

Application of multiscale methods to Weak Lensing: Reconstruction and Analysis of Dark Matter mass maps

> Sandrine Pires IRFU/Sedi-Sap/CEA Saclay, France

> > sandrine.pires@cea.fr http://irfu.cea.fr/Pisp/4/sandrine.pires.html

Collaborators

- J-L. Starck, CEA-Saclay, France
- A. Réfrégier, CEA-Saclay, France
- A. Amara, ETH Zurich, Switzerland
- R. Massey, Royal Observatory Edinburg, UK.
- R. Teyssier, University of Zurich, Switzerland
- J. Fadili, University of Caen, France

Outline

0- Introduction

- Introduction to weak lensing
- Weak lensing data processing line

1- Mask interpolation using Inpainting

- Introduction to the missing data problem
- Inpainting method to fill-in the gaps (FASTLens)
- Some results

2 - Weak Lensing mass map filtering

- Introduction to the mass map reconstruction problem
- MRLENS filtering
- Results and applications

3 – Cosmological model constraints with Weak Lensing

- Weak Lensing statistics
- Conclusions

From observations to cosmological model $\mathcal{M}(\Omega_M, \Omega_\Lambda, \Omega_b, \sigma_8, ...)$

23% DARK MATTER

4% MATIERE VISIBLE

Shear estimation

✓ Shear estimation on each galaxy of the field ⇒ Ellipticity must be measured : $\begin{pmatrix} \epsilon_1 \\ \epsilon_2 \end{pmatrix} = \frac{1-\beta}{1+\beta} \begin{pmatrix} \cos 2\phi \\ \sin 2\phi \end{pmatrix}$

Reconstructed

mass map

statistics

✓ Galaxies have an intrinsic ellipticipty

shear

estimation

Data

Noisy shear

map

statistics

➡ ellipticity must be averaged over several nearby galaxies :

Noisy mass

statistics

Cosmological parameter estimation

 $<\epsilon_i>pprox\gamma_i$

✓ Galaxies are convolved by an asymetric PSF
 ⇒ PSF have to be estimated and deconvolved

Data shear estimation Noisy shear map inversion Noisy mass map filtering Reconstructed mass map Statistics statistics statistics statistics statistics			
Cosmological parameter estimation			
GAUSSIAN ESTIMATORS	NON-GAUSSIAN ESTIMATORS		
TWO-POINT STATISTICS	THREE-POINT STATISTICS	FOUR-POINT STATISTICS	
$\sigma^2 = \sum_{1}^{N} (\kappa_i - \bar{\kappa})^2$	$S = \frac{\sum_{1}^{N} (\kappa_i - \bar{\kappa})^3}{N\sigma^3}$	$K = \frac{\sum_{1}^{N} (\kappa_i - \bar{\kappa})^4}{N\sigma^4} - 3$	
VARIANCE	SKEWNESS	KURTOSIS	
$\begin{split} \xi_{i,j} = &< \kappa(\theta_i) \kappa(\theta_j) > \\ \text{TWO-POINT CORRELATION} \\ \text{FUNCTION} \end{split}$	$\xi_{i,j,k} = < \kappa(\theta_i)\kappa(\theta_j)\kappa(\theta_k) >$ THREE-POINT CORRELATION FUNCTION	$\begin{aligned} \xi_{i,j,k,l} = &< \kappa(\theta_i) \kappa(\theta_j) \kappa(\theta_k) \kappa(\theta_l) > \\ \text{four-point correlation function} \end{aligned}$	
$P_{\kappa} = < \hat{\kappa}(\theta_i) \hat{\kappa}(\theta_j) >$ power spectrum	$B_{\kappa} = <\hat{\kappa}(\theta_i)\hat{\kappa}(\theta_j)\hat{\kappa}(\theta_k)>$ bispectrum	$\begin{split} T_{\kappa} = &< \hat{\kappa}(\theta_i) \hat{\kappa}(\theta_j) \hat{\kappa}(\theta_k) \hat{\kappa}(\theta_l) > \\ & \text{trispectrum} \end{split}$	

Weak lensing missing data

Outline

0- Introduction

- Introduction to weak lensing
- Weak lensing data processing

1- Mask interpolation using Inpainting

- Introduction to the missing data problem
- Inpainting method to fill-in the gaps (FASTLens)
- Some results

2 - Weak Lensing mass map filtering

- Introduction to the mass map reconstruction problem
- MRLENS filtering
- Results and applications

