

Missing data interpolation in Weak Lensing

Sandrine Pires IRFU/Sedi-Sap/CEA Saclay, France sandrine.pires@cea.fr

http://irfu.cea.fr/Pisp/4/sandrine.pires.html

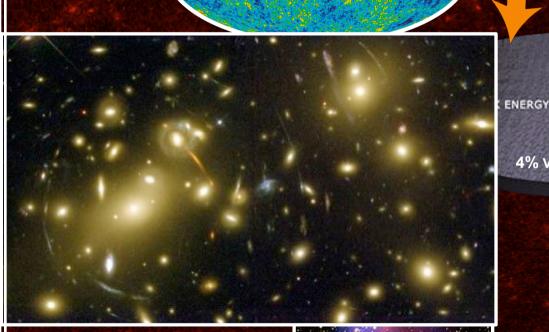
Collaborators

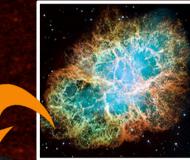
J-L. Starck, CEA-Saclay, France
A. Réfrégier, CEA-Saclay, France
A. Amara, University of Zurich, Switzerland
R. Teyssier, ETH Zurich, Switzerland
J. Fadili, Caen University, France

Outline

- 1- Introduction
 - Introduction to Weak Lensing
 - The Weak lensing data processing line
- 2- The missing data problem in Weak Lensing
 - Weak Lensing analysis with missing data
 - A new approach based on sparsity
- 3- Application of Inpaiting to Weak Lensing data
 - Results on Weak Lensing data
 - The FASTLens software

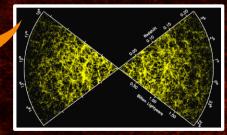
From observations to cosmological model $\mathcal{M}(\Omega_M, \Omega_\Lambda, \Omega_b, \sigma_8, ...)$

