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ABSTRACT

Context. This is the third in a series of papers that develop a new and flexible model to predict weak-lensing (WL) peak counts, which
have been shown to be a very valuable non-Gaussian probe of cosmology.
Aims. In this paper, we compare the cosmological information extracted from WL peak counts using different filtering techniques
of the galaxy shear data, including linear filtering with a Gaussian and two compensated filters (the starlet wavelet and the aperture
mass), and the nonlinear filtering method MRLens. We present improvements to our model that account for realistic survey conditions,
which are masks, shear-to-convergence transformations, and non-constant noise.
Methods. We create simulated peak counts from our stochastic model, from which we obtain constraints on the matter density Ωm,
the power spectrum normalisation σ8, and the dark-energy parameter wde

0 . We use two methods for parameter inference, a copula
likelihood, and approximate Bayesian computation (ABC). We measure the contour width in the Ωm-σ8 degeneracy direction and the
figure of merit to compare parameter constraints from different filtering techniques.
Results. We find that starlet filtering outperforms the Gaussian kernel, and that a including peak counts from different smoothing
scales helps to lift parameter degeneracies. Peak counts from different smoothing scales with a compensated filter show very little
cross-correlation, and adding information from different scales can therefore strongly enhance the available information. Measuring
peak counts separately from different scales yields tighter constraints than using a combined peak histogram from a single map that
includes multiscale information.
Conclusions. Our results suggest that a compensated filter function with counts included separately from different smoothing scales
yields the tightest constraints on cosmological parameters from WL peaks.

Key words. Gravitational lensing: weak, Cosmology: large-scale structure of Universe, Methods: statistical

1. Introduction

Without the need to assume any relationship between baryons
and dark matter, weak gravitational lensing (WL) is directly
sensitive to the total matter distribution. WL probes massive
structures in the Universe on large scales, providing information
about the late-time evolution of the matter, which helps analyz-
ing the equation of state of dark energy.

Recently, CFHTLenS (Heymans et al. 2012; Van Waerbeke
et al. 2013; Kilbinger et al. 2013; Erben et al. 2013; Fu et al.
2014, etc.) has shown that the third generation lensing surveys
provide interesting results on cosmological constraints. While
other surveys such as KiDS (Kuijken et al. 2015), DES (The
Dark Energy Survey Collaboration et al. 2015), and HSC are
expected to deliver results in coming years, cosmologists also
look forward to reaching higher precision with more ambitious
projects like Euclid, LSST, and WFIRST.

Several methods to extract information from WL exist. Un-
til now, a great focus has been put on two-point statistics, e.g.
the matter power spectrum. This is motivated by the fact that the
matter spectrum can be well modelled by theory on large scales.
However, due to complex gravitational interactions, the mat-
ter distribution becomes nonlinear and non-Gaussian on small
scales. In this case, not only the theoretical spectrum needs to

be corrected (Makino et al. 1992; Bernardeau et al. 2002; Bau-
mann et al. 2012; Carrasco et al. 2012), but also the rich non-
Gaussian information is discarded. For these reasons, including
non-Gaussian observables complementary to the power spec-
trum strongly enhances weak lensing studies.

A suitable candidate for extracting non-Gaussian informa-
tion is WL peak counts. These local maxima of projected mass
density trace massive regions in the Universe, and are thus a
probe of the halo mass function. According to Liu, J. et al.
(2015a), it turns out that peak counts alone constrain cosmol-
ogy better than the power spectrum, implying the importance of
non-Gaussian observables. This strengthens the motivation for
peak-count studies.

Previous analyses on peaks can be divided into two cate-
gories. The first category is concerned with cluster-oriented pur-
poses. Motivated to search for galaxy clusters using WL, these
studies (e.g. White et al. 2002; Hamana et al. 2004, 2012, 2015;
Hennawi & Spergel 2005; Schirmer et al. 2007; Gavazzi & Sou-
cail 2007; Abate et al. 2009) focus on very high peaks, in gen-
eral with signal-to-noise ratio (S/N) larger than 4, and study pu-
rity, completeness, positional offsets, the mass-concentration re-
lation, etc. A cross-check with galaxy clusters is often done. On
the other hand, the second category, which concerns cosmology-
oriented purposes, focuses on peaks with a wider range of S/N
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(& 1). Peaks from this range can not necessarily be identified
with massive clusters. They can also arise from large-scale struc-
ture projections, be spurious signals, or a mixture of all of these
cases. Studies for this purpose model true and spurious peaks
together and constrain cosmology. This second purpose is the
focus of this paper.

For cosmology-oriented purposes, correctly predicting the
total peak counts is essential. Until now, three methods have
been proposed: analytical models (Maturi et al. 2010, 2011; Fan
et al. 2010; Liu, X. et al. 2014, 2015b), modelling using N-
body simulations (Wang et al. 2009; Marian et al. 2009, 2010,
2011, 2012, 2013; Dietrich & Hartlap 2010; Kratochvil et al.
2010; Yang et al. 2011, 2013; Bard et al. 2013; Liu et al. 2014,
2015a, Martinet et al. 2015), and fast stochastic forward mod-
elling (Lin & Kilbinger 2015a,b). While analytical models strug-
gle when confronted by observational effects, N-body simula-
tions are very costly for parameter constraints. Motivated by
these drawbacks, Lin & Kilbinger (2015a, hereafter Paper I) pro-
posed a new model to predict WL peak counts, which is both fast
and flexible. It has been shown that the new model agrees well
with N-body simulations.

In WL, the convergence, which is interpreted as the projected
mass, is not directly observable, while the (reduced) shear is. To
reconstruct the mass, a common way is to inverse the relation be-
tween convergence and shear (Kaiser & Squires 1993; Seitz &
Schneider 1995). Then, to reduce the shape noise level, inverted
maps are usually smoothed with a Gaussian kernel. However,
inversion techniques create artefacts and modify the noise spec-
trum in realistic conditions. An alternative is to use the aperture
mass (Kaiser et al. 1994), which applies a linear filter directly on
the shear field. This is equivalent to filter the convergence with a
compensated kernel.

Besides, there also exists various nonlinear reconstruction
techniques. For example, Bartelmann et al. (1996) proposed
to minimize the error on shear and magnification together.
Other techniques are sparsity-based methods such as MRLens
(Starck et al. 2006), FASTLens (Pires et al. 2009b), and Glimpse
(Leonard et al. 2014). These approaches aim to map the pro-
jected mass through a minimization process.

Among these different filtering methods, some studies for
optimal peak selection, such as Maturi et al. (2005) and Hen-
nawi & Spergel (2005), have been made. These methods are op-
timal in different senses. On the one hand, Maturi et al. (2005)
modelled large-scale structures as “noise” with respect to clus-
ters. Following this reasoning, given a halo density profile on a
given scale, they obtained the ideal shape for the smoothing ker-
nel. On the other hand, Hennawi & Spergel (2005) constructed a
tomographic matched filter algorithm. Given a kernel shape, this
algorithm was able to determine the most probable position and
redshift of presumed clusters. Actually, these two studies display
two different strategies for dealing with multiple scales. The sep-
arated strategy (followed implicitly by Maturi et al. 2005, 2010;
see also Liu et al. 2015a) applies a series of filters at different
scales. Cosmological constraints are then derived by combining
the peak abundance information obtained in each filtered WL
map. In the combined strategy (followed e.g. by Hennawi &
Spergel 2005; Marian et al. 2012), sometimes called mass map-
ping, the significance from different scales are combined into a
single filtered map from which we estimate peak abundance and
derive constraints.