3 - Cosmological model constraints with Weak Lensing

Data

- Weak Lensing statistics
- Conclusions

Statistical estimation with missing data

✓ Estimation of N-point correlation functions in direct space by avoiding the points falling in gaps
✓ pros: unbiased by missing data
✓ cons: time comsuming
✓ Estimation of the power spectrum in Fourier space by applying a mask correction
✓ pros: fast estimation with FFT
✓ cons:
✓ stability depending on the shape of the mask

 \checkmark estimation of the mask correction can be long

Weak lensing inpainting algorithm

$$\gamma_{i}^{obs} \longrightarrow \min_{\kappa} \|\Phi^{t}\kappa\|_{l_{0}} \text{ subject to } \sum_{i} \|\gamma_{i}^{obs} - M(P_{i}*\kappa)\|_{l_{2}}^{2} \leq \varepsilon \longrightarrow \mathcal{K}$$
Physical priors
$$\gamma_{i}^{obs} = M \cdot \gamma_{i}$$

$$\kappa = P_{1}*\gamma_{1} + P_{2}*\gamma_{2}$$

$$\Phi^{t} \text{ is the DCT}$$

What is sparsity ?

A signal S is sparse in a basis Φ if most of the coefficients α are equal to zero or closed to zero: $\min_{c} ||\phi^t S||_0^2$

Looking for Adapted representations

✓ Local DCT:

Stationary textures
Locally oscillatory
Wavelet transform:

Piecewise smooth
Isotropic structures

Curvelet transform:

Piecewise smooth
Edge structures

Inpainting based on sparse representation of data

SINE CURVE

TF OF A SINE CURVE

TRUNCATED SINE CURVE

TF OF A TRUNCATED SINE CURVE

Masked masks

MASK PATTERN OF CFHTLS SURVEY ON 1° X 1° FIELD (COURTESY J. BERGE)

MASK PATTERN OF SUBARU SURVEY ON 1° X 1° FIELD

Inpainting on simulated weak lensing data Pires et al 2008a submitted to MNRAS

WHICH IMAGE IS THE ORIGINAL ONE ?

Inpainting on simulated weak lensing data

Power spectrum estimation

Pires et al 2008a

MEAN POWER SPECTRUM COMPUTED FROM - 100 COMPLETE MASS MAPS (BLACK) - 100 INPAINTED MAPS (RED). RELATIVE POWER SPECTRUM ERROR, I.E. THE NORMALIZED DIFFERENCE BETWEEN THE TWO UPPER CURVES OF THE LEFT PANEL.

Noisy power spectrum estimation Pires et al 2008a

MEAN NOISY POWER SPECTRUM COMPUTED FROM - 100 COMPLETE MASS MAPS (BLACK) - 100 INPAINTED MAPS FROM INCOMPLETE SHEAR MAPS (RED). RELATIVE NOISY POWER SPECTRUM ERROR, I.E. THE NORMALIZED DIFFERENCE BETWEEN THE TWO CURVES OF THE LEFT PANEL.

Equilateral bispectrum estimation

FASTLens, Pires et al 2008a

MEAN BISPECTRUM COMPUTED FROM - 100 COMPLETE MASS MAPS (BLACK) - 100 INPAINTED RECONSTRUCTED MAPS (RED)

- 100 INCOMPLETE MASS MAPS (GREEN) .

RELATIVE BISPECTRUM ERROR, I.E. THE NORMALIZED DIFFERENCE BETWEEN THE TWO UPPER CURVES OF THE LEFT PANEL.

Make faster the estimation of statistics:
 The maximum error on power spectrum estimation is 1%
 The maximum error on bispectrum estimation is 3%
 Enables estimation of many statistics:
 Power spectrum, Bispectrum, Trispectrum...
 Dark matter statistics (cluster abundance, cluster correlations...)
 Enables filtering

FASTLens

(FAst STatistics for weak Lensing) http://www-irfu.cea.fr/Ast/fastlens_software.php

✓ Inpainting method:

✓ Estimation of a complete dark matter mass map from incomplete shear maps

INPAINTING

✓ Polar FFT code:

✓ Fast and Exact estimation of the power spectrum and the bispetrum

Outline

0-Introduction

- Introduction to weak lensing
- Weak lensing data processing

1- Mask interpolation using Inpainting

- Introduction to the missing data problem
- Inpainting method to fill-in the gaps (FASTLens)
- Some results

2 - Weak Lensing mass map filtering

- Introduction to the mass map reconstruction problem
- MRLENS filtering
- Results and applications

3 - Cosmological model constraints with Weak Lensing

Data

- Weak Lensing statistics
- Conclusions

Noisy mass maps

SIMULATED MASS MAP (SPACE OBSERVATIONS)