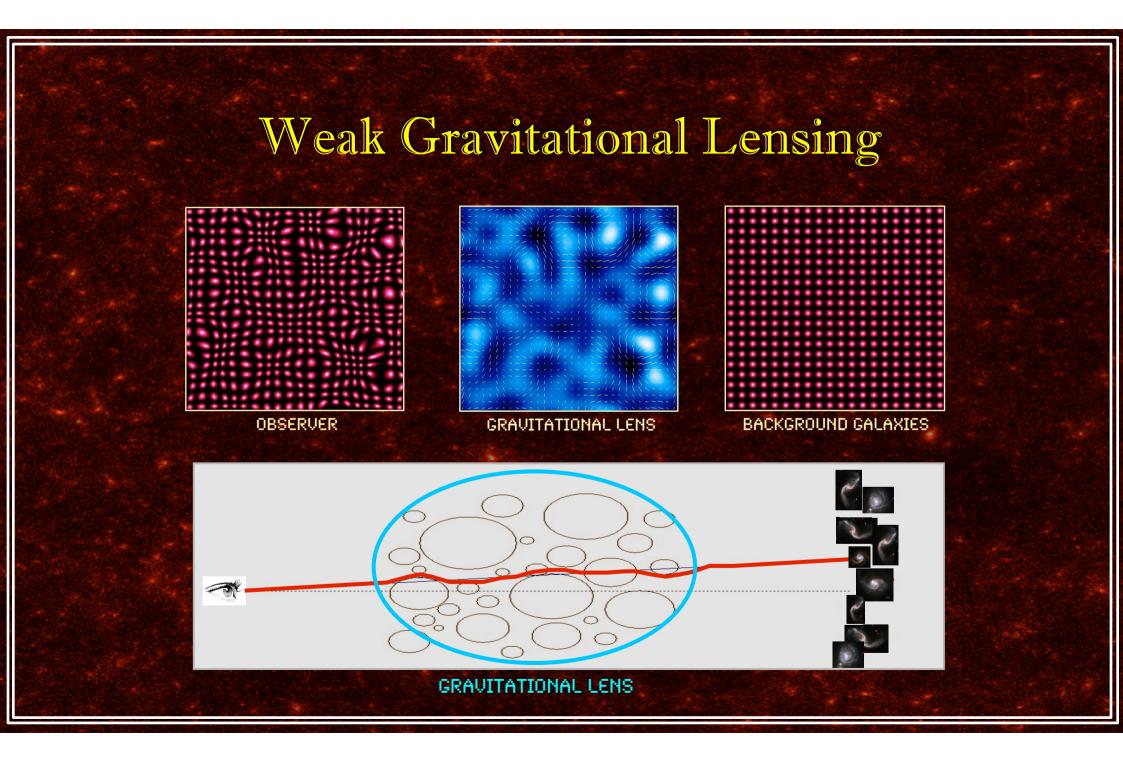


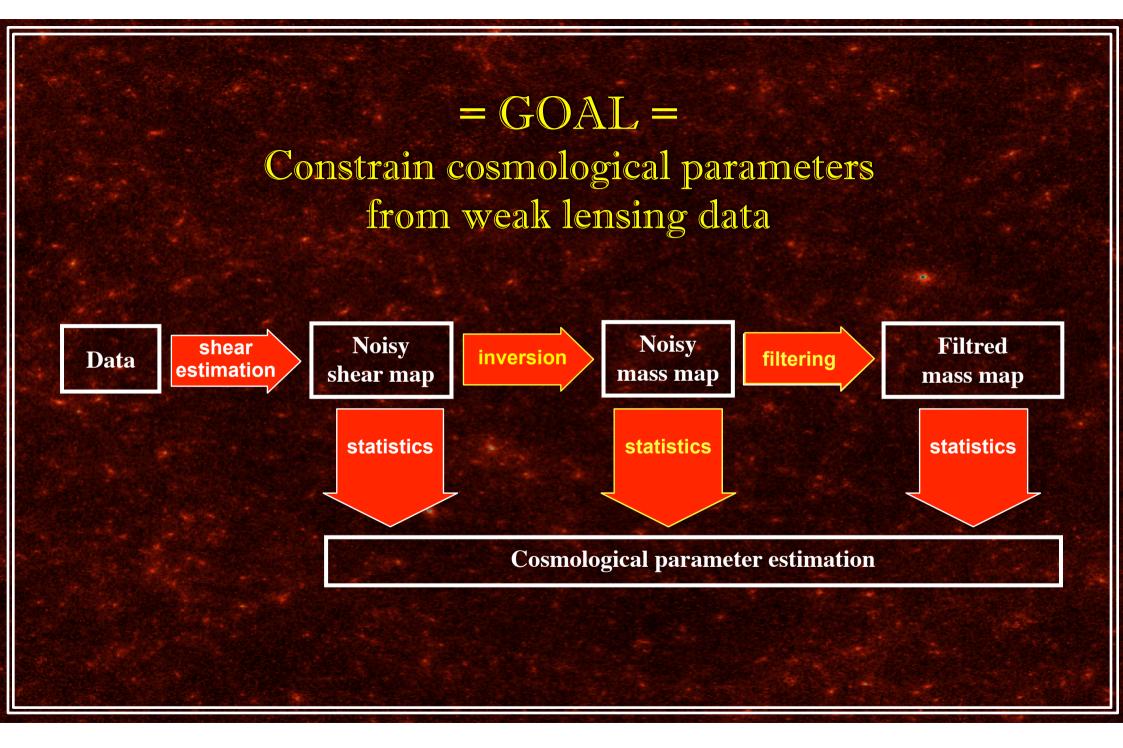


23% DARK MATTER

4% VISIBLE MATTER

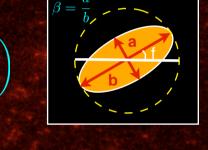






Shear estimation

✓ Shear estimation on each galaxy of the field ⇒ Ellipticity must be measured : $\begin{pmatrix} \epsilon_1 \\ \epsilon_2 \end{pmatrix} = \frac{1-\beta}{1+\beta} \begin{pmatrix} \cos 2\phi \\ \sin 2\phi \end{pmatrix}$

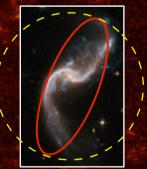


Reconstructed

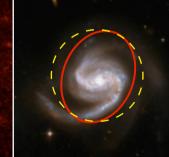
mass map

statistics

✓ Galaxies have an intrinsic ellipticipty







shear

estimation

Data

Noisy shear

map

statistics

➡ ellipticity must be averaged over several nearby galaxies :

