

Weak Lensing Mass Maps in Euclid

Sandrine Pires AIM-CEA Saclay/CosmoStat sandrine.pires@cea.fr http://www.cosmostat.org/people/sandrine-pires/

RAS specialist disucssion meeting on Cosmology with Maps, London, February 12th, 2016

COSMOS Survey (HST)

FoV = 1.64 deg^{2} , ng = 67 gal/arcmin^2

Massey et al., Nature, 2007

CFHTLens Survey (CFHT)

ng ≈12 gal/arcmin²

DES Survey

FoV = 139 deg² of 5000 deg² ng \approx 5 gal/arcmin²

4

Weak Lensing Survey

The Euclid mission

Euclid Mission

- 6-year mission, to be lauched in
 2020
- 1.2m diameter miror, field of view : 0.5 deg²
- Wide Survey : 15000 deg² (1/3 of the full sky)
- Deep survey : 2 x 20 deg²
- Euclid Consortium
- 1200 members
- 130 laboratories from 14
 European countries + NASA/US

Euclid Reference Survey

I. Tereno et al., IAU, 2014

FoV = 15.000 deg^{2} , ng = 30 gal/arcmin^2

Why produce Weak Lensing Mass Maps for Euclid ?

Small field Weak Lensing Mass Maps

Clusters Characterization

Umetsu et al, ApJ, 2014

Other objects characterisation

Bullet Cluster, Clowe et al., ApJ, 2006

Why produce Weak Lensing Mass Maps for Euclid ?

Wide field Weak Lensing Mass Maps

Weak Lensing data analysis

Kilbinger et al., MNRAS, 2013

Weak Lensing field

Full-sky convergence map derived from the Horizon simulation

Weak Lensing Current state-of-the-art

Kilbinger et al., MNRAS, 2013

Peak Count

Euclid Weak Lensing Autumn, London, November 6th, 2015

 $n_g = 30 \text{ gal}/ \text{ arcmin}^2$, on a scale corresponding to $\theta = 1.85'$

Aperture Mass on shear catalogue	Purity	Completeness
2σ-threshold	10.77%	35.60%
3σ-threshold	33.15%	11.56%
Wavelet Transform on convergence map	Purity	Completeness
2σ-threshold	14.85%	36.31%
3σ-threshold	42.02%	13.11%
Wavelet Transform on convergence map	Purity	Completeness
MRLens Filter	75.37%	25.92%

Constraints on cosmological parameters

Pires, Leonard & Starck, 2012

Constraints on cosmological parameters

Pires, Leonard & Starck, 2009

Weak Lensing Survey Characteristics

Weak Lensing Maps Resolution

COSMOS

Euclid

CFHTLens

Noiseless simulation

2°