Up to now, the question of optimal filtering for cosmology-
oriented purposes remains unsolved. For cluster-oriented pur-
poses, the comparison is usually based on purity and complete-
ness (Hennawi & Spergel 2005; Pires et al. 2012; Leonard et al.

2014). However, for cosmology-oriented purposes, since we are
interested in constraining cosmological parameters, we should
focus on indicators like the Fisher matrix, the figure of merit
(FoM), etc. So far, no study has compared filtering techniques
with regard to these indicators. This will be the approach that we
adopt here for comparison.

In this paper, we address the following questions:

– For a given kernel shape, with the separated strategy, what
are the optimal characteristic scales?

– Which can extract more cosmological information, the com-
pensated or non-compensated filters?

– Which can extract more cosmological information, the sepa-
rated or combined strategy?

– How do nonlinear filters perform?

To obtain the constraints, we use two statistical techniques:
the copula likelihood and approximate Bayesian computation
(ABC). To perform the comparison, we use two indicators
to measure the tightness of constraints. An example for this
methodology has been shown by Lin & Kilbinger (2015b, here-
after Paper II), on the comparison between different definitions
of data vector.

Compared to Paper I and Paper II, this study improves the
model to account for more realistic observational features. We
apply a redshift distribution for source galaxies, include masks,
construct the convergence κ from the reduced shear instead of
computing κ directly, test different filters, determine the noise
level locally, and include the equation of state of dark energy for
the constraints.

The paper is structured as follows. We begin with theoretical
basics in Sect. 2. Then, we introduce the different filters used in
this study in Sect. 3. In Sect. 4, we describe the methodology
adopted in this study. In Sect. 5, we show our results both from
the likelihood and ABC. And finally, a discussion is presented in
Sect. 6.

2. Theoretical basics

2.1. Mass function

The halo mass function indicates the population of dark matter
halos, depending on mass M and redshift z. This variation is usu-
ally characterized by the quantity f (σ) varying with regard to the
density contrast dispersion of the matter field σ(z,M). Defining
n(z, <M) as the halo number density at z with mass less than M,
the function f is defined as

f (σ) ≡
M
ρ̄0

dn(z, <M)
d lnσ−1(z,M)

, (1)

where ρ̄0 is the background matter density at the current time.
The quantity σ(z,M) ≡ D(z)σ(M) can be furthermore defined as
the product of the growth factor D(z) and σ(M), the dispersion
of the smoothed matter field with a top-hat sphere of radius R
such that M = ρ̄0(4π/3)R3.

Several mass function models have been proposed (Press
& Schechter 1974; Sheth & Tormen 1999, 2002; Jenkins et al.
2001; Warren et al. 2006; Tinker et al. 2008; Bhattacharya et al.
2011). Throughout this paper, we assume the universality of the
mass function and adopt the model from Jenkins et al. (2001),
which gives

f (σ) = 0.315 exp
(
−

∣∣∣lnσ−1 + 0.61
∣∣∣3.8) . (2)
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2.2. Halo density profiles

We assume in this work that halos follow Navarro-Frenk-White
(NFW) density profiles (Navarro et al. 1996, 1997). The trun-
cated version of these profiles is defined as

ρ(r) =
ρs

(r/rs)(1 + r/rs)2 Θ(rvir − r), (3)

where Θ is the Heaviside step function. The NFW profiles are
parametrized by two numbers: the central mass density ρs and
the scalar radius rs. Depending on the convention, these two
quantities can have different definitions. A universal way to ex-
press them is as follows:

rs ≡
r∆

c
and ρs ≡ ρref∆ ·

1
3

f c3, (4)

where c is the concentration parameter and

f ≡
1

ln(1 + c) − c/(1 + c)
. (5)

Here, ρref is the reference density, which may be the current crit-
ical density ρcrit,0, the critical density at z: ρcrit(z), the current
background density ρ̄0, or the background density at z: ρ̄(z). The
factor ∆ is the virial threshold above which halos are considered
bound, which means that M = ρref∆ · 4πr3

∆
/3. This may be a

redshift-dependent formula ∆vir(z), or a constant such as 200 or
500. In this paper, we adopt the definitions below:

rs ≡
rvir

c
(6)

ρs ≡ ρ̄(z)∆vir(z) ·
1
3

f c3, (7)

where rvir is the physical virial radius and ∆vir(z) is a fitting func-
tion for a wCDM model, taken from Eqs. (16) and (17) from
Weinberg & Kamionkowski (2003).

The concentration parameter c is redshift- and mass-
dependent (Bullock et al. 2001; Bartelmann et al. 2002; Dolag
et al. 2004). We use the expression proposed by Takada & Jain
(2002), which leads to

c(z,M) =
c0

1 + z

(
M
M?

)−β
, (8)

where the pivot mass M? satisfies the condition δc(z = 0) =
σ(M?), where δc is the critical threshold for the spherical col-
lapse model, given by Eq. (18) from Weinberg & Kamionkowski
(2003).

2.3. Weak gravitational lensing

Consider a source to which the comoving distance from the ob-
server is w. From the Newtonian potential φ, one can derive the
lensing potential ψ, following (see, e.g., Schneider et al. 1998)

ψ(θ, w) ≡
2
c2

∫ w

0
dw′

fK(w − w′)
fK(w) fK(w′)

φ
(
fK(w′)θ, w′

)
, (9)

where θ is the coordinates of the line of sight, fK the comoving
transverse distance, and c light speed. At the linear order, the
lensing distortion is characterized by two quantities, the conver-
gence κ and the shear γ1 + iγ2, given by the second derivatives

of ψ:

κ ≡
1
2

(
∂2

1ψ + ∂2
2ψ

)
, (10)

γ1 ≡
1
2

(
∂2

1ψ − ∂
2
2ψ

)
, (11)

γ2 ≡ ∂1∂2ψ. (12)

In other words, the linear distortion matrix A(θ), defined as
Ai j(θ) = δi j − ∂i∂ jψ(θ) where δi j is the Kronecker delta, can
be parametrized as

A(θ) =

(
1 − κ − γ1 −γ2
−γ2 1 − κ + γ1

)
. (13)

Furthermore, the Newtonian potential is related to the matter
density contrast δ via Poisson’s equation in comoving coordi-
nates:

∇2φ =
3H2

0Ωm

2a
δ. (14)

This provides an explicit expression of κ as

κ(θ, w) =
3H2

0Ωm

2c2

∫ w

0
dw′

fK(w − w′) fK(w′)
fK(w)

δ
(
fK(w′)θ, w′

)
a(w′)

,

(15)

where H0 is the Hubble parameter, Ωm the matter density, and
a(w′) the scale factor at the epoch to which the comoving dis-
tance from now is w′.