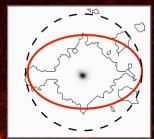
Noisy mass

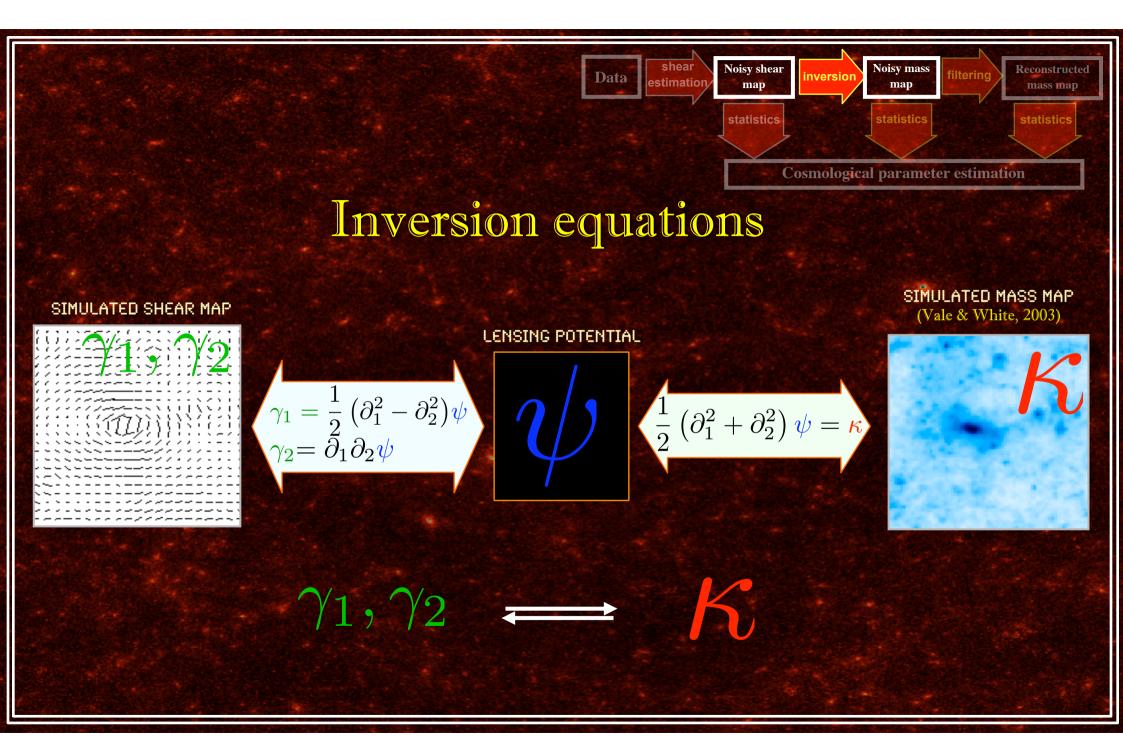
statistics

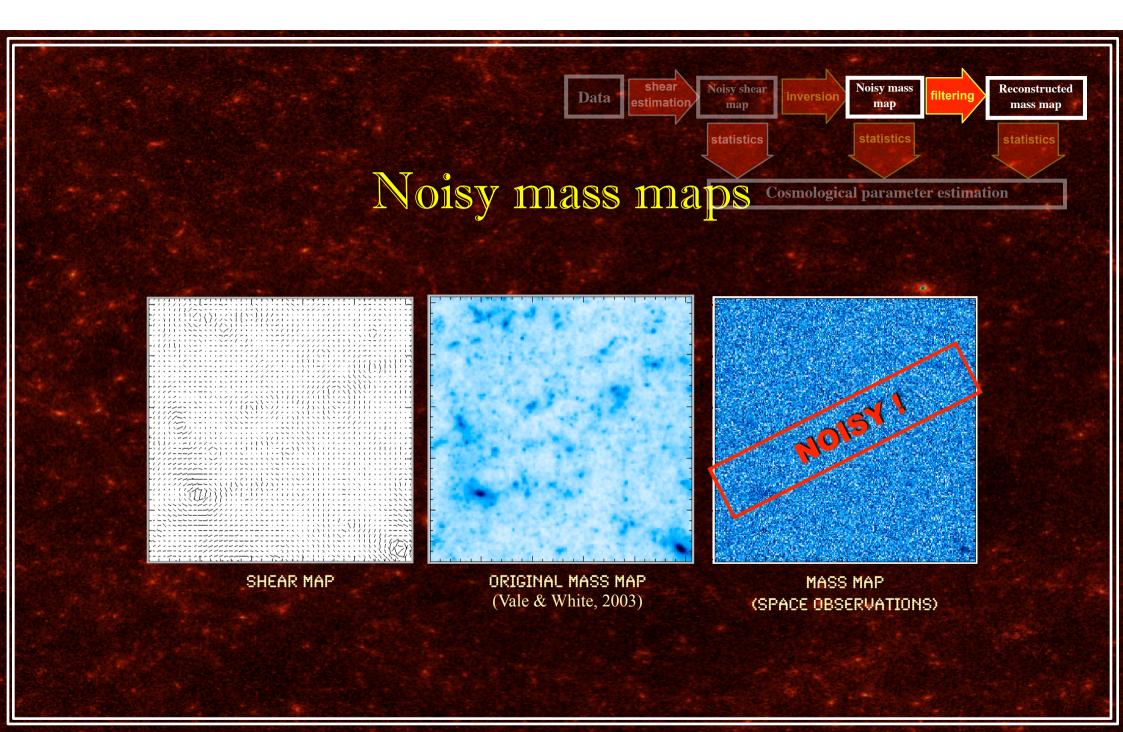
Cosmological parameter estimation

