
Darth Fader

Documentation written by Adrienne Leonard∗

October 17, 2013

1 Introduction

Darth Fader is a software package that computes the redshifts of a set of test galaxy spectra by cross-
correlation with a set of template spectra. The methodology is described in detail in
Machado et al., 2013, arXiv:1309.3579. The templates are generated from a training set of galaxy spectra
at zero redshift (with or without noise). The continuum is subtracted from the training set spectra in
an automated way, and eigentemplates computed from the continuum-free training spectra via Principal
Component Analysis. The most significant eigentemplates are retained for cross-correlation in order to
estimate the test galaxy redshifts. The test spectra undergo an identical continuum-subtraction procedure,
and line features are then identified by denoising using filtering in wavelet space according to a set False
Discovery Rate (FDR) threshold. Redshifts are then estimated by cross-correlation of the continuum-free
and (optionally) denoised test spectra with the retained eigentemplates, with the redshift corresponding to
the shift between the eigentemplate and test spectrum that minimises the χ2 distance between the two.
The redshift catalogue is then cleaned by removing galaxies whose spectra return fewer than a user-specified
number N of line features (in Machado et al., 2013, this critical number was taken to be N = 6). Tests
have demonstrated that galaxies in this category are less likely to obtain a correct redshift estimate after
cross-correlation with the eigentemplates. Their removal significantly increases the catastrophic failure rate
after cleaning, as compared with the full redshift catalogue.

Please note the following:

• Please follow the full installation instructions on http://cosmostat.org/darth_fader.html

prior to running the software.

• Darth Fader requires all spectra to be pixellated logarithmically with respect to wavelength. This
affects the redshift estimation portion of Darth Fader; the denoising and continuum estimation
routines will still function regardless of whether the the spectra are binned linearly or logarithmically
with respect to wavelength.

• Darth Fader assumes that all test spectra contain the same number of pixels, and have the same start
and end wavelengths. Similarly, it assumes that the training set spectra contain the same number of
pixels, and have the same start and end wavelengths.

• The training set and the test data do not need to cover the same wavelength range; in fact, it is
advantageous to have training set spectra covering a larger range of wavelength than the test data.
It is very important, however, that the training set and test data have the same logarithmic pixel scaling.

• Both templates and test data must be continuum-free before being passed to the redshift estimation
routine.

• The eigentemplates should be unit normalised.

• If using denoised data for the redshift estimation step, df get redshift.pro will return a very large value
for zest for galaxies that return no features after denoising.

∗adrienne.leonard@cea.fr

1

http://arxiv.org/abs/1309.3579
http://cosmostat.org/darth_fader.html


• The Darth Fader software is modular. This means that there is a separate routine for each step
in the Darth Fader process. Each of the routines called by darth fader.pro may be replaced by the
user’s own software designed for that purpose (e.g. one may replace our redshift estimation by cross-
correlation with a different redshift estimation script, whilst retaining the remainder of the Darth Fader
denoising/continuum-estimation/cleaning software).

2 The Software Package

Darth Fader consists of IDL routines, to be used in conjunction with the iSAP package1. The IDL routines
are described in detail below.

2.0 Main program: darth fader.pro

This is the main routine that runs the components of the Darth Fader software, described below.

Calling Sequence darth fader, spectra components, templates, redshift estimates,

clean catalogue, verbose = verbose, S TabPeaks = S TabPeaks, Data

= Data, Training = Training, TnoBaseline = TnoBaseline

Inputs All inputs are specified in df input params.pro

Calls df input params.pro, df del baseline.pro, df get eigenvectors.pro,

df get spectra components.pro, df get redshifts.pro, df peaks.pro

Options

verbose If set, Darth Fader will update you on its progress as it processes your data.

Returns

spectra components A structure containing the continuum (.baseline), emission line (.posline), ab-
sorption line (.negline), and noise (.noise) spectra as well as continuum-
subtracted, noisy data (.data nobaseline), and continuum-subtracted, denoised
data (.data clean)

templates Array containing the user-specified number of eigentemplates
redshift estimates Array containing the redshift estimates for each galaxy
clean catalogue Structure listing the locations of spectra meeting the N-peak criterion (.indices)

and the redshifts of those galaxies (.redshifts)

Keyword Returns

S TabPeaks Returns a structure containing the emission (.empeaks), absorption (.abspeaks),
and total (.allpeaks) peak count for each galaxy spectrum

Data Returns the original input data
Training Returns the original training set
TnoBaseline Returns the continuum-subtracted training set

2.1 Input parameters: df input params.pro

This is the most important routine for the user, as this is where the user is able to specify all the inputs
to the Darth Fader main code. This code is a function, called via the calling sequence indicated below. It
takes no command line inputs; all modifications must be done inside the body of the routine itself. This is
the only Darth Fader routine that the user should need to modify, as it specifies all the options given tot he
other Darth Fader routines.