Noise filtering

OriginalSyignal

Noisy Signal Fourier Transform

Filtered Signal

MRLENS : Multi-Resolution for weak LENSing

J.L. Starck, S. Pires and A. Réfrégier, A&A, 2006

MRLENS : False Discovery Rate method (FDR) (Benjamini et al, 1995)

A Threshold is applied at each wavelet plane:

- \checkmark ko-Threshold: the number of false detections is depending on the number of sample
- ✓ FDR-Threshold: the number of false detections is depending on the number of true detections. The value of the threshold is then function of the level of the noise

ONLY NOISE

SIGNAL + NOISE

MRLENS : Maximum Multiresolution Entropy

BAYES' THEOREM: $P(\kappa|\kappa_n) = rac{P(\kappa_n|\kappa)P(\kappa)}{P(\kappa_n)}$

 $Q = -\log(P(\kappa|\kappa_n)) = -\log(P(\kappa_n|\kappa)) - \log(P(\kappa)) + Cte$

 $\mathcal{Q} = \left(\frac{1}{2}\chi^2\right) - \alpha H \text{ multiscale entropy}$ Penalisation term

LIKELIHOOD TERM

Comparison: Gaussian/Wiener/MRLens filter

ORIGINAL MASS MAP

NOISY MASS MAP

GAUSSIAN FILTER

WIENER FILTER

MRLENS software

Multi-Resolution methods for gravitational LENSing http://www-irfu.cea.fr/Ast/mrlens_software.php

Software MRLENS : Multi-Resolution methods for gravitational LENSing

S. Pires, J.L. Starck and A. Réfrégler

Welcome to the MRLENS web page. This page introduce the MRLENS software (Version 1.0), contains links to our papers and allow you to download a copy of the MRLENS software and its user manual.

Simulated mass map from Vale and White (2003).

Outline

0- Introduction

- Introduction to weak lensing
- Weak lensing data processing

1- Mask interpolation using Inpainting

- Introduction to the missing data problem
- Inpainting method to fill-in the gaps (FASTLens)
- Some results

2 - Weak Lensing mass map filtering

- Introduction to the mass map reconstruction problem
- MRLENS filtering
- Results and applications

3 - Cosmological model constraints with Weak Lensing

Data

- Weak Lensing statistics
- Conclusions

Statistical estimation to constrain cosmological parameters

Statistical estimation on shear maps:
 Variance, skewness, kurtosis...
 N-point correlation functions
 Power spectrum, bispectrum, trispectrum...
 Statistical estimation on mass maps:
 Variance, skewness, kurtosis...
 N-point correlation functions
 Power spectrum, bispectrum, trispectrum...
 Cluster abundance, cluster correlations...

Cosmological model simulations

Inverse problem

Candidate statistics

- 1. Skewness (third-order moment) estimated on a Direct, Fourier, Wavelet, Ridgelet and Curvelet representation
- 2. Kurtosis (fourth-order moment) estimated on a Direct, Fourier, Wavelet, Ridgelet and Curvelet representation
- **3.** Higher Criticism (Donoho & Jin, 2004) estimated on a Direct, Fourier, Wavelet, Ridgelet and Curvelet representation
- 4. Bispectrum (Fourier space analog of the three-point correlation function)
- 5. Peak counting (cluster abundance)
- 6. WPC Wavelet Peak Counting (Pires et al, 2008b)

Discrimination Power

Pires et al, 2008b, submitted to A&A

Best discrimination power : WPC

Pires et al, 2008b, submitted to A&A

Conclusions

- ✓ A method to reconstruct full Weak Lensing mass map from incomplete shear maps has been developed (FASTLens)
 - ✓ The maximum error in the estimation of the power spectrum is 1%
 - The maximum error in the estimation of the bispectrum is 3%
 FASTLens will be soon available including a method to estimate the equilateral bispectrum
- ✓ A method for filtering the noise of Weak Lensing dark matter mass map has been developed (MRLens)
 - ✓ Outperforms existing methods
 - ✓ Applied to real data (COSMOS field)
 - MRLens is freely available on the web (google mrlens)
- We have studied the best way to constrain the cosmological model
 The better statistic is the Wavelet Peak Counting

Perspectives

- ✓ Application of the method MRLens and FASTLens to CFHTLS data
- ✓ Extension of the MRLens filter to the processing of data on the sphere (Euclid project)
- ✓ Extension of the MRLens filter to the processing of 3D Weak Lensing data.
- Development of a new method to estimate the shear using sparsity in the GREAT08 projet (Bridle, 2008)