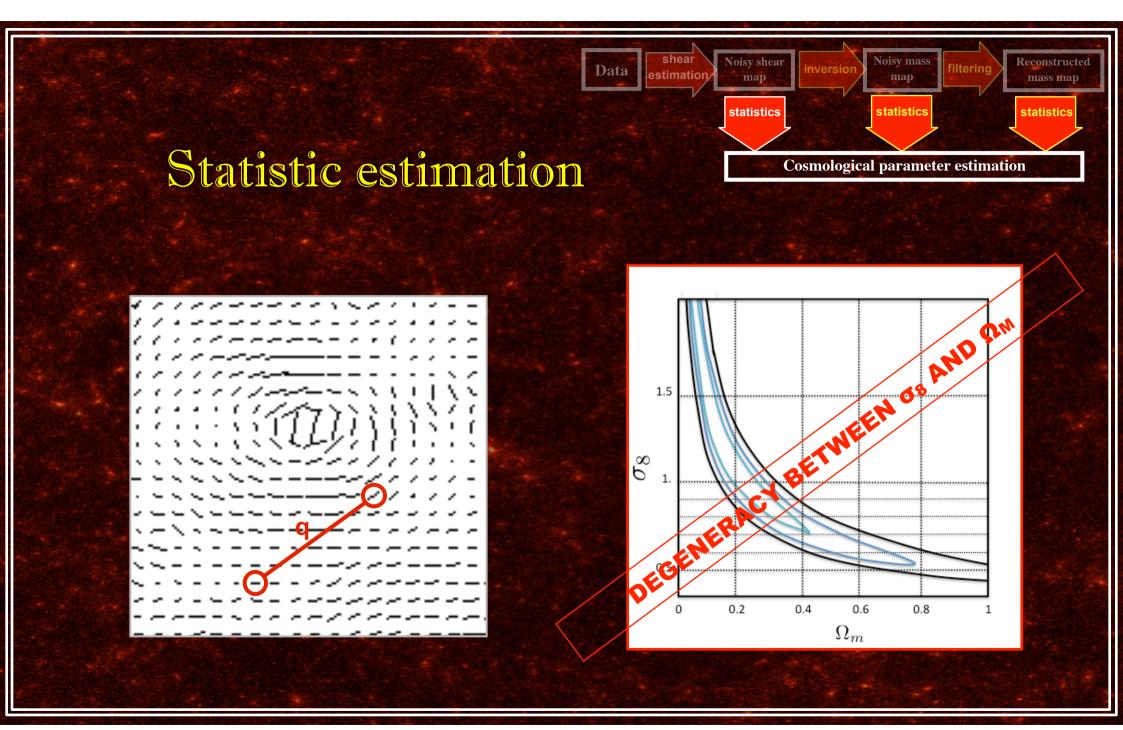
 $<\epsilon_i>pprox\gamma_i$

✓ Galaxies are convolved by an asymetric PSF
 ⇒ PSF have to be estimated and deconvolved