The lensing signal contribution from halo with truncated
NFW profiles is known. Defining θs = rs/D` as the ratio of the
scalar radius to the angular diameter distance of the lens, if the
density of the region not occupied by halos is assumed to be
identical to the background, the convergence and the shear are
given by computing the projected mass, which leads to

κproj(θ) =
∑
halos

κhalo(θ) and γproj(θ) =
∑
halos

γhalo(θ) (16)

with

κhalo(θ) =
2ρsrs

Σcrit
Gκ

(
θ

θs

)
and γhalo(θ) =

2ρsrs

Σcrit
Gγ

(
θ

θs

)
, (17)

where rs and ρs are respectively given by Eqs. (6) and (7), θ is
the angular separation between the source and the center of the
halo, and Σcrit ≡ (c2/4πG)(Ds/D`D`s) with G the gravitational
constant, Ds the angular diameter distance of the source, and D`s
the angular diameter distance between the lens and the source.
According to Takada & Jain (2003a,b), the dimensionless func-
tions Gκ and Gγ are

Gκ(x) =



not defined if x = 0,

−
1

1 − x2

√
c2 − x2

c + 1
+

1
(1 − x2)3/2 arcosh

[
x2 + c

x(c + 1)

]
if 0 < x < 1,

c + 2
3(c + 1)

·

√
c2 − 1
c + 1

if x = 1,

1
x2 − 1

√
c2 − x2

c + 1
−

1
(x2 − 1)3/2 arccos

[
x2 + c

x(c + 1)

]
if 1 < x ≤ c,

0 if x > c,
(18)

Article number, page 3 of 14



A&A proofs: manuscript no. Submit1

and

Gγ(x) =

not defined if x = 0,

1
x2(c + 1)

[
2 − x2

1 − x2

√
c2 − x2 − 2c

]
+

2
x2 ln

[
x(c + 1)

c +
√

c2 − x2

]
+

2 − 3x2

x2(1 − x2)3/2 arcosh
[

x2 + c
x(c + 1)

]
if 0 < x < 1,

1
3(c + 1)

[
11c + 10

c + 1

√
c2 − 1 − 6c

]
+ 2 ln

[
c + 1

c +
√

c2 − 1

]
if x = 1,

1
x2(c + 1)

[
2 − x2

1 − x2

√
c2 − x2 − 2c

]
+

2
x2 ln

[
x(c + 1)

c +
√

c2 − x2

]
−

2 − 3x2

x2(x2 − 1)3/2 arccos
[

x2 + c
x(c + 1)

]
if 1 < x ≤ c,

2
f x2 if x > c.

(19)

For computational reasons, it is useful to write 2ρsrs =
M f c2/2πr2

vir, which can be obtained from Eqs (6) and (7).

2.4. Local noise level

In most cases, the galaxy shape noise is assumed to be Gaussian.
More precisely, both components of the ellipticity ε = ε1 + iε2
follow the same Gaussian distribution. We note σ2

ε = σ2
ε1

+σ2
ε2

as
the sum of the variances. In this case, the noise for the smoothed
convergence is also Gaussian, and its variance is given by (see
e.g. Van Waerbeke 2000)

σ2
noise =

σ2
ε

2ngal
·
‖ W ‖22
‖ W ‖21

, (20)

where ngal is the galaxy number density and ‖ W ‖p stands for the
p-norm of W which is the smoothing kernel. The kernel does not
need to be normalized because of the denominator in Eq. (20).
For example, if W is Gaussian with width θker, ‖ W ‖22 / ‖ W ‖21=

1/2πθ2
ker. For the starlet (see Sect. 3), ‖ W ‖22= 5(2/5 + 5/63)2 −

2(1/3 + 1/5 + 1/21 + 1/48)2 ≈ 0.6522 can be solved analytically.
However, Eq. (20) is the global noise level, which implies

that sources are distributed regularly. In realistic conditions, ran-
dom fluctuations, mask effects, and clustering of source galax-
ies can all lead to irregular distributions, which results in a non-
constant noise level. To properly take this into account, we define
the variance of the local noise as

σ2
noise(θ) =

σ2
ε

2ngal
·

∑
i W2(θi − θ)(∑

i |W(θi − θ)|
)2 , (21)

where θi is the position of the i-th galaxy, and i runs over all
(non-masked) galaxies under the kernel W. Equation (21) is also
valid for the aperture mass (see next section), by replacing W
with Q (Schneider 1996).

3. Filtering

3.1. Linear filters

In this work, we vary the filtering technique and study its impact
on peak counts. Here, we present the linear filters W used in this

study. The description of the nonlinear technique can be found
in Sect. 3.2.3. Let θker the size of the kernel and x = θ/θker. Then,
the Gaussian smoothing kernel can be simply written as

W(x) ∝ exp
(
−x2

)
. (22)

The second kernel that we study is the 2D starlet function
(Starck et al. 2002). It is defined as

W(x, y) = 4φ(2x)φ(2y) − φ(x)φ(y), (23)

where φ is the B-spline of order 3, given by

φ(x) =
1

12

(
|x − 2|3 − 4|x − 1|3 + 6|x|3 − 4|x + 1|3 + |x + 2|3

)
.

(24)

Because of the property the B-spline, the starlet is a compensated
function with compact support in [−2, 2] × [−2, 2]. It does not
conserve circular symmetry, but its isolines tend to be round.
Since the starlet is compensated, it is similar to the U function of
the aperture mass, which is the last linear case that we consider.

The aperture mass Map can be obtained from all pairs of
filters (U,Q) such that (1) U is circularly symmetric, (2) U
is a compensated function, and (3) filtering the convergence
field with U is equivalent to applying Q to the tangential shear
γt(θ = θeiϕ) ≡ −γ1 cos(2ϕ) − γ2 sin(2ϕ), where ϕ is the complex
angle of the source position with regard to the kernel center. With
these condition, convolving γt with Q results in a filtered conver-
gence map that is not affected by the mass-sheet degeneracy and
the inversion problem.

To satisfy the third condition, Q has to be related to U by

Q(θ) ≡
2
θ2

∫ θ

0
dθ′ θ′U(θ′) − U(θ). (25)

In this case, Map is given by

Map(θ) ≡
∫

d2θ′ U(θ)κ(θ − θ′) =

∫
d2θ′ Q(θ)γt(θ − θ′). (26)

Here, we are particularly interested in the Q function proposed
by Schirmer et al. (2004) and Hetterscheidt et al. (2005), given
by

Q(x) ∝
tanh(x/xc)

(x/xc)
(
1 + exp(a − bx) + exp(−c + dx)

) , (27)

with a = 6, b = 150, c = 47, d = 50 to have a cutoff around
x = 1. Also, we set xc = 0.1 as suggested by Hetterscheidt et al.
(2005). Note that x = θ/θker is the distance to the center of the
filter normalized by the kernel’s size.

3.2. A sparsity-based nonlinear filter

In this section, we introduce a nonlinear filtering technique using
the sparsity of signals.

3.2.1. Sparse representation

In signal processing, a signal is sparse in a specific representation
if most of the information is contained in only a few coefficients.
This means that either only a finite number of coefficients is non
zero, or the coefficients decrease fast when rank-ordered.

