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Astrophysics
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Missing Data in 2D observations

Ground-based observations
Weather
Day/Night Cycle
Temporary failure of instruments
Other factors

Space-based observations
Cosmic Rays
Nominal operations
Other factors
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Missing Data in 2D observations

Saturation Pattern

Saturation Trail i

Reflection ghosts .
Bad columns
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The missing data problem

The effect of the observational window will
depend on:

The percentage of missing data

The distribution of the missing data with respect to
the signal

How to correct from missing data ?
Correction factor
Mask deconvolution
Interpolation of the missing data
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Sparse inpainting
Sparse and Compressible signals
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Compressible signals

/

The top 1% of the coefficients
concentrate only 8.66% of the energy :
not sparse in the direct space
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Compressible signals

1% of the largest coefficients in
the Wavelet space
Wavelet transform (the others are set to zero)
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Compressible signals

The top 1% of the coefficients
concentrate 99.96% of the energy :
Sparse in the wavelet space
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Weak sparsity prior or compressible
signals

Index k' sorted by decreasing order
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Adapted representations

Local DCT (ahmed, 1975)
Stationary textures
Locally oscillatory

Wavelet transform (mailat, 1999)
Piecewise smooth
Isotropic structures

Curvelet transform (candes, 2006) y 4
Piecewise smooth
Edge structures
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Sparse Inpainting




Sparse Inpainting Algorithm
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Sparse Inpainting Algorithm

o6~ T T T T T 1
| Original Signal i
Masked Signal
-3 T T T B T
B 0.4 -
= i |
k=3
_. ¥ 0.2 .
e [ 1 1 1 | i
k=l = 1O 1= =2
. Max
Incomplete Signal “TE""1 " " %hreshold T T """ """ 7 -1-A--q1---
0.0 L P f PR l f | ,ﬂ_ PO T
a 200 400 800 800 1000

Fourier Transform

missDATA 2015, June 18-19 2015, Rennes 16



Sparse Inpainting Algorithm
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Sparse Inpainting Algorithm
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Sparse Inpainting Algorithm
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Sparse Inpainting

Elad et al., JACHA, 2005
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Outline

Applications
Application to Asteroseismology (1D signal)
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Asteroseismology
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Puissance spectrale (m/s)?/Hz

Asteroseismology
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Standard Methods

Direct Power spectrum estimation

Sine Wave Fitting y = acoswt + bsinwt
CLEAN

Amplitude

4
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time (days)
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Standard Methods

Direct Power spectrum estimation

Sine Wave Fitting
CLEAN
Power spectrum estimation based on
gap filling f o |
Linear interpolation
ARMA
Sparse Inpainting IR 1/
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Simulated data
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Space-based like data : SWF vs Inpainting

Pires et al., A&A, 2015
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Space-based like data : LI vs Inpainting
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Space-based like data : CLEAN vs Inpainting

Pires et al., A&A, 2015
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Space-based like data : ARMA vs Inpainting
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Processing time

For a time series of 5o days with a sampling of 32s (duty
cycle = 5o %):
SWEF

4 hours to compute one tenth of the full power spectrum
CLEAN

about 4 days to compute one tenth of the full power
spectrum
Linear Interpolation

Few seconds to compute the full power spectrum
Sparse Inpainting

4 min to compute the full power spectrum
MIARMA

Few hours to compute the full power spectrum
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Application on real data

Unveiling modes

lqoQ1 © @2 Q3 C o4 Q5 Q6 Qv Y CoQe Q10 Qi1 Q12 013 Q14 Q15 Q18

Flux (ppm)

IIII‘IIHFIII‘II

| do=BR.510768 \I$R="76.664476 7=2813.0415

||||‘||H<||||‘\IEI

T (days}

[t

-

PSD (ppm?/uHz)

9163796 14

0.1 1.0 10 100 50 100 150 200 250

Frequency (uHz) Frequency (uHz)