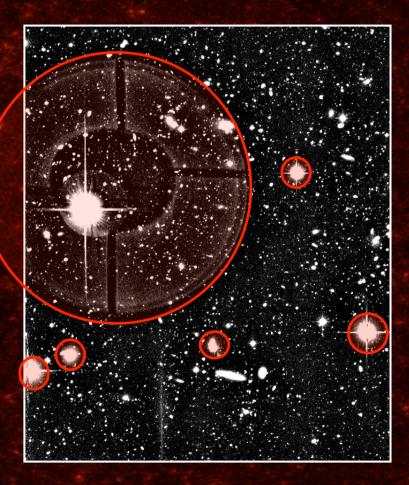






Data shear estimation Noisy shear map Inversion Noisy mass map Statistics statistics statistics statistics		
Statistic estimation		
GAUSSIAN ESTIMATORS	NON-GAUSSIAN ESTIMATORS	Cosmological parameter estimation
TWO-POINT STATISTICS	THREE-POINT STATISTICS	FOUR-POINT STATISTICS
$\sigma^2 = \sum_{1}^{N} (\kappa_i - \bar{\kappa})^2$	$S = \frac{\sum_{1}^{N} (\kappa_i - \bar{\kappa})^3}{N\sigma^3}$	$K = \frac{\sum_{i=1}^{N} (\kappa_i - \bar{\kappa})^4}{N\sigma^4} - 3$
VARIANCE	SKEWNESS	KURTOSIS
$\begin{split} \xi_{i,j} = &< \kappa(\theta_i) \kappa(\theta_j) > \\ & \text{TWO-POINT CORRELATION} \\ & \text{FUNCTION} \end{split}$	$\xi_{i,j,k} = <\kappa(\theta_i)\kappa(\theta_j)\kappa(\theta_k)>$ Three-point correlation function	$\xi_{i,j,k,l} = <\kappa(\theta_i)\kappa(\theta_j)\kappa(\theta_k)\kappa(\theta_l) >$ Four-point correlation function
$P_{\kappa} = < \hat{\kappa}(\theta_i)\hat{\kappa}(\theta_j) >$ power spectrum	$B_{\kappa} = <\hat{\kappa}(\theta_i)\hat{\kappa}(\theta_j)\hat{\kappa}(\theta_k)>$ Bispectrum	$\begin{split} T_{\kappa} = &< \hat{\kappa}(\theta_i) \hat{\kappa}(\theta_j) \hat{\kappa}(\theta_k) \hat{\kappa}(\theta_l) > \\ & \text{trispectrum} \end{split}$

Weak lensing missing data



Outline

- 1- Introduction
 - Introduction to Weak Lensing
 - The Weak lensing data processing line
- 2- The missing data problem in Weak Lensing
 - Weak Lensing analysis with missing data
 - A new approach based on sparsity
- 3- Application of Inpaiting to Weak Lensing data
 - Results on Weak Lensing data
 - The FASTLens software

Inversion methods

✓ Global inversion
 ✓ pros: less noisy
 ✓ cons: boundary effects
 κ = P₁ * γ₁ + P₂ * γ₂

$$\gamma_2 \qquad \hat{P_1}(k) = rac{k_1^2 - k_2^2}{k^2} \ \hat{P_2}(k) = rac{2k_1k_2}{k^2}$$

✓ Local inversions

 \checkmark pros: unbiased by missing data

 $\nabla [log(1-\kappa)] \equiv \frac{-1}{1-|g|^2} \begin{pmatrix} 1-\gamma_1 & -\gamma_2 \\ -\gamma_2 & 1+\gamma_1 \end{pmatrix} \begin{pmatrix} \partial_1\gamma_1 + \partial_2\gamma_2 \\ \partial_1\gamma_2 - \partial_2\gamma_1 \end{pmatrix}$

Statistical estimation with missing data

✓ Estimation of N-point correlation functions in direct space by avoiding the points falling in gaps
✓ pros: unbiased by missing data
✓ cons: time comsuming
✓ Estimation of the power spectrum in Fourier space by applying a mask correction
✓ pros: fast estimation with FFT
✓ cons:
✓ stability depending on the shape of the mask

 \checkmark estimation of the mask correction can be long

Weak lensing inpainting formalism

$$\gamma_{i}^{obs} \longrightarrow \min_{\kappa} \|\Phi^{t}\kappa\|_{l_{0}} \text{ subject to } \sum_{i} \|\gamma_{i}^{obs} - M(P_{i}*\kappa)\|_{l_{2}}^{2} \leq \varepsilon \longrightarrow \mathcal{K}$$
Physical priors
$$\gamma_{i}^{obs} = M.\gamma_{i}$$

$$\kappa = P_{1}*\gamma_{1} + P_{2}*\gamma_{2}$$

$$\Phi^{t} \text{ is the DCT}$$

Weak lensing inpainting algorithm

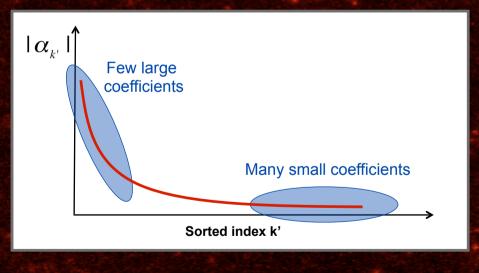
✓ If Φ^t κ sparse enough, the l₀-norm can be replaced by the convex l₁-norm
 ✓ The solution of the previous minimisation can be obtained by an iterative thresholding (MCA by Elad, 2005)

$$X^{n+1} = \Delta_{\Phi,\lambda_n} (X^n + M(Y - X^n))$$

✓ Décompose the signal on the dictionary Φ✓ Threshold the coefficients α with a threshold $λ_n$ ✓ Reconstruct from $\tilde{α}$

What is sparsity ?