A straightforward example is the family of sine functions.
In the real space, sine functions are not sparse. However, they
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Fig. 1. Left panel: the profile of the 2D starlet. It has a finite support [-2,
2]. Right panel: the bird-eye view of the 2D starlet.

are sparse in the Fourier space since they become the Dirac
delta functions. More generally, periodic signals are sparse in
the Fourier space.

Why is this interesting? Because white noise is not sparse
in any representation. Therefore, if the information of the signal
can be compressed into a few strong coefficients, it can easily
be separated from the noise. This concept of sparsity has been
widely used in the signal processing domain for applications
such as denoising, inpainting, deconvolution, inverse problem,
or other optimization problems (Daubechies et al. 2004; Candes
& Tao 2006; Elad & Aharon 2006; Candès et al. 2008; Fadili
et al. 2009). Examples can also be found for studying astophysi-
cal signals (Lambert et al. 2006; Pires et al. 2009b; Bourguignon
et al. 2011; Carrillo et al. 2012; Bobin et al. 2014; Ngolè Mboula
et al. 2015; Lanusse et al. 2016).

3.2.2. Wavelet transform

From the previous section, one can see that the sparsity of a
signal depends on its representation basis. In which basis is the
weak lensing signal sparse? A promising candidate is the wavelet
transform which decomposes the signal into a family of scaled
and translated functions. Wavelet functions are all functions ψ
which satisfy the admissibility condition:∫ +∞

0
|ψ̂(k)|2

dk
k
< +∞. (28)

One of the property implied by this condition is
∫
ψ(x)dx = 0,

which restricts ψ to a compensated function. In other words, one
can consider wavelet functions as highly localized functions with
a zero mean. Such a function ψ is called the mother wavelet,
which can generate a family of daughter wavelets such as

ψa,b(x) =
1
√

a
ψ

(
x − b

a

)
, (29)

which are scaled and translated versions of the mother ψ.
The wavelet transform (see e.g. Chaps. 2 and 3 of Starck

et al. 2002) refers to the decomposition of an input image into
several ones of the same size each associated to a specific scale.
Due to the property of wavelet functions, each resulting image
gives the details of the original one at different scales. If we stack
all the images, we recover the original signal.

In the peak-count scenario, peaks which are generated
by massive clusters are considered as signals. Like clusters,
these signals are local point-like features, and therefore have
a sparse representation in the wavelet domain. As described in
Sect. 3.2.1, white noise is not sparse. So one simple way to re-
duce the noise is to transform the input image into the wavelet

domain, set a relatively high threshold λ, cut out weak coeffi-
cients smaller than λ, and reconstruct the clean image by stack-
ing the thresholded images. In this paper, we use the 2D starlet
function as the mother wavelet, given by Eq. (23), which satis-
fies the admissibility condition. As shown by Fig. 1, it highlights
round features as we assume for dark matter halos.

3.2.3. The MRLens filter

In this study, we apply the nonlinear filtering technique Mul-
tiResolution tools for gravitational Lensing (MRLens, Starck
et al. 2006) to lensing maps. MRLens is an iterative filtering
based on Bayesian framework that uses a multiscale entropy
prior and the false discovery rate (FDR, Benjamini & Hochberg
1995) which allows to derive robust detection levels in wavelet
space.

More precisely, MRLens first applies a wavelet transform
to a noisy map. Then, in the wavelet domain, it determines the
threshold by FDR. The denoising problem is regularized using a
multiscale entropy prior only on the non-significant wavelet co-
efficients. Readers are welcome to read Starck et al. (2006) for a
detailed description of the method.

Note that, whereas Pires et al. (2009a) selected peaks from
different scales separately before final reconstruction, in this pa-
per, we count peaks on the final reconstructed map. Actually, the
methodology of Pires et al. (2009a) is close to filtering with a
lower cutoff in the histogram defined by FDR, thus similar to
starlet filtering. With the vocabulary defined in Sect. 1, Pires
et al. (2009a) followed the separated strategy and here we at-
tempt the combined strategy. This choice provides a comparison
between cosmological information extracted with two strategies,
by comparing starlet filtering to the MRLens case.

4. Methodology

In this section, we review our peak count model, and detail the
improvements we introduce here compared to Paper I and Paper
II.

4.1. General concept of our model

In Paper I and Paper II, we proposed a fast stochastic model for
predicting weak lensing peak counts. The general concept is to
bypass the complex and time-consuming N-body process. Our
model generates “fast simulations” based on halo sampling, and
counts peaks from lensing maps obtained from these simulation
boxes, as illustrated in Fig. 2.

To achieve this, we make two major assumptions. First, dif-
fuse matter is considered to contribute little to peak counts. Sec-
ond, we suppose that halo correlation has a minor impact. In
Paper I, we found that combining these two assumptions yields
a good approximation for the peak count prediction.

The advantages provided by our model can be characterized
by three properties: they are fast, flexible, and they provide the
full PDF information. First, sampling from the mass function is
very efficient. It requires about 10 seconds for creating a 36-deg2

field on a single-CPU computer. Second, our model is flexible
because survey-related properties, such as masking and realistic
photo-z errors, can be included in a straightforward way thanks
to its forward nature. Third, because of the stochasticity, the PDF
of the observables is available. As we showed in Paper II, this
PDF information allows us not only to estimate the covariance
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Fig. 2. Illustration of our model in four panels.

matrix, but also to use other more sophisticated inference meth-
ods, such as approximate Bayesian computation.

Our model is implemented in the language C as the software
Camelus, which is available on GitHub ]1.

4.2. Settings for the pipeline: from the mass function to peak
catalogues

In this section, we explain in detail how peak counts are gen-
erated from an initial cosmological model. We first sample ha-
los from Eq. (2). The sampling range is set to M = [5 ×
1012, 1017] M�/h. This is done for 30 equal redshift bins from
0 to 3, on a field adequately larger than 36 deg2 so that border
effects are properly eliminated. For each bin, we estimate the
volume of the slice, the mass contained in the volume and in the
sampling range, such that the total mass of the samples corre-
spond to this value. Then, these halos are placed randomly and
associated with truncated NFW profiles using Eq. (3), where the
mass-concentration relation is given by Eq. (8). Note that study-
ing the impact of the mass function modelling or profile mod-
elling with our model is possible. Nevertheless, this is not the
aim of this paper.

We extend our model from Paper I and Paper II to include re-
alistic observing properties as follows. First, we consider a real-
istic redshift distribution of sources for the analysis. We assume
a gamma distribution following Efstathiou et al. (1991):

p(z) =
z2

2z3
0

exp
(
−

z
z0

)
, (30)

where z0 = 0.5 is the pivot redshift value. The positions of
sources are random. We set the source number density to ngal =

12 arcmin−2, which corresponds to a CFHTLenS-like survey
(Heymans et al. 2012). The intrinsic ellipticity dispersion is
σε = 0.4, which is also close to the CFHTLenS survey (Kil-
binger et al. 2013).

]1 http:github.com/Linc-tw/camelus

Second, we consider masks in our model. We apply the same
characteristic mask to each of the realizations of our model. This
mask is taken from the W1 field of CFHTLenS.

