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Weak Gravitational Lensing

Observer Gravitational lens Background galaxies

gravitational lens
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Shear estimation

✓ Galaxies have an intrinsic ellipticipty 

a PSF have to be estimated and deconvolved
✓ Galaxies are convolved by an asymetric PSF
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a ellipticity must be averaged  
over several nearby galaxies :
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✓ Shear estimation on each galaxy of the field
a Ellipticity must be measured :
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simulated mass map 
(Vale & White, 2003)
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Inversion equations 
simulated Shear map
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Noisy mass maps 

Shear map Original mass map 
(Vale & White, 2003)

Mass map                    
(space observations)

 NOISY !
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Statistic estimation 

DEGENERACY BETWEEN σ8 A
ND ΩM
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Statistic estimation
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Weak lensing missing data
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Statistical estimation with missing data

✓Estimation of N-point correlation functions in direct space 
by avoiding the points falling in gaps 
✓ pros: unbiased by missing data 
✓ cons: time comsuming 

✓Estimation of  the power spectrum in Fourier space by 
applying a mask correction 
✓ pros: fast estimation with FFT  
✓ cons:  

✓ stability depending on the shape of the mask 
✓ estimation of the mask correction can be long 



Weak lensing inpainting algorithm
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What is sparsity ?

€ 

|α k ' |

Sorted index k’

Many small coefficients

Few large 
 coefficients

A signal S is sparse in a basis Φ if most of the coefficients 
α are equal to zero or closed to zero: min

S
||�tS||20



Looking for  
Adapted representations

✓ Local DCT: 

- Stationary textures 

- Locally oscillatory 

✓ Wavelet transform: 

- Piecewise smooth 

- Isotropic structures 

✓ Curvelet transform: 

- Piecewise smooth 

- Edge structures



Sine curve Truncated sine curve 

TF of a truncated sine curveTF of a sine curve

Inpainting based on  

sparse representation of data



Masked masks

Mask pattern of Subaru 
survey on 1° x 1° field

Mask pattern of CFHTLS survey 
on 1° x 1° field (courtesy J. Berge) 



Inpainting on simulated weak lensing data  
Pires et al 2008a submitted to MNRAS

Which image is the original one ?



Inpainting on simulated weak lensing data



1% error
v
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Power spectrum estimation 
Pires et al 2008a

mean power spectrum computed from  
- 100 complete mass maps (black)  
- 100 inpainted maps (red). 

Relative power spectrum error, i.e. the 
normalized difference between the two 

upper curves of the left panel. 

0.3% error



Noisy power spectrum estimation 
Pires et al 2008a

mean noisy power spectrum computed from  
- 100 complete mass maps (black)  
- 100 inpainted maps from INCOMPLETE 
shear maps (red).. 

Relative noisy power spectrum error, i.e. 
the normalized difference between the two 

curves of the left panel. 

1% error
0.3% error

RESULTS ARE NOISE INDEPENDENT



3% error
1% error

Equilateral bispectrum estimation 
FASTLens, Pires et al 2008a  

mean bispectrum computed from  
- 100 complete mass maps (black)  
- 100 inpainted reconstructed maps (red) 
- 100 incomplete mass maps (green) . 

Relative bispectrum error, i.e. the 
normalized difference between the two 

upper curves of the left panel. 



FASTLens 
(Pires et al 2008a)

✓Make faster the estimation of statistics: 
✓The maximum error on power spectrum estimation is 1% 
✓The maximum error on bispectrum estimation is 3% 

✓Enables estimation of many statistics: 
✓Power spectrum, Bispectrum, Trispectrum... 
✓Dark matter statistics (cluster abundance, cluster 

correlations...) 

✓Enables filtering



✓Polar FFT code:  
✓ Fast and Exact estimation of the power spectrum and the bispetrum 

CARTESIAN FFT

FASTLens 
 (FAst STatistics for weak Lensing) 

http://www-irfu.cea.fr/Ast/fastlens_software.php

✓ Inpainting method: 
✓ Estimation of a complete dark matter mass map from incomplete shear maps

inpainting

P� =< ⇥̂(�i)⇥̂(�j) >

B� =< ⇥̂(�i)⇥̂(�j)⇥̂(�k) >

Polar FFT

Statictic 
estimation

...
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Noisy mass maps 

simulated Mass map (space 
observationS)

 NOISY !