A signal S is sparse in a basis Φ if most of the coefficients α are equal to zero or closed to zero: $\min_{c} ||\phi^t S||_0^2$



Looking for Adapted representations

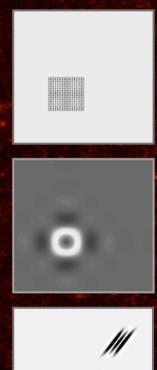
✓ Local DCT:

Stationary textures
Locally oscillatory
Wavelet transform:

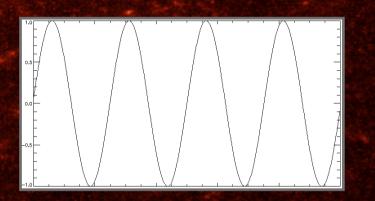
Piecewise smooth
Isotropic structures

Curvelet transform:

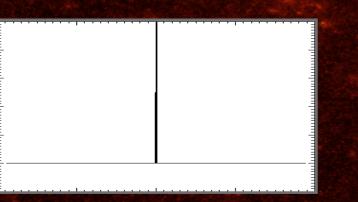
Piecewise smooth
Edge structures



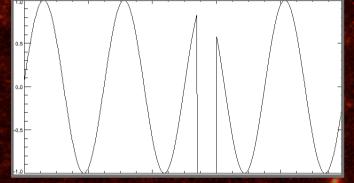
Inpainting based on sparse representation of data



SINE CURVE



TF OF A SINE CURVE

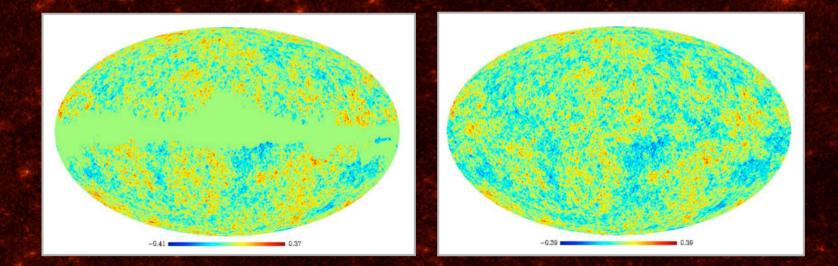


TRUNCATED SINE CURVE

TF OF A TRUNCATED SINE CURVE

Inpainting randomly distributed missing data

Inpainting on WMAP data



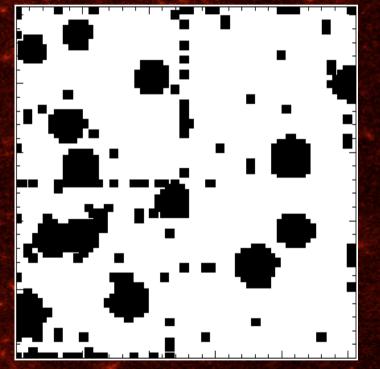
WMAP 3 YEARS

INPAINTED MAP (COURTESY P. ABRIAL)

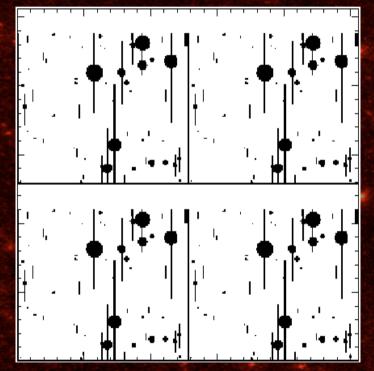
Outline

- 1- Introduction
 - Introduction to Weak Lensing
 - The Weak lensing data processing line
- 2- The missing data problem in Weak Lensing
 - Weak Lensing analysis with missing data
 - A new approach based on sparsity
- 3- Application of Inpaiting to Weak Lensing data
 - Results on Weak Lensing data
 - The FASTLens software