For each galaxy, we compute κproj and γproj using Eqs. (16)
and (17). However, as we have already evoked in Paper I, κproj
can not be considered as the true convergence since it is always
positive. Actually, Eq. (16) can be derived from Eq. (15) by re-
placing the density contrast δ with ρ/ρ̄, thus it becomes posi-
tive. To handle this difference, we subtract the mean of the field
κproj from κproj. This subtraction is supported by N-body simu-
lations. For example, for simulations used in Paper I, we find
κ̄ ∼ 8 · 10−4, which implies that the mean almost vanishes. Fi-
nally, we compute the observed ellipticity as ε(o) = gproj + ε(s),
where gproj ≡ γproj/(1 − (κproj − κproj)) is the reduced shear and
ε(s) is the intrinsic ellipticity.

Comparing different mass mapping techniques is the subject
of this study. We test the Gaussian kernel, the starlet function, the
aperture mass with the hyperbolic tangent function, and the non-
linear filtering technique MRLens in our model. Except for the
aperture mass, we first bin galaxies into map pixels and take the
mean of ε(o) as the pixel’s value for the reason of efficiency. The
pixel size is 0.8 arcmin. This results in regularly spaced data so
that the algorithm can be accelerated. Then, the Kaiser-Squires
inversion (KS inversion, Kaiser & Squires 1993) is used before
filtering. We do not correct for the reduced shear, e.g. by iter-
atively using the KS inversion, since the linear inversion con-
serves the original noise spectrum and produces less artefacts.
The potential bias is mitigated by our approach of applying the
same processing to observation and model prediction. For the
aperture mass, the pixel’s value is evaluated by convolving di-
rectly the lensing catalogue with the Q filter (Eq. 26), succes-
sively placed at the center of each pixel (see also Marian et al.
2012; Martinet et al. 2015). The choice of filter sizes is detailed
in Sect. 4.3.

Because of the presence of masks, we select peaks based on
the concept of the filling factor f (θ) (Van Waerbeke et al. 2013;
Liu et al. 2015b). A local maximum is selected as a peak only
if f (θ) ≥ λ f̄ , where f̄ is the mean of f over the map. We set
λ = 0.5. For analyses using binning, the filling factor is sim-
ply defined as the number of galaxies N(θ) inside the pixel at θ.
For the aperture mass, it is the Q-weighted sum of the number
counts. In other words,

f (θ) ≡
{

N(θ) if galaxies are binned,∑
i Q(θi) for the aperture mass, (31)

where θi is the position of the i-th galaxy.
Furthermore, peaks are selected based on their local noise

level. For linear filters (the Gaussian, the starlet, the aperture
mass), the local noise level is determined by Eq. (21). The height
of peaks ν is than defined as the signal-to-noise ratio (S/N) by

ν(θ) ≡
{

(κ ∗W)(θ)/σnoise(θ) if Gaussian or starlet,
Map(θ)/σnoise(θ) if aperture mass, (32)

where ∗ is the convolution operator. However, for the nonlinear
technique, the noise after filtering is not Gaussian anymore. The
so-called “noise level” cannot be properly defined. In this case,
we simply select peaks on κ.

4.3. Settings for filters and data vectors

The aim of this paper is to compare the performance of lin-
ear and nonlinear filters for peak counts. The linear filters are
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Fig. 3. Peak function for different kernel sizes for an input cosmology
(Ωm, σ8, w

de
0 ) = (0.28, 0.82,−0.96). The number counts are the mean

over 400 realizations of 36 deg2. Focusing on the range 2.5 ≤ ν ≤ 4.5,
we find that the average number counts of Gaussian filtering with θker =
1.2, 2.4, and 4.8 arcmin correpond respectively to starlet filtering with
θker = 4, 8, and 16 arcmin.

Table 1. List of kernel sizes θker. We choose θker based onσnoise such that
the corresponding values are similar. The quantity σnoise is computed
using Eq. (20) with ngal = 12 arcmin−2 and σε = 0.4.

Kernel Gaussian
θker [arcmin] 1.2 2.4 4.8

σnoise 0.027 0.014 0.0068
Kernel Starlet

θker [arcmin] 2 4 8 12 16
σnoise 0.027 0.014 0.0068 0.0045 0.0034

Kernel Map tanh
θker [arcmin] 2.125 4.25 8.5

σnoise 0.027 0.014 0.0068

parametrized with a single parameter, which is the size of the
kernel θker. We propose two possible solutions for comparing
between kernels of different shape. The first is to choose θker
such that the 2-norms have the same value if kernels are nor-
malized (by their respective 1-norms). The reason for this is that
if the ratio of the 2-norm to the 1-norm is identical, then the
comparison is based on the same global noise level (Eq. (20)).
Table 1 shows various values of θker that we use in this studies
and the corresponding σnoise for different linear filters. The sec-
ond way is to calculate peak-count histograms, and set θker such
that peak abundance is similar. Figure 3 shows an example for
the Gaussian and starlet kernels with θker taken from Table 1.
We observe that, for Gaussian filtering with θker = 1.2, 2.4, and
4.8 arcmin, the correspondence for starlet filtering based on peak
abundance is θker = 4, 8, and 16 arcmin if we focus on peaks with
2.5 ≤ ν ≤ 4.5, while the correspondence based on the noise level
is θker = 2, 4, and 8 arcmin. We will examine in Sect. 5.1 both
comparison methods.

0.0 0.2 0.4 0.6 0.8 1.0
Ωm

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

σ
8

Explored parameter regions

Fig. 4. Distribution of evaluated parameter points on the Ωm-σ8 plane.
This figure can be considered as a slice of points with the same wde

0 .
There are in total 46 slices of 816 points.

The data vector x, for linear filters, is defined as the concate-
nation of several S/N histograms. In Paper II, we found that the
number counts from histograms are the most appropriate form to
derive cosmological information from peak counts. After testing
several values of νmin, we only keep peaks above νmin = 1 for
each kernel size. This choice maximizes the figure of merit of
parameter constraints. Thus, we reconfirm that ignoring peaks
with ν ≤ 3 corresponds to a loss of cosmological information
(Yang et al. 2013). Peaks are then binned with width of ∆ν = 0.5
up to ν = 5, and the last bin is [5,+∞[ for each scale. For each
x, the effective field size from which peaks are selected is 6 ×
6 deg2. Border effects are mitigated by taking adequately larger
fields for halos and galaxies. The pixel size is 0.8 arcmin, so a
map contains 450 × 450 pixels.

For the nonlinear filter, the notion of noise level does not
easily apply, since the residual is not Gaussian. Therefore, we bin
peaks directly by their κ values into [0.02, 0.03, 0.04, 0.06, 0.10,
0.16, +∞[. This configuration is chosen such that the average
count per bin is large enough to assume a Gaussian fluctuation.