WUSSDATA 2015, June 18-19 2015, Rennes 32



K-Inpainting software

CosmoStat” _

An AIM laboratory @CEA Saclay

Home News Research People Projects Publications Software Products Events

K-Inpainting

Welcome to the K-Inpainting web page.

v
Ka’!er This page introduces the K-Inpainting software (Version 1.0)

In asteroseismology, the observed time series often suffers from incomplete time coverage due to repeated gaps. The
presence of periodic gaps may generate spurious peaks in the power spectrum that limit the analysis of the data. Various
methods have been developed to deal with gaps in time series data. We propose a new approach to handle the problem, the
so-called inpainting method. This technique, based on a sparsity prior, enables to judiciously fill-in the gaps in the data,

preserving the asteroseismic signal, as far as possible. This method can be applied both on ground and space-based data.
appears that the inpainting technique improves the oscillation modes detection and estimation. The impact of the

observational window function is reduced and the interpretation of the power spectrum is simplified. Additionally, it can be
used to study very long time series of many stars because its computation is very fast.

http://www.cosmostat.org/software/k-inpainting/

Power Density Spectrum for a duty cycle of 83% computed using an FFT on the inpainted time series.

Description

K-Inpainting (Inpainting for Kepler) is a software written in C++ with an IDL interface.

Download

MAisSDATA 2015, June 18-19 2015, Rennes 33



Application on real data

The Kepler Asteroseismic pipeline
developed by the Kepler AsteroScientic
Consortium (KASCQ) uses the software K-
Inpainting to correct the light curves from
missing data.

The official CoRoT pipeline will use K-
Inpainting software to correct the missing
data in both asteroseismic and exoplanet
channel.

Deadline production code delivery: end of May
2015

WUSSDATA 2015, June 18-19 2015, Rennes
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Outline

Application to Weak Lensing (2D signal)
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Gravitational Lensing effect

Abell 2218. Credit: NASA/ESA
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Cosmological model

Ordinaiy@Matter

o Dark Matter
20%

Dark Energy
76%
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Inversion Equations
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Missing data in Weak Lensing

WUSSDATA 2015, June 18-19 2015, Rennes 40



Inpainting of Weak Lensing data

1

min ||®1 k||, subject to Z ||72%5 — M(P; * k)||2 < €

Physical priors

yiobs — M .}/i
K=F*y +Px*y,

D’ is the DCT
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Missing Data in Weak Lensing
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Power spectrum estimation

Pires et al., MNRAS, 2009
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Pires et al., MNRAS, 2009
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FASTLens Code

Service d’Astrophysique
Laboratoire AIM

......
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FASTLENS (FAST STATISTICS FOR WEAK LENSING) :
FAST METHOD FOR WEAK LENSING STATISTICS AND MAP MAKING

S. Pires, J.L. Starck, A. Amara, A. Réfrégier and J. Fadili

The analysis of weak lensing data requires to account for missing data such as masking out of bright stars. To date,
the majority of lensing analyses uses the two point-statistics of the cosmic shear field. These can either be studied
directly using the two-point correlation function, or in Fourier space, using the power spectrum. The two-point
correlation function is unbiased by missing data but its direct calculation will soon become a burden with the
exponential growth of astronomical data sets. The power spectrum is fast to estimate buta mask correction should
be estimated. Others statistics can be used but these are strongly sensitive to missing data

The solution that is proposed by FASTLens is to properly fill-in the gaps with only NlogN operations, leading to
a complete weak lensing mass map from which we can compute straight forwardly and with a very good
accuracy any kind of statistics like power spectrum or bispectrum. We propose also a new method to compute fastly
and accurately the power spectrum and the bispectrum with a polar FFT algorithm.
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Fig. 1: Simulated
cosmalogical mod
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Application on real data

C )

-10 -5 O o

Reconstruction of the MACS J0717+3745 galaxy cluster field using Flens code
The filamentary structure (discovered in Jauzac et al.) is revealed
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END

http://www.cosmostat.org/people/sandrine-pires/
sandrine.pires@cea.fr
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