Masked masks

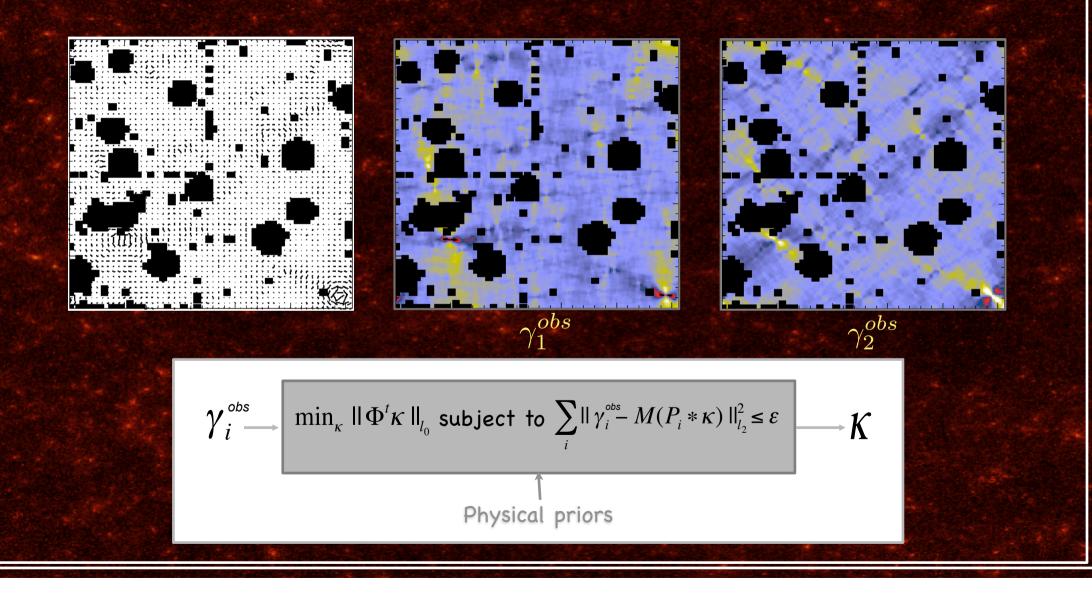


MASK PATTERN OF CFHTLS SURVEY ON 1° X 1° FIELD (COURTESY J. BERGE)