4.4. Sampling in the parameter space

In this paper, we consider a three-dimensional parameter space,
constructed with (Ωm, σ8, w

de
0 ), where wde

0 is the constant term
of the equation of state of the dark energy. The values of
other cosmological parameters are h = 0.78, Ωb = 0.047, and
ns = 0.95. We assume a flat Universe. The mock observation is
generated by a realization of our model, using a particular set
(Ωm, σ8, w

de
0 ) = (0.28, 0.82,−0.96) as input parameters. In this

way, we only focus on the precision of our model.
We process simulation runs in two different ways. The first

one consists of interpolating the likelihood, from which we draw
credible regions from Bayesian inference, and the second is
approximate Bayesian computation. Both approaches are ex-
plained in the following sections.
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Fig. 5. Maps taken from one of the simulations. The truth map is made by calculating κproj without noise. The panels of the rest are different
filtering techniques applying on the map obtained from a KS inversion after calculating ε(o) = gproj + ε(s). The black areas are masks. The unit of
kernel sizes is arcmin.

4.4.1. Copula likelihood

The copula likelihood comes from the copula transform which
is a series of 1D transformations, which turn the marginals of
a multivariate distribution into the desired target functions. In
other words, it corresponds to applying successive changes of
variables to a multivariate distribution. According to Sklar’s the-
orem (Sklar 1959), these transformations always exist. One may
be interested in specific transformations such that in the new
space, all marginals of the studied distribution are Gaussian.
Then, the joint distribution in the new variables is closer to Gaus-
sian in most cases. By combining the transformations mentioned
above with the Gaussian likelihood, one gets the copula likeli-
hood.

We use the copula likelihood with covariances varying with
cosmology. Let d be the dimension of the data vector. Given a
parameter set π, for all i = 1, . . . , d, we note xmod

i (π) as the i-th
component of the model prediction, σ̂i(π) as the corresponding
dispersion, and P̂i(·|π) the i-th initial marginal. We also note xobs,

Ĉ and Ĉ−1 as the observed data vector, the estimated covariance,
and its inverse, respectively. The copula log-likelihood is

L ≡ ln
[
det Ĉ(π)

]
+

d∑
i=1

d∑
j=1

(
qobs

i (π) − xmod
i (π)

)
Ĉ−1

i j (π)
(
qobs

j (π) − xmod
j (π)

)
− 2

d∑
i=1

ln σ̂i(π) −
d∑

i=1

qobs
i (π) − xmod

i (π)
σ̂i(π)

2

− 2
d∑

i=1

ln P̂i(xobs
i |π), (33)

where qobs
i (π) is such that Φi(qobs

i ) = F̂i(xobs
i − xmod

i ), knowing
that xmod

i is the model prediction, F̂i is the cumulative distribu-
tion of P̂i, and Φi is the cumulative of the normal distribution
with the same mean and variance as P̂i. Readers are encouraged
to read Sect. 4 of Paper II for a more detailed description and the
derivation of the copula.

All the quantities required by the copula likelihood are pro-
vided by our model. Consider a set of N model realizations. De-
noting x(k)

i as the i-th component of the k-th realization, we use

xmod
i =

1
N

N∑
k=1

x(k)
i , (34)

Ĉi j =
1

N − 1

N∑
k=1

(
x(k)

i − xmod
i

) (
x(k)

j − xmod
j

)
, (35)

Ĉ−1 =
N − d − 2

N − 1
Ĉ
−1
, (36)

P̂i(xi) =
1
N

N∑
k=1

1
hi

W

 xi − x(k)
i

hi

 (37)

for the estimations, where d is the dimension of x, W is the Gaus-
sian kernel, and hi = (4/3N)1/5σ̂i. Note that the model prediction
xmod is nothing but the average over the realization set; the in-
verse covariance matrix is unbiased (Hartlap et al. 2007) to good
accuracy; and Eq. (37) is a kernel density estimation (KDE).

We evaluate the copula likelihoods, given by Eq. (33), on a
grid. The range of wde

0 is [-1.8, 0], with ∆wde
0 = 0.04. Concerning

Ωm and σ8, only some particular values are chosen for evalua-
tion in order to reduce the computing cost. This results in 816
points in the Ωm-σ8 plane, as displayed in Fig. 4, and the total
number of parameter sets is 37536. For each parameter set, we
carry out N = 400 realizations of our model, to estimate L using
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Table 2. Definition of the data vector x for PMC ABC runs. The 9 bins
of ν are [1, 1.5, 2, . . ., 4, 4.5, 5, +∞[, and the 6 bins of κ are [0.02, 0.03,
0.04, 0.06, 0.10, 0.16, +∞[. The symbol d is the total dimension of x,
and α stands for the input value of FDR for MRLens.

Filter θker [arcmin] or α Number of bins d
Gaussian θker = 1.2, 2.4, 4.8 9 ν bins 27

Starlet θker = 2, 4, 8 9 ν bins 27
Map tanh θker = 2.125, 4.25, 8.5 9 ν bins 27
MRLens α = 0.05 6 κ bins 6

Eqs. (33), (34), (35), (36), and (37). Each realization produces
data vectors for three cases: (1) the Gaussian kernel, (2) the star-
let kernel, (3) MRLens, so that the comparisons between cases
are based on the same stochasticity. The aperture mass is not in-
cluded here because of the time consumping convolution of the
unbinned shear catalogue with the filter Q. The FDR α of MR-
Lens is set to 0.05. A map example is displayed in Fig. 5 for the
three cases and the input simulated κ field.

4.4.2. Population Monte Carlo approximate Bayesian
computation

The second analysis adopts the approximate Bayesian computa-
tion (ABC) technique. ABC bypasses the likelihood evaluation
to estimate directly the posterior by accept-reject sampling. It is
fast and robust, and has already had several applications in as-
trophysics (Cameron & Pettitt 2012; Weyant et al. 2013; Robin
et al. 2014; Paper II; Killedar et al. 2015). Here, we use the Pop-
ulation Monte Carlo ABC (PMC ABC) algorithm to constrain
parameters. This algorithm adjusts the tolerance level iteratively,
such that ABC posterior converges. Readers are invited to read
Sect. 6 of Paper II for a detailed description of the PMC ABC
algorithm.

We run PMC ABC for 4 cases: the Gaussian kernel, the star-
let kernel, the aperture mass with the hyperbolic tangent func-
tion, and MRLens with α = 0.05. For the three first linear cases,
the data vector x is composed of three scales. The S/N bins of
each scale are [1, 1.5, 2, . . ., 4, 4.5, 5, +∞[, which result in 27
bins in total (Table 2). For MRLens, x is a 6-bin κ histogram,
which is the same as for the analysis using the likelihood.

Concerning the ABC parameters, we use 1500 particles in
the PMC process. The iteration stops when the success ratio of
accept-reject processes falls below 1%. Finally, we test two dis-
tances. Between the sampled data vector x and the observed one,
xobs, we consider a simplified distance D1 and a fully correlated
one D2, which are respectively defined as

D1

(
x, xobs

)
≡

√√√√∑
i

(
xi − xobs

i

)2

Cii
, (38)

D2

(
x, xobs

)
≡

√(
x − xobs)T C−1 (

x − xobs), (39)

where Cii and C−1 are now independent from cosmology,
estimated using Eqs. (35) and (36) under (Ωm, σ8, w

de
0 ) =

(0.28, 0.82,−0.96). Note that D1 has been shown in Paper II to be
able to produce constraints which agree well with the likelihood.
However, with multiscale data, bins could be highly correlated,
and therefore we also run ABC with D2 in this paper.