1Software and documentation at http://cosmostat.org/software.html

2

http://cosmostat.org/software.html


Calling Sequence inputs = df input params()

User parameters

INDIR Directory where your input data are located. Note: Darth Fader assumes that all
training, test and template spectra are located in the same directory

incat Name of the .fits or .fits.gz file containing the test data as a 2D array. Note, spectra
must be log-binned with respect to wavelength

trainingcat Name of the .fits or .fits.gz file containing the training data as a 2D array. If
eigenvectors have already been computed, the user may specify trainingcat = ′ ′

rmscurve Name of the .fits or .fits.gz file containing the RMS noise curve associated with the
data. This may be either a 1D array, if the same noise curve is to be used for all
spectra, or a 2D array with a noise curve for each spectrum. Note the dimensions
must match those of incat. In the case of white Gaussian noise, specify rmscurve
= ′ ′

templatecat Name of the .fits or .fits.gz file containing the eigentemplates, if already computed.
One of trainingcat and templatecat must be specified

lstep Logarithmic pixel scale of the data δ such that λi = λmin10
iδ, where λ is in

angstroms
training lmin; train-
ing lmax

Minimum and maximum wavelength of the training set in angstroms∗

data lmin; data lmax Minimum and maximum wavelength of the data in angstroms∗
∗These data are used to compute the pixel shift between the end of the test spectra
and the end of the training set spectra. This can, alternatively, be hardwired by
specifying shiftpar

shiftpar Pixel shift between the end of the test spectra and the end of the training set
spectra

EstimRedshiftFromNoisyData Boolean operator specifying whether the cross-correlation should be car-
ried out using the denoised, continuum-free spectrum (recommended for
wavelength-dependent noise) or the noisy, continuum-free spectrum (rec-
ommended for white Gaussian noise)

ComputeEigentemplates Boolean operator; set to 0 if you have already computed eigentemplates and
specified templatecat

nscale Number of scales to use in the multiscale transforms for denoising. Set to 0 to
compute automatically from the data

EnergPercent Darth Fader will retain all eigentemplates such that the total eigenvalue weight of
the retained templates is ≥ EnergPercent

Ntemplates Forces the specified number of templates to be retained if set greater than 0,
overriding EnergPercent

FDR False discovery rate threshold to be used in the denoising steps, specified as n
where the FDR parameter α = 1 − erf(n/

√
2) is the probability outside the nσ

interval of the standard normal distribution
NpeakCrit Critical number of peaks required for cleaning
NsigmaPeak Detection level for peaks during peak counting
CleanCatalogue Boolean operator specifying whether to clean the catalogue using the N -peak cri-

terion
OUTDIR Directory in which to place the outputs of the Darth Fader run
OutputComponents,
CompFileName

Boolean operator specifying whether to output the spectra components as a fits
file CompFileName

OutputTemplates,
TempFileName

Boolean operator specifying whether to output the retained eigentemplates as a
fits file TempFileName

OutputAllEigen,
AllEigenName

Boolean operator specifying whether to output all eigentemplates as a fits file
AllEigenName

OutputRedshifts,
RedshiftFileName

Boolean operator specifying whether to output redshift estimates as a fits file
RedshiftFileName

OutputCleanCatalogue,
CleanFileName

Boolean operator specifying whether to output the cleaned catalogue as a fits file
CleanFileName

3



2.2 Continuum-subtraction: df del baseline.pro

This function takes a set of galaxy spectra and removes the continuum. This is called by darth fader.pro, or
may be used independently, and may take as an argument a single spectrum as a 1D array or many galaxy
spectra as a 2D array.
Calling Sequence Spectra no baseline = df del baseline(spectra, nscale = nscale, rms =

rms, baseline = baseline)

Inputs

spectra 1D or 2D array containing the galaxy spectrum information

Keyword Inputs

nscale Number of scales for the multiscale transforms
rms RMS error curve for the data, either as a 1D array (if the same noise curve applies

to all spectra) or a 2D array of the same dimensions as spectra.

