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4% VISIBLE MATTER

From observations to cosmological model
M(�M ,��,�b, �8, ...)



Weak Gravitational Lensing

Observer Gravitational lens Background galaxies

gravitational lens
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Shear estimation

✓ Galaxies have an intrinsic ellipticipty 

a PSF have to be estimated and deconvolved
✓ Galaxies are convolved by an asymetric PSF
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a ellipticity must be averaged  
over several nearby galaxies :
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✓ Shear estimation on each galaxy of the field
a Ellipticity must be measured :
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simulated mass map 
(Vale & White, 2003)
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Inversion equations 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Noisy mass maps 

Shear map Original mass map 
(Vale & White, 2003)

Mass map                    
(space observations)

 NOISY !
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Statistic estimation 
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Statistic estimation
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Weak lensing missing data
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✓Global inversion 
✓ pros: less noisy 

✓ cons: boundary effects 

✓Local inversions 
✓ pros: unbiased by missing data 
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Statistical estimation with missing data

✓Estimation of N-point correlation functions in direct space 
by avoiding the points falling in gaps 
✓ pros: unbiased by missing data 
✓ cons: time comsuming 

✓Estimation of  the power spectrum in Fourier space by 
applying a mask correction 
✓ pros: fast estimation with FFT  
✓ cons:  

✓ stability depending on the shape of the mask 
✓ estimation of the mask correction can be long 



Weak lensing inpainting formalism
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✓ If         sparse enough, the    -norm can be replaced by the convex    -norm 
✓ The solution of the previous minimisation can be obtained by an iterative 

thresholding (MCA by Elad, 2005) 

✓ Décompose the signal on the dictionary  
✓ Threshold the coefficients      with a threshold  
✓ Reconstruct from     

Weak lensing inpainting algorithm
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What is sparsity ?

€ 

|α k ' |

Sorted index k’

Many small coefficients

Few large 
 coefficients

A signal S is sparse in a basis Φ if most of the coefficients 
α are equal to zero or closed to zero: min

S
||�tS||20



Looking for  
Adapted representations

✓ Local DCT: 

- Stationary textures 

- Locally oscillatory 

✓ Wavelet transform: 

- Piecewise smooth 

- Isotropic structures 

✓ Curvelet transform: 

- Piecewise smooth 

- Edge structures



Sine curve Truncated sine curve 

TF of a truncated sine curveTF of a sine curve

Inpainting based on  

sparse representation of data



Inpainting  
randomly distributed missing data

50%

80%



Inpainting on WMAP data

WMAP 3 years Inpainted map 
(courtesy P. ABRIAL)
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Masked masks

Mask pattern of Subaru 
survey on 1° x 1° field

Mask pattern of CFHTLS survey 
on 1° x 1° field (courtesy J. Berge) 
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Inpainting from shear maps
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Inpainting on simulated weak lensing data 

Which image is the original one ?



Inpainting on simulated weak lensing data
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Power spectrum estimation

mean power spectrum computed from  
- 100 complete mass maps (black)  
- 100 inpainted maps (red). 

Relative power spectrum error, i.e. the 
normalized difference between the two 

upper curves of the left panel. 

0.3% error



Noisy power spectrum estimation

mean noisy power spectrum computed from  
- 100 complete mass maps (black)  
- 100 inpainted maps from INCOMPLETE 
shear maps (red).. 

Relative noisy power spectrum error, i.e. 
the normalized difference between the two 

curves of the left panel. 

1% error
0.3% error

RESULTS ARE NOISE INDEPENDENT



3% error
1% error

Equilateral bispectrum estimation  

mean bispectrum computed from  
- 100 complete mass maps (black)  
- 100 inpainted reconstructed maps (red) 
- 100 incomplete mass maps (green) . 

Relative bispectrum error, i.e. the 
normalized difference between the two 

upper curves of the left panel. 



FASTLens  
(FAst STatistics for weak Lensing) 
http://www-irfu.cea.fr/Ast/fastlens_software.php



✓Polar FFT code:  
✓ Fast and Exact estimation of the power spectrum and the bispetrum 

CARTESIAN FFT

FASTLens (FAst STatistics for weak Lensing) 
(Pires 2009, MNRAS) 

http://www-irfu.cea.fr/Ast/fastlens_software.php

✓ Inpainting method: 
✓ Estimation of a complete dark matter mass map from incomplete shear maps

inpainting

P� =< ⇥̂(�i)⇥̂(�j) >

B� =< ⇥̂(�i)⇥̂(�j)⇥̂(�k) >

Polar FFT

Statictic 
estimation

...



Conclusion

✓ Make faster the estimation of statistics: 
✓ The maximum error on power spectrum estimation is 1% 

✓ The maximum error on bispectrum estimation is 3% 
✓ Enables estimation of many statistics: 

✓ Power spectrum, Bispectrum, Trispectrum... 

✓ Dark matter statistics (cluster abundance, cluster correlations...) 
✓ Enables unbiased filtering

A method to reconstruct a full Weak Lensing mass map from 
incomplete shear maps has been developed (FASTLens software) 



Thank you !
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Inpainting algorithm 
from shear maps

Y = P1 � ⇥obs
1 + P2 � ⇥obs

2

Imax = 100
⇤0 = 0
R0 = Y

⌅max = max(|� = �T Y |)
⌅min = 0

for n = 0 to Imax do begin
U = ⇤n + MRn(⇥obs) et
Rn(⇥obs) = P1 ⇥ (⇥obs
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Digital Cosine Transform (DCT) of U: � = �T U

Threshold determination: ⌅n

Hard-thresholding of � with �n : �̃ = S�n�
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n = n + 1 if n < Imax(2)



Power spectrum estimation

mean power spectrum computed from  
- 100 complete mass maps (black)  
- 100 inpainted maps (red). 

Relative power spectrum error, i.e. the 
normalized difference between the two 

upper curves of the left panel. 

1% error

0.3% error
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3% error

1% error

Equilateral bispectrum estimation 
FASTLens, Pires et al 2008a  

mean bispectrum computed from  
- 100 complete mass maps (black),  
- 100 inpainted reconstructed maps (red)  
- 100 incomplete mass maps (green) . 

Relative bispectrum error, i.e. the 
normalized difference between the two 

upper curves of the left panel. 



Power spectrum estimation



Simulations numériques

✓ 3D N-body simulation by solving the hydrodynamic 
equations on a AMR grid (Ramses code) 

✓ Dark matter mass maps simulation by projeting the 
density along the line of sight (using the Born 
approximation): 
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