5. Results

5.1. Comparing filtering techniques using the likelihood

We propose two methods to measure the quality of constraints.
The first indicator is the uncertainty on the derived parameter Σ8.
Here, we define Σ8 ≡ σ8((Ωm +β)/0.27)α, differently from Paper
II, because without the drag parameter β, the original function
fails to provide a good fit to the (Ωm, σ8) contours, especially the
one from MRLens which has an elongated shape. The 1-σ error
bar on Σ8, ∆Σ8, is obtained using the same method as in Paper
II. The second indicator is the figure of merit (FoM) defined as
the inverse of the 2-σ contour area for Ωm and σ8.

First, we test the maximum information that Gaussian ker-
nels can extract. Table 3 shows the FoM from the marginalized
likelihood. We can see that adding θker = 2.4 and 4.8 arcmin
to the filter with 1.2 arcmin has no siginificant effect on con-
straints. The smallest filter with θker = 1.2 arcmin dominates the
constraints.

Next, we use all three Gaussian scales as the reference for the
comparisons with the starlet function. As mentioned in Sect. 4.3,
for the Gaussian filter scales of 1.2, 2.4, and 4.8 arcmin, we
chose scales for the starlet based on two criteria: for an equal
noise level, these are 2, 4, and 8 arcmin, and for equal number
counts the corresponding scales are 4, 8, and 16 arcmin. The re-
sults are shown in Fig. 6. For the equal-number-count criterion,
we see that if each scale gives approximately the same number
of peaks, the Ωm-σ8 constraints obtained from the Gaussian and
the starlet are similar (colored regions in the left and right pan-
els). However, the starlet kernel leads to tighter constraints than
the Gaussian when we match the same noise levels (lines and
colored regions in the left panel). This results suggests that com-
pensated kernels could be more powerful to extract cosmological
information than non-compensated filters.

It is also interesting to compare directly the two starlet cases.
When we draw constraints from individual scales, we note that
large scales promote higher Ωm and small scales promote lower
Ωm (Fig. 7). We see a similar but less pronounced effect for the
Gaussian filter (not plotted). This is likely due to the fact that
the starlet is a compensated filter, which is a band-pass function
in the Fourier space. Since the variation of the mass function is
different at different mass ranges, cluster abundance and peak
abundance of different scales vary differently with regard to cos-
mology. Therefore, using band-pass filters can separate better
this multiscale information. If we continue to increase the kernel
size (θker = 12, 16 arcmin), the constraint contour extends over
the entire Ωm range. This is natural since very massive clusters
are rare and statistical fluctuations are too high to discriminate
between cosmological models. The very large scales of the star-
let do not add to the FoM.

The right panel of Fig. 6 shows the constraints from nonlin-
ear filtering using MRLens (solid and dashed lines). We observe
that MRLens conserves a strong degeneracy between Ωm and
σ8. The reasons for this result are various. First, as we mention
in the previous paragraph, large and small scales contain dif-
ferent information which helps break the degeneracy. Using the
combined strategy loses this advantage. For this reason, the con-
straint contours are elongated. Second, we have chosen a strict
FDR. This rules out most of the spurious peaks, but also a lot
of the signal. Third, as mentioned before, it is inappropriate to
define signal-to-noise ratio when the filter is not linear. As a con-
sequence, it is hardly possible to find bins for κ peaks which
are equivalent to ν bins in linear filtering. This is supported by
Fig. 5, where we observe less peaks in the MRLens map than
in the other maps. Last, because of a low number of peaks, the
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Fig. 6. Ωm-σ8 constraints from four different cases. Left panel: the Gaussian case (colored regions) and the starlet case with three corresponding
scales based on the noise level (lines, θker = 2, 4, and 8 arcmin). Right panel: the starlet case with three corresponding scales based on number
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Fig. 7. Ωm-σ8 1-σ region from the starlet kernel. Colored regions are
constraints by θker = 2 arcmin, and lines are from θker = 8 arcmin. We
see that small-scale information promotes lower Ωm, i.e. important for
constraining high Ωm. The opposite behavior is found for θker = 8 ar-
cmin. The black star represents the input cosmology. Grey zones are
excluded in this analysis.

binwidths need to be enlarged to contain larger number counts
and to get closer to a Gaussian distribution, and large binwidths
also weaken the signal.

Table 3. Quality indicators for Ωm-σ8 constraints with likelihood. All
cases figured below use number counts on g peaks. The quantity ∆Σ8
stands for the width of the contour, while the FoM is related to the area.
In our study, combining five scales of starlet yield the best result in
terms of FoM.

Filter θker [arcmin] or α ∆Σ8 FoM
Gaussian θker = 1.2 0.045 19.1
Gaussian θker = 1.2, 2.4, 4.8 0.046 20.7

Starlet θker = 2, 4, 8 0.046 23.4
Starlet θker = 4, 8, 16 0.044 21.2
Starlet θker = 2, 4, 8, 12, 16 0.045 24.8

MRLens α = 0.05 0.046 16.2

A possible solution for exploring the MRLens technique is
to enhance the FDR and to redesign the binning. By increas-
ing the number of peaks, thinner bins would be allowed. An-
other solution to better account for rare events in the current
configuration is to use the Poisson likelihood. Finally, one could
adopt the separated strategy, i.e. turning back to the methodol-
ogy used by Pires et al. (2009a) that consists in estimating the
peak abundance in the different scales before final reconstruc-
tion. Our comparison between “linear and nonlinear techniques”
is basically the one between the “separated and combined strate-
gies”.

Table 3 measures numerical qualities for constraints with dif-
ferent filtering techniques. It indicates that the width of contours
does not vary significantly. The tightest constraint that we obtain
is derived from a compensated filter.

Regarding results for wde
0 , we show a representative case of

starlet with θker = 2, 4, and 8 arcmin. Figure 8 presents the
marginalized constraints of each doublet of parameters that we
study. Those containing wde

0 are noisy because of the usage of
the copula likelihood. We see that the current configuration of
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Fig. 8. Ωm-σ8-wde
0 constraints using starlet with three scales. Each panel

represents the contours derived from marginalized likelihood. Black
stars are the input parameter values for the “observation”. As far as wde

0
is concerned, the constraints are weak, but the degeneracies are clear.
Fluctuations on both lower panels are due to usage of the copula likeli-
hood.

our model does not allow to impose constraints on wde
0 . To mea-

sure this parameter, it could be useful to perform a tomography
analysis to separate information of different stages of the late-
time Universe. Nevertheless, our results successfully highlight
the degeneracies of wde

0 with two other parameters. We fit the
posterior density with:

I1 = Ωm − a1w
de
0 , (40)

I2 = σ8 + a2w
de
0 . (41)

We obtain for the slopes a1 = 0.108 and a2 = 0.128 for Fig. 8.
The results for the other filter functions are similar.

5.2. Results from PMC ABC

We perform parameter constraints using the PMC ABC algo-
rithm for our four cases. In Fig. 9, we show the results derived
from the starlet case using the fully correlated distance D2. The
contours are marginalized posteriors for all three pairs of pa-
rameters. They show the same degeneracy as we have found in
Sect. 5.1. We measure a1 and a2 from the ABC posteriors and
obtain a1 = 0.083 and a2 = 0.084.