Returns Continuum-subtracted spectra are returned in the named variable Spec-

tra no baseline

Keyword Returns

baseline Returns the continuum estimate to the named variable baseline

2.3 Computation of eigentemplates: df get eigenvector.pro

Calling sequence Templates = df get eigenvector(Training, AllEigen=AllEigen,

Denoising=Denoising, OptFil = OptFil, EnergPercent = EnergPercent,

NTemp = NTemp)

Inputs

Training 2D array containing the training spectra

Keyword Inputs

Denoising Set to 1 to denoise the training set before estimating the continuum
OptDen If Denoising is set, specify options if different from default
EnergPercent Eigenvector energy to be captured by the retained eigenvectors
NTemp Number of templates to be retained (overrides EnergPercent)

Returns Array of eigenvectors matching the EnergPercent or NTemp criteria specified re-
turned in the named variable Templates

Keyword Returns

AllEigen Returns the full eigenvector set in the named variable AllEigen

4



2.4 Decomposition of spectra: df get spectra components.pro

Calling sequence DecSpectra = df get spectra components(TabSpectra, RMS=RMS,

nscale=nscale, nsigma=nsigma)

Inputs

Spectra 1D or 2D array containing the test spectrum/spectra

Keyword Inputs

RMS Error curve(s) associated with the spectra
nscale Number of scales for the multiresolution denoising steps
nsigma FDR parameter expressed as n where α is the probability external to the nσ interval

of the standard normal distribution

Returns Structure containing the continuum estimate (.baseline), emission line spectrum
(.posline), absorption line spectrum (.negline), noise estimate (.noise), continuum-
subtracted noisy data (.data nobaseline) and continuum-subtracted noise-free data
(.data clean)

2.5 Redshift estimation: df get redshift.pro

Calling sequence Redshifts = df get redshift(Spectra, TabTemplate, lstep= lstep,

shiftpar=shiftpar, InfoTemp=InfoTemp)

Inputs

Spectra 1D or 2D array containing the continuum-subtracted (either noisy or denoised)
spectrum/spectra

TabTemplate Template spectra for cross-correlation

Keyword Inputs

lstep Logarithmic pixel scale
shiftpar Pixel shift between the end of the template spectra and the end of the test spectra

Returns Array of redshift estimates for each spectrum passed to the routine in the named
variable Redshifts. Note df get redshift.pro returns a very large value for zest for
spectra that return no features after denoising, when denoised data are used for
redshift estimation

Keyword Returns

InfoTemp Retains key information about the size and contents of the test spectra. Useful if
df get redshift.pro is called multiple times for spectra of the same dimensions and
properties.

2.6 Peak counting: df peaks.pro

Calling sequence TabPeak = df peaks(DecSpectra, noise=noise, nsigma=nsigma)

Inputs

DecSpectra Output of df get spectra components.pro: a structure containing the spectra com-
ponents.

Keyword Inputs

noise RMS error curve for the spectra
nsigma Detection threshold for peaks

Returns Structure containing the number of emission line (.empeaks), absorption line (.ab-
speaks) and total (.allpeaks) peaks detected in each spectrum

5



3 Example

On the Darth Fader webpage, we provde example data to benchmark your installation of the software. We
provide an example code example darth fader.pro which may be run in IDL to test the software. Before
running this example code, please ensure that the specified file paths in df input params.pro are correct, but
make no other modifications to the other codes.
Calling sequence example darth fader

Returns Reading data...
done!
Computing eigentemplates from training data...
Nbr of templates = 20, PercentEnergy = 99.927853
done!
Getting spectra components...
done!
Computing redshifts...
done!
Cleaning catalogue...
done!
% of catastrophic failures before cleaning = 22.027972
% of galaxies retained after cleaning = 75.804196
% of catastrophic failures after cleaning = 4.2896679

4 Contact

Please refer to the paper Machado et al., 2013, arXiv:1309.3579 for more detailed information about the
method used in this software. If you have any queries regarding installation or utilisation of the Darth Fader
software package, or of the methods described in Machado et al. (2013), please contact Adrienne Leonard.

5 Copyright

If you find this software useful for your application, we’d appreciate it if you would drop us a quick email to
tell us a bit about what your application!

Users are free to modify and use the Darth Fader software in whatever way they see fit. However, any
publications using this software should clearly cite Machado et al., 2013, arXiv:1309.3579 and the
CosmoStat software webpage.

6

http://arxiv.org/abs/1309.3579
mailto:adrienne.leonard@cea.fr
mailto:adrienne.leonard@cea.fr
http://arxiv.org/abs/1309.3579
http://cosmostat.org/software.html

	Introduction
	The Software Package
	Main program: darth_fader.pro
	Input parameters: df_input_params.pro
	Continuum-subtraction: df_del_baseline.pro
	Computation of eigentemplates: df_get_eigenvector.pro
	Decomposition of spectra: df_get_spectra_components.pro
	Redshift estimation: df_get_redshift.pro
	Peak counting: df_peaks.pro

	Example
	Contact
	Copyright

