbf{P} \\ \mathbf{Q} \end{bmatrix} \kappa \parallel_2^2 + \lambda \parallel \mathbf{\Phi}^t \kappa \parallel_1$$

Adding flexion to our simulation set:

- Flexion noise $\sigma_F = 0.029 \text{ arcsec}^{-1}$ \implies Reported by Cain et al. (2011) for Abell 1689
- Simulate **reduced flexion**, strongly flexed galaxies excluded ($|F| > 1.0 \text{ arcsec}^{-1}$)

Cluster density mapping

Substructure recovery using Flexion

Figure : Reconstruction from one realisation

François Lanusse (CEA-Saclay) 2D Mass Mapping

Cluster density mapping

Substructure recovery using Flexion

Figure : Mean of 100 reconstructions

Cluster density mapping

Substructure recovery using Flexion

Benefits of adding flexion:

- Improvement on the recovered profiles below 0.5 arcmin
- Recovery of small-scale substructure at the 10 arcsec scale

Conclusion:

- New method to recover mass maps accounting for
 - Reduced shear
 - Missing data
 - Shape noise
- Particularly efficient to recover small scale information (useful to detect and map galaxy clusters)
- Can be extended by including individual redshifts and flexion for high resolution cluster density mapping
- Can be trivially extended to 3D mapping (work in progress)