Noisy Original SignalOriginal Signal

Noise filtering

Noisy Signal 
Fourier Transform 

Filtered Signal 



MRLENS : Multi-Resolution for weak LENSing  
J.L. Starck, S. Pires and A. Réfrégier, A&A, 2006

Image

Scale 1 Scale 5Scale 4Scale 3Scale 2 Smoothed plane
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MRLENS :  
False Discovery Rate method (FDR)  

(Benjamini et al, 1995)

A Threshold is applied at each wavelet plane: 

✓  kσ-Threshold: the number of false detections is 
depending on the number of sample 

✓ FDR-Threshold: the number of false detections is 
depending on the number of true detections. The 
value of the threshold is then function of the level 
of the noise

T3� Tfdr

T3�Tfdr

only noise

signal + noise



MRLENS : Maximum Multiresolution Entropy  

Q =
1
2
⇥2 � �H

P (�|�n) =
P (�n|�)P (�)

P (�n)

Likelihood term
Penalisation term

Bayes’ theorem:

Q = � log(P (�|�n)) = �log(P (�n|�))� log(P (�)) + Cte

Multiscale entropy



Comparison: Gaussian/Wiener/MRLens filter

Original mass map

Gaussian filter Wiener filter MRLENS filter

Noisy mass map



MRLENS software  
Multi-Resolution methods for gravitational LENSing 

http://www-irfu.cea.fr/Ast/mrlens_software.php

Software MRLENS : Multi-Resolution methods for gravitational LENSing



Application to real data: COSMOS data  
Massey et al, Nature, 2007  

Main steps on the processing: 

- Raw processing of the HST data  

- Making the galaxy catalog (positions and shapes) (R. Massey) 

- Production of the 2D mass maps (R.Massey & A. Réfrégier) 

- Development of the wavelet filtering technique (S. Pires and J.l. Starck)

Data characteristics: 

- 575 pointings of the ACS Camera (Wide Field Camera)  

- Cover a region of 1.637 square degrees 

- 500 000 shapes of distant galaxies have been measured

Dark matter distribution map in the COSMOS field



cba

COSMOS data :  
 Baryonic and non-baryonic matter comparison at large scale

The total projected mass map from WL (dominated 
by dark matter) shown as a linear greyscale (a, b and c) 

compared to 3 independent baryonic tracers 

Stellar mass and WL Galaxy density and WL Hot gas and WL
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Statistical estimation to constrain 
cosmological parameters

✓ Statistical estimation on shear maps: 
✓ Variance, skewness, kurtosis... 
✓ N-point correlation functions 
✓ Power spectrum, bispectrum, trispectrum... 

✓ Statistical estimation on mass maps: 
✓Variance, skewness, kurtosis... 
✓ N-point correlation functions 
✓ Power spectrum, bispectrum, trispectrum... 
✓ Cluster abundance, cluster correlations...

DEGENERACY BETWEEN σ8 AND ΩM



Cosmological model simulations

Model3 (σ8=0.8, Ωm=0.36) Model5 (σ8=0.6, Ωm=0.64)Model4 (σ8=0.7, Ωm=0.47)

Model2 (σ8=0.9, Ωm=0.3)Model1 (σ8=1, Ωm=0.23)



Inverse problem

Direct problem 

Hydrodynamic equations 
with initial conditions 

�
Inverse problem 

- Inversion of the hydrodynamic equations 
- Caracterisation of the morphology of non-Gaussian structures 

{�m, �8...}



Candidate statistics
1. Skewness (third-order moment) estimated on a Direct, 

Fourier, Wavelet, Ridgelet and Curvelet representation 

2. Kurtosis (fourth-order moment) estimated on a Direct, 
Fourier, Wavelet, Ridgelet and Curvelet representation 

3. Higher Criticism (Donoho & Jin, 2004) estimated on a 
Direct, Fourier, Wavelet, Ridgelet and Curvelet 
representation 

4. Bispectrum (Fourier space analog of the three-point 
correlation function) 

5. Peak counting (cluster abundance) 

6. WPC - Wavelet Peak Counting (Pires et al, 2008b) 



SKEWNESs On MRLENS Filtred MAPS (At scale OF about 1 arcmin)

Discrimination Power 
Pires et al, 2008b, submitted to A&A

model 1 model 3 model 5

SKEWNESs On NOISY MAPS (At scale OF about 1 arcmin)

model 1 model 5

(kilbinger, 2005)



wavelet peak counting On MRLENS Filtred MAPS (At scale OF about 1 arcmin)

Best discrimination power : WPC 
Pires et al, 2008b, submitted to A&A

model 1 model 2 model 3 model 4 model 5



Conclusions

✓ A method to reconstruct full Weak Lensing mass map from incomplete 
shear maps has been developed (FASTLens) 
✓ The maximum error in the estimation of the power spectrum is 1% 
✓ The maximum error in the estimation of the bispectrum is 3%  
✓ FASTLens will be soon available including a method to estimate the 

equilateral bispectrum

✓ A method for filtering the noise of Weak Lensing dark matter mass map 
has been developed (MRLens) 
✓ Outperforms existing methods 
✓ Applied to real data (COSMOS field) 
✓ MRLens is freely available on the web (google mrlens)

✓ We have studied the best way to constrain the cosmological model 
✓ The better statistic is the Wavelet Peak Counting 



Perspectives

✓ Application of the method MRLens and FASTLens to 
CFHTLS data 

✓ Extension of the MRLens filter to the processing of data on 
the sphere (Euclid project) 

✓ Extension of the MRLens filter to the processing of 3D Weak 
Lensing data. 