Weak Lensing observations

From shear measurements to shear map

Cosmological model

✓ Einstein metric represents a Universe static with matter:

 $ds^2 = (\frac{dr^2}{1 - kr^2} + r^2 d\theta^2 + r^2 sin^2 \theta d\phi^2) - cdt^2$ Courbure spatiale: $k = \sqrt{\Lambda}$

✓ De sitter metric represents a Universe in expansion without matter: $ds^{2} = a(t)^{2}(dr^{2} + r^{2}d\theta^{2} + r^{2}sin^{2}\theta d\phi^{2}) - cdt^{2}$

✓ Friedmann-Lemaître-Robertson-Walker metric represents a Universe (with matter) isotropic and homogeneous in expansion:

$$ds^{2} = a(t)^{2} \left(\frac{dr^{2}}{1 - Rr^{2}} + r^{2}d\theta^{2} + r^{2}sin^{2}\theta d\phi^{2}\right) - cdt^{2}$$

Courbure spatiale: R = -1, 0, +1

From ellipticities to the shear

(Kitching et al, 2007)

$$\left(\begin{array}{c} \epsilon_1\\ \epsilon_2 \end{array}\right) = \frac{1-\beta}{1+\beta} \left(\begin{array}{c} \cos[2\phi]\\ \sin[2\phi] \end{array}\right)$$

<u> </u>	ϵ^{I} -	$\vdash g$
е —	1 + ($g^* \epsilon^I$

where: $g\equiv rac{\gamma}{1-\kappa}$ with: |g|<1

(Mellier, 99; Bartelmann & Schneider, 2001)

 $<\epsilon>pprox g$ where: $gpprox \gamma$ with: $\kappa\ll 1$ $<\epsilon>=rac{\gamma}{P\gamma}$ with: $P^{\gamma}=<\epsilon^{I}>$

Lensing and shear equations

$$\begin{aligned} \theta_{S,I} &= A_{i,j}\theta_{I,j} \quad A_{i,j} = \delta_{i,j} - \frac{\partial \alpha_i}{\partial \theta_I} \\ A_{i,j} &= \begin{pmatrix} 1 - \kappa - \gamma_1 & \gamma_2 \\ \gamma_2 & 1 - \kappa + \gamma_1 \end{pmatrix} \\ \kappa &= \frac{1}{2} \left(\partial_1^2 + \partial_2^2 \right) \psi \\ \gamma_1 &= \frac{1}{2} \left(\partial_1^2 - \partial_2^2 \right) \psi \\ \gamma_2 &= \partial_1 \partial_2 \psi \end{aligned}$$

Lensing and flexion equations

$$\begin{split} \theta_{S,I} &= A_{i,j}\theta_{I,j} + \frac{1}{2}D_{i,j,k}\theta_{I,j}\theta_{I,k} \\ D_{i,j,1} &= \begin{pmatrix} -2\frac{\partial\gamma_1}{\partial\theta_{I,1}} - \frac{\partial\gamma_2}{\partial\theta_{I,2}} & \frac{\partial\gamma_2}{\partial\theta_{I,1}} \\ -\frac{\partial\gamma_2}{\partial\theta_{I,1}} & \frac{\partial\gamma_2}{\partial\theta_{I,2}} \end{pmatrix} \\ D_{i,j,2} &= \begin{pmatrix} -\frac{\partial\gamma_2}{\partial\theta_{I,1}} & \frac{\partial\gamma_2}{\partial\theta_{I,2}} \\ -\frac{\partial\gamma_2}{\partial\theta_{I,2}} & 2\frac{\partial\gamma_2}{\partial\theta_{I,2}} - \frac{\partial\gamma_2}{\partial\theta_{I,1}} \end{pmatrix} \\ \mathcal{F} &= (\partial_1\gamma_1 + \partial_2\gamma_2) + i(\partial_1\gamma_2 - \partial_2\gamma_1) \\ \mathcal{G} &= (\partial_1\gamma_1 - \partial_2\gamma_2) + i(\partial_1\gamma_2 + \partial_2\gamma_1) \end{split}$$

Inpainting from Shear maps

$$Y = P_1 * \gamma_1^{obs} + P_2 * \gamma_2^{obs}$$

$$I_{max} = 100$$

$$\kappa^0 = 0$$

$$R^0 = Y$$

$$\lambda_{max} = max(|\alpha = \Phi^T Y|)$$

$$\lambda_{min} = 0$$

Inpainting algorithm from shear maps

for n = 0 to I_{max} do begin $U = \kappa^n + MR^n(\gamma^{obs}) \ et$ $R^{n}(\gamma^{obs}) = P_{1} * (\gamma_{1}^{obs} - P_{1} * \kappa_{n}) + P_{2} * (\gamma_{2}^{obs} - P_{2} * \kappa_{n})$ Digital Cosine Transform (DCT) of U: $\alpha = \Phi^T U$ Threshold determination: λ_n Hard-thresholding of α with $\alpha_n : \tilde{\alpha} = S_{\lambda_n} \alpha$ $\kappa^{n+1} = \Phi \tilde{\alpha}$ n = n + 1 if $n < I_{max}(2)$