Using the same starlet filters, we compare two distances used
for PMC ABC runs. When D1 is used with the starlet, i.e. data
are treated as if uncorrelated, we find that the contour sizes
do not change (see Table 4) compared to D2. For the Gaus-
sian case, however, constraints from D1 are tighter than those
from D2. This phenomenon is due to the off-diagonal elements
of the covariance matrix. For non-compensated filters, the cross-
correlation between bins are much stronger, as shown by Fig. 10.
If this cross-correlation is ignored, the repeated peak counts in
different bins are not properly accounted for. This overestimates
the additional sensitivity to massive structures, and therefore
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Fig. 9. ABC constraints on Ωm, σ8, and wde
0 using starlet. The distance

D2 is used for this run. On each panel, the ABC posterior is marginal-
ized over one of the three parameters. Black stars are the input cosmol-
ogy.

Table 4. Quality indicators for Ωm-σ8 constraints with PMC ABC. The
quantity ∆Σ8 stands for the width of the contour, while the FoM is re-
lated to the area. ABC is used with two different distances D1 and D2
respectively given by Eqs. (38) and (39). Here, we also put values from
likelihood constraints using the same scales in this table for comparison.
The kernel sizes for linear methods are defined in Table 2.

Filter Constraints ∆Σ8 FoM
Gaussian Likelihood 0.046 20.7
Gaussian ABC, D1 0.043 16.3
Gaussian ABC, D2 0.059 11.7

Starlet Likelihood 0.054 23.4
Starlet ABC, D1 0.050 15.5
Starlet ABC, D2 0.054 15.7

Map tanh ABC, D1 0.037 19.4
Map tanh ABC, D2 0.043 15.5
MRLens Likelihood 0.046 16.2
MRLens ABC, D1 0.045 11.5
MRLens ABC, D2 0.045 12.5

produces overly tight constraints. As shown in Fig. 10, in the
Gaussian case, adjacent filter scales show a 20–30% correla-
tion. The blurring of the off-digaonal stripes indicate a leakage
to neighoring S/N bins due to noise, and the fact that clusters
produce WL peaks with different S/N for different scales. On the
contrary, in the case of the starlet, except for the highest S/N bin
there is negligible correlation between different scales.

Table 4 shows the ABC constraints from both the aperture
mass and the starlet. We find that the FoM are close. However,
in Fig. 11, we see that the contours from the aperture mass is
shifted toward high-Ωm regions. A reason for this shift is that
we simulated another observation data vector for Map, and the
maximum-likelihood point for different methods do not coin-
cide.
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Fig. 10. Correlation coefficient matrices under the input cosmology. Left
panel: the Gaussian case with θker = 1.2, 2.4, and 4.8 arcmin. Right
panel: the starlet case with θker = 2, 4, and 8 arcmin. Each of the 3×3
blocks corresponds to the correlation between two filter scales. With
each block, the S/N bins are [1, 1.5, 2, . . ., 5, +∞[. The data vector by
starlet is less correlated.
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Fig. 11. ABC Ωm-σ8 constraints from the starlet and the aperture mass.
The distance D2 is used in both cases. The black star is the input cos-
mology. The difference between two cases is either the fact that another
observation data vector is created for the aperture mass and the direct
comparison is not valid anymore, or smaller scales are needed for the
aperture mass case.

From Table 4, one can see that the difference between MR-
Lens and linear filters using ABC is similar to using the likeli-
hood. This suggests once again that the combined strategy leads
to less tighter constraints than the separated strategy. Note that
we also try to adjust α and run PMC ABC. However, without
modifying the κ bin choice, the resulting constraints do not dif-
fer substantially from α = 0.05.

Finally, we show the likelihood and ABC constraint contours
for the Gaussian and starlet cases in Fig. 12. It turns out that ABC
contours are systematically larger in the high-Ωm, low-σ8 region.
This phenomenon was not observed in Paper II where a similar
comparison was made. We claim that in the settings of this pa-
per, ABC is more sensitive to large scales than the likelihood.
Since large scales promote higher Ωm, contours are dragged to-

ward this area. Note also that KDE is a biased estimator of pos-
teriors (Paper II). It smoothes the posterior and makes contours
broader. Nevertheless, the ABC and likelihood constraints agree
with each other.

6. Summary and discussion

In this work, we studied WL peak counts for cosmology-oriented
purposes. This means that we do not compare WL peaks with
clusters of galaxies or study cluster properties, but use di-
rectly the peak abundance to constrain cosmological parameters.
We tested different filtering techniques by using our stochastic
model. We compared different filters by studying the tightness of
parameter constraint contours, given by the likelihood and ABC.
This probes directly the performance for extracting cosmologi-
cal information.

We compared Gaussian smoothing to starlet filtering, which
is a comparison between compensated and non-compensated
filters. Our results suggest that compensated filters are more
suitable to capture cosmological information than the non-
compensated ones. This comes from the fact that band-pass
functions better separate multiscale information. And since large
and small scales constrain somewhat different regions of param-
eter space, compensated filters produce tighter constraints.

To handle multiscacle data, we explored two strategies: the
combined strategy creates a single mass map and the associ-
ated peak-count histogram; the separated strategy chooses some
characteristic scales, produces one histogram per scale, and con-
catenates them into one data vector. We compared starlet filter-
ing using the separated strategy with a nonlinear filter MRLens,
for which data were arranged using the combined strategy. The
combined strategy, which mixes information of all scales yielded
more elongated contours.

Concerning nonlinear methods, we would like to highlight
that the linear-nonlinear comparison often contains a part of the
separated-combined comparison. Although we did not carry out
separate comparisons with regard to these two concepts in this
work, some evidences still suggest that the separated-combined
duality could be more influential than the linear-nonlinear issue.
A possible design for the separated-combined comparison is the
comparison between the matched filter of Hennawi & Spergel
(2005) and the multiscale aperture mass, or between MRLens
used as Pires et al. (2009a) with our MRLens case. Also, the
comparison between MRLens used as Pires et al. (2009a) and
linear starlet filtering can properly test the impact of nonlinear
filters on constraints. However, this difference could be minor.

In this work, we found larger constraints from ABC than
from the likelihood. Since we had found in Paper II that the cop-
ula likelihood closely approximates the true one, the constraints
from ABC probably overestimate the true parameter errors. Us-
ing ABC, we performed parameter constraints for the aperture
mass. This yielded a very similar FoM compared to the starlet,
both compensated filters.

Concering the equation of state of dark energy, our results
could not constrain wde

0 in general since wde
0 is degenerated with

Ωm and σ8. We fitted these degeneracies with linear relations
I1 = Ωm − a1w

de
0 and I2 = σ8 + a2w

de
0 and found a1 = 0.108 and

a2 = 0.128.
Our model for weak-lensing peak counts has been improved

to be adapted to more realistic observational conditions. We have
shown that our model is very general, and can be applied to
weak-lensing data that is processed with conceptually different
filtering approaches.
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Fig. 12. Comparison of Ωm-σ8-wde
0 constraints between likelihood and ABC. Left panel: constraints with Gaussian smoothing. Right panel:

constraints with starlet filtering. Although ABC tolerates higher Ωm and lower σ8 in both cases, two methods agree with each other.
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