✓ Developement of a new method to estimate the shear using 
sparsity in the GREAT08 projet (Bridle, 2008)



Thank you !
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Cosmological model

ds2 = (
dr2

1� kr2
+ r2d�2 + r2sin2�d⇥2)� cdt2

ds2 = a(t)2(dr2 + r2d�2 + r2sin2�d⇥2)� cdt2

ds2 = a(t)2(
dr2

1�Rr2
+ r2d�2 + r2sin2�d⇥2)� cdt2

✓ Einstein metric represents a Universe static with matter:

✓ De sitter metric represents a Universe in  expansion without matter:

✓ Friedmann-Lemaître-Robertson-Walker metric represents a Universe 
(with matter) isotropic and homogeneous in  expansion:

R = �1, 0,+1Courbure spatiale:

Courbure spatiale: k =
�

�



From ellipticities to the shear 
(Kitching et al, 2007)

P � =< �I >
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(Seitz & Schneider, 97) (Mellier, 99; Bartelmann & Schneider, 2001)



Lensing and shear equations 
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Assuming the thin lens approximation:

Assuming a weak gravitational potential F << c2:



Lensing and flexion equations 

�S,I = Ai,j�I,j +
1
2
Di,j,k�I,j�I,k

Di,j,1 =

�
�2 ⌅�1

⌅⇥I,1
� ⌅�2

⌅⇥I,2

⌅�2
⌅⇥I,1

� ⌅�2
⌅⇥I,1

⌅�2
⌅⇥I,2

⇥

Di,j,2 =

�
� ⌅�2

⌅⇥I,1

⌅�2
⌅⇥I,2

� ⌅�2
⌅⇥I,2

2 ⌅�2
⌅⇥I,2

� ⌅�2
⌅⇥I,1

⇥

F = (⇥1�1 + ⇥2�2) + i(⇥1�2 � ⇥2�1)

G = (⇥1�1 � ⇥2�2) + i(⇥1�2 + ⇥2�1)



Inpainting from Shear maps

�obs
1 �obs

2



Inpainting algorithm 
from shear maps

Y = P1 � ⇥obs
1 + P2 � ⇥obs

2

Imax = 100
⇤0 = 0
R0 = Y

⌅max = max(|� = �T Y |)
⌅min = 0

for n = 0 to Imax do begin
U = ⇤n + MRn(⇥obs) et
Rn(⇥obs) = P1 ⇥ (⇥obs

1 � P1 ⇥ ⇤n) + P2 ⇥ (⇥obs
2 � P2 ⇥ ⇤n)

Digital Cosine Transform (DCT) of U: � = �T U

Threshold determination: ⌅n

Hard-thresholding of � with �n : �̃ = S�n�

⇤n+1 = ��̃

n = n + 1 if n < Imax(2)



Power spectrum estimation 
Pires et al 2008a

mean power spectrum computed from  
- 100 complete mass maps (black)  
- 100 inpainted maps (red). 

Relative power spectrum error, i.e. the 
normalized difference between the two 

upper curves of the left panel. 

1% error

0.3% error
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3% error

1% error

Equilateral bispectrum estimation 
FASTLens, Pires et al 2008a  

mean bispectrum computed from  
- 100 complete mass maps (black),  
- 100 inpainted reconstructed maps (red)  
- 100 incomplete mass maps (green) . 

Relative bispectrum error, i.e. the 
normalized difference between the two 

upper curves of the left panel. 



Power spectrum estimation



NOISE MSE 
✓ Close to a quadratic function on small coefficients 
✓ Close to l1-norme on large coefficients

MRLens : Multiscale Entropy definition
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1
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ITERATIVE ALGORITHM



Penalisation term different from an Entropy : 
Wavelet regularisation

C(⇥) = �
�

x

�

y

(⇤(⇥(x, y)� ⇥(x, y + 1))2 + ⇤(⇥(x, y)� ⇥(x + 1, y))2)
1
2

Penalisation term on the dependency of a pixel with their neighbor pixels

�(x) = x2 : Quadratic function
�(x) = |x| : Total variation

Cw(⇥) = �
�

j,k,l

(⇤(||(W�)j,k,l||p)

Multiscale penalisation term on the dependency of a pixel with their neighbor pixels



MRLENS : Multi-Resolution for weak LENSing  
J.L. Starck, S. Pires and A. Réfrégier, A&A, 2006

Scale 1 Scale 5Scale 4Scale 3Scale 2 Smoothed plane

WT

Image Smoothed plane

- - - - -

h1 h2 h3 h4 h5



Comparison between  
Gaussian, Wiener and MRLens filter

Original map Gaussian filter Wiener filter MRLENS filter



Comparison: MEM / MRLens filter

Simulated mass map Mass map filtered 
by MRLENS

Mass map filtered by MEM 
(Maximum Entropy Method)

Simulated mass map 
(space observations)



Filtering Residual 

Noisy image Gaussian residual wiener residual MRLens residual



Sorted pvalues histogram of a map 

d 
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Higher Criticism is a measure of

 non-gaussianity. Values of 2 or

 greater indicate non-gaussianity. 

d = 



Simulations numériques

✓ 3D N-body simulation by solving the hydrodynamic 
equations on a AMR grid (Ramses code) 

✓ Dark matter mass maps simulation by projeting the 
density along the line of sight (using the Born 
approximation): 
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