Power spectrum estimation

Pires et al 2008a

MEAN POWER SPECTRUM COMPUTED FROM - 100 COMPLETE MASS MAPS (BLACK) - 100 INPAINTED MAPS (RED). RELATIVE POWER SPECTRUM ERROR, I.E. THE NORMALIZED DIFFERENCE BETWEEN THE TWO UPPER CURVES OF THE LEFT PANEL.

Equilateral bispectrum estimation

FASTLens, Pires et al 2008a

MEAN BISPECTRUM COMPUTED FROM - 100 COMPLETE MASS MAPS (BLACK),

- 100 INPAINTED RECONSTRUCTED MAPS (RED)
- 100 INCOMPLETE MASS MAPS (GREEN) .

RELATIVE BISPECTRUM ERROR, I.E. THE NORMALIZED DIFFERENCE BETWEEN THE TWO UPPER CURVES OF THE LEFT PANEL.

Power spectrum estimation

MRLens: Multiscale Entropy definition $\mathcal{Q} = \frac{1}{2}\chi^2 - \alpha h_n$ $h_n(w_j(x,y)) = \bar{M}_j(x,y)h(w_j(x,y)) \quad FDR = \frac{V_{ia}}{D_a}$ $E(FDR) < \alpha$ NOISE MSE ✓ Close to a quadratic function on small coefficients ✓ Close to l1-norme on large coefficients $h(w_{j}(x,y)) = \frac{1}{\sigma_{n_{j}}} \int_{0}^{|w_{j}(x,y)|} u.erfc(\frac{|w_{j}(x,y)| - u}{\sqrt{2}\sigma_{j}}) du$

ITERATIVE ALGORITHM $\tilde{\kappa}^{i} = \tilde{\kappa}^{i-1} + \mathcal{W}^{-1}(\bar{M}(\tilde{w} - \mathcal{W}\tilde{\kappa}^{i-1}))$

Penalisation term different from an Entropy : Wavelet regularisation

Penalisation term on the dependency of a pixel with their neighbor pixels $C(\kappa) = \beta \sum_{x} \sum_{y} (\phi(\kappa(x, y) - \kappa(x, y + 1))^2 + \phi(\kappa(x, y) - \kappa(x + 1, y))^2)^{\frac{1}{2}}$ $\phi(x) = x^2$: Quadratic function

 $\phi(x) = |x|$: Total variation

Multiscale penalisation term on the dependency of a pixel with their neighbor pixels

 $C_w(\kappa) = \beta \sum_{j,k,l} (\phi(||(\mathcal{W}_{\kappa})_{j,k,l}||_p))$

MRLENS : Multi-Resolution for weak LENSing

J.L. Starck, S. Pires and A. Réfrégier, A&A, 2006

Comparison between Gaussian, Wiener and MRLens filter GAUSSIAN FILTER ORIGINAL MAP WIENER FILTER MRLENS FILTER

Comparison: MEM / MRLens filter

SIMULATED MASS MAP

SIMULATED MASS MAP (SPACE OBSERVATIONS)

MASS MAP FILTERED B9 MRLENS

MASS MAP FILTERED BY MEM (MAXIMUM ENTROPY METHOD)

Filtering Residual

Sigher Criticism (Donoho and Jin, 2004)

$$HC = \max_{i} \frac{\sqrt{n}(\frac{i}{n} - p(i))}{\sqrt{p(i)(1 - p(i))}}$$

Sigher Criticism is a measure of non-gaussianity. Values of 2 or greater indicate non-gaussianity.

histogram of a map

Sorted pvalues

Simulations numériques

- ✓ 3D N-body simulation by solving the hydrodynamic equations on a AMR grid (Ramses code)
- ✓ Dark matter mass maps simulation by projeting the density along the line of sight (using the Born approximation):

$$\kappa_e \approx \frac{3H_0^2 m L}{2c^2} \sum_i \frac{\chi_i(\chi_0 - \chi_i)}{\chi_0 a(\chi_i)} \left(\frac{n_p R^2}{N_t s^2} - \Delta r_{f_i}\right)$$