Missing Data in Astrophysics

Dark Matter

Asteroseismology

Sandrine Pires

Collaborators: J.L Starck, R. Garcia, S. Mathur, E. Jullo, J. Ballot, J. Fadili, R. Teyssier, A. Amara, A. Réfrégier, D. Stello

*miss*DATA 2015, June 18-19 2015, Rennes

Outline

- Missing data in Astrophysics
 - Origin of missing data
 - Characteristics of missing data
 Sparse inpainting
 - Sparse and Compressible signals
 - Inpainting
 - Applications
 - Application to Asteroseismology (1D signal)
 - Application to Weak Lensing (2D signal)

Astrophysics

Missing Data in 1D observations

- Ground-based observations
 - Weather
 - Day/Night Cycle
 - Temporary failure of instruments
 - Other factors
- Space-based observations
 - Cosmic Rays
 - Nominal operations
 - Other factors

Missing Data in 2D observations

míssDATA 2015, June 18-19 2015, Rennes

Reflection ghosts

Bad columns

The missing data problem

$$Y(t) = M(t)X(t)$$

- The effect of the observational window will depend on :
 - The percentage of missing data
 - The distribution of the missing data with respect to the signal
- How to correct from missing data ?
 - Correction factor
 - Mask deconvolution
 - Interpolation of the missing data

Outline

Missing data in Astrophysics Origin of missing data Characteristics of missing data Sparse inpainting Sparse and Compressible signals Inpainting Applications Application to Asteroseismology (1D signal) Application to Weak Lensing (2D signal)

Compressible signals

The top 1% of the coefficients concentrate only 8.66% of the energy : not sparse in the direct space

Compressible signals

Wavelet transform

1% of the largest coefficients in the Wavelet space (the others are set to zero)

Compressible signals

The top 1% of the coefficients concentrate 99.96% of the energy : Sparse in the wavelet space

Weak sparsity prior or compressible signals

Index k' sorted by decreasing order

Adapted representations

- Local DCT (Ahmed, 1975)
 - Stationary textures
 - Locally oscillatory
- Wavelet transform (Mallat, 1999)
 - Piecewise smooth
 - Isotropic structures
- Curvelet transform (Candès, 2006)
 - Piecewise smooth
 - Edge structures

Dictionary Learning

Beckouche et al., A&A, 2013

Data

Learned dictioanary

Sparse Inpainting

Elad et al., JACHA, 2005

Sparse Inpainting Elad et al., JACHA, 2005

míssDATA 2015, June 18-19 2015, Rennes

Outline

Missing data in Astrophysics Origin of missing data Characteristics of missing data Sparse inpainting Sparse and Compressible signals Inpainting Applications Application to Asteroseismology (1D signal) Application to Weak Lensing (2D signal)

Asteroseismology

Asteroseismology

*míss*DATA 2015, June 18-19 2015, Rennes

Standard Methods

- Direct Power spectrum estimation
 - Sine Wave Fitting $y = a \cos wt + b \sin wt$

Standard Methods

- Direct Power spectrum estimation
 - Sine Wave Fitting
 - CLEAN
- Power spectrum estimation based on gap filling
 - Linear interpolation
 - ARMA
 - Sparse Inpainting

Simulated data

Space-based like data : SWF vs Inpainting

Pires et al., A&A, 2015

mússDATA 2015, June 18-19 2015, Rennes

Space-based like data : LI vs Inpainting

míssDATA 2015, June 18-19 2015, Rennes

Space-based like data : CLEAN vs Inpainting

Pires et al., A&A, 2015

mússDATA 2015, June 18-19 2015, Rennes

Space-based like data : ARMA vs Inpainting

mússDATA 2015, June 18-19 2015, Rennes

Processing time

For a time series of 50 days with a sampling of 32s (duty cycle = 50 %):

- SWF
 - 4 hours to compute one tenth of the full power spectrum
- CLÉAN
 - about 4 days to compute one tenth of the full power spectrum
- Linear Interpolation
 - Few seconds to compute the full power spectrum
- Sparse Inpainting
 - 4 min to compute the full power spectrum
- MIÁRMA
 - Few hours to compute the full power spectrum

Application on real data : Unveiling modes

K-Inpainting software

K-Inpainting

Welcome to the K-Inpainting web page. This page introduces the K-Inpainting software (Version 1.0)

In asteroseismology, the observed time series often suffers from incomplete time coverage due to repeated gaps. The presence of periodic gaps may generate spurious peaks in the power spectrum that limit the analysis of the data. Various methods have been developed to deal with gaps in time series data. We propose a new approach to handle the problem, the so-called inpainting method. This technique, based on a sparsity prior, enables to judiciously fill-in the gaps in the data, preserving the asteroseismic signal, as far as possible. This method can be applied both on ground and space-based data. It appears that the inpainting technique improves the oscillation modes detection and estimation. The impact of the observational window function is reduced and the interpretation of the power spectrum is simplified. Additionally, it can be used to study very long time series of many stars because its computation is very fast.

http://www.cosmostat.org/software/k-inpainting/

Power Density Spectrum for a duty cycle of 83% computed using an FFT on the inpainted time series.

Description

K-Inpainting (Inpainting for Kepler) is a software written in C++ with an IDL interface.

Download

Download the K-Inpainting software

*múss*DATA 2015, June 18-19 2015, Rennes

Application on real data

- The **Kepler Asteroseismic pipeline** developed by the Kepler AsteroScientic Consortium (KASC) uses the software K-Inpainting to correct the light curves from missing data.
- The official CoRoT pipeline will use K-Inpainting software to correct the missing data in both asteroseismic and exoplanet channel.
 - Deadline production code delivery: end of May 2015

Outline

Missing data in Astrophysics Origin of missing data Characteristics of missing data Sparse inpainting Sparse and Compressible signals Inpainting Applications Application to Asteroseismology (1D signal) Application to Weak Lensing (2D signal)

Gravitational Lensing effect

Cosmological model

Weak Gravitational Lensing

Observer

Gravitational lens

Background galaxies

Gravitational lens míssDATA 2015, June 18-19 2015, Rennes

Inversion Equations

Missing data in Weak Lensing

Inpainting of Weak Lensing data

Missing Data in Weak Lensing

Mask pattern of the CFHTLS survey of 1° x 1° field with 20% of missing data Courtesy to J. Berge

Which Image is the Original One?

Power spectrum estimation

Pires et al., MNRAS, 2009

Relative Power spectrum error i.e. the normalized difference between the two upper curves of the left panel

Equilateral bispectrum estimation

Pires et al., MNRAS, 2009

FASTLens Code

http://www-irfu.cea.fr/Ast/fastlens_software.php

Application on real data

Jullo, Pires et al., MNRAS, 2014

Reconstruction of the MACS J0717+3745 galaxy cluster field using Flens code The filamentary structure (discovered in Jauzac et al.) is revealed

míssDATA 2015, June 18-19 2015, Rennes

http://www.cosmostat.org/people/sandrine-pires/

END

sandrine.pires@cea.fr

míssDATA 2015, June 18-19 2015, Rennes