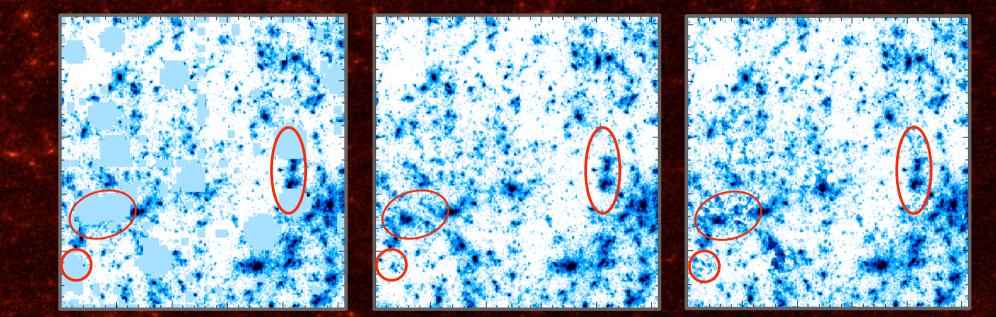


MASK PATTERN OF SUBARU SURVEY ON 1° X 1° FIELD

Inpainting from shear maps

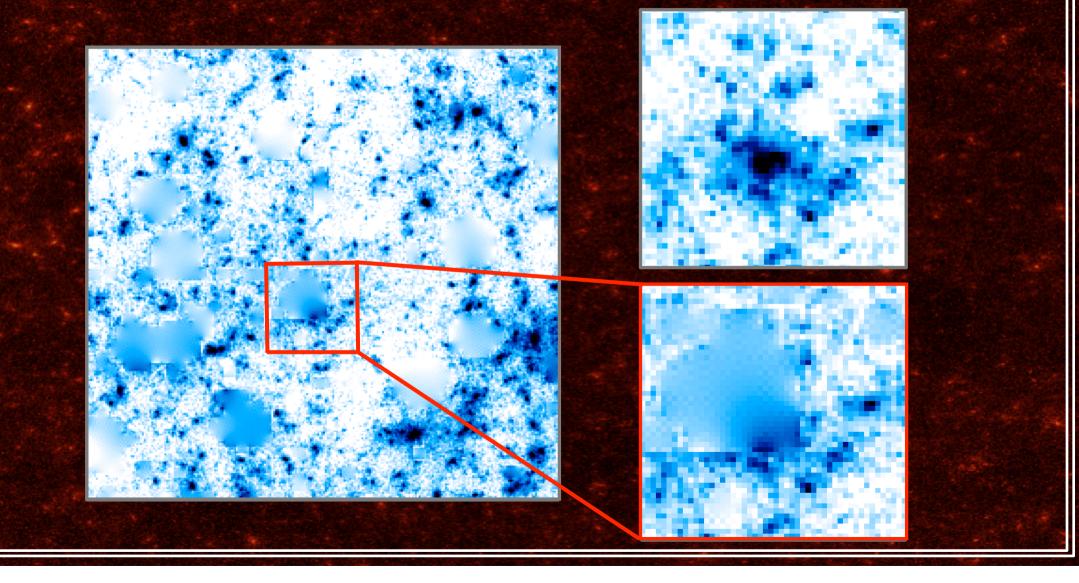


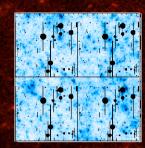
Inpainting on simulated weak lensing data



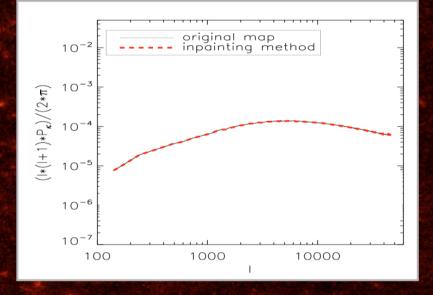
WHICH IMAGE IS THE ORIGINAL ONE ?

Inpainting on simulated weak lensing data

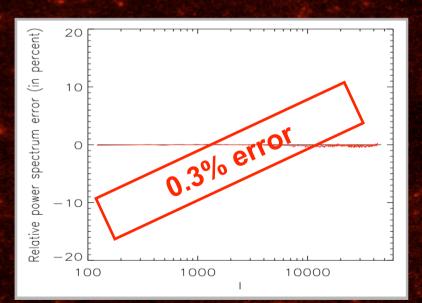


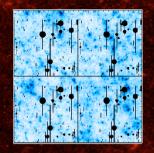


Power spectrum estimation

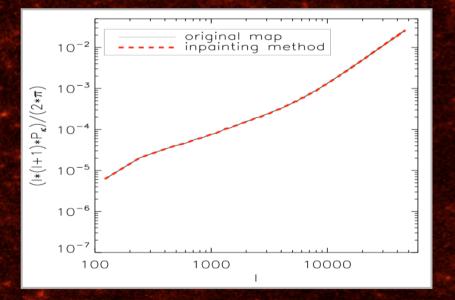


MEAN POWER SPECTRUM COMPUTED FROM - 100 COMPLETE MASS MAPS (BLACK) - 100 INPAINTED MAPS (RED). RELATIVE POWER SPECTRUM ERROR, I.E. THE NORMALIZED DIFFERENCE BETWEEN THE TWO UPPER CURVES OF THE LEFT PANEL.

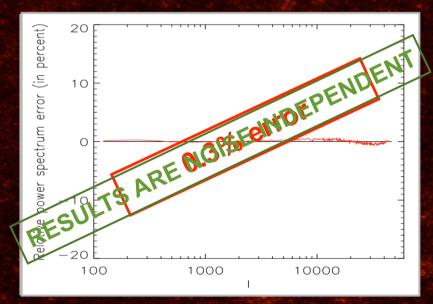


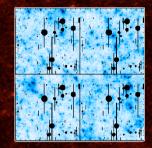


Noisy power spectrum estimation

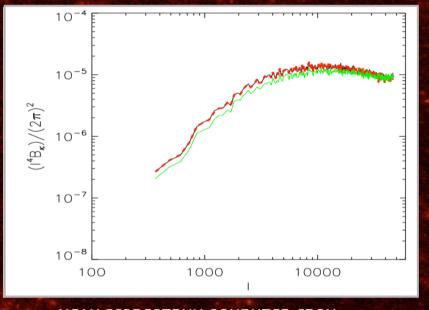


MEAN NOISY POWER SPECTRUM COMPUTED FROM - 100 COMPLETE MASS MAPS (BLACK) - 100 INPAINTED MAPS FROM INCOMPLETE SHEAR MAPS (RED). RELATIVE NOISY POWER SPECTRUM ERROR, I.E. THE NORMALIZED DIFFERENCE BETWEEN THE TWO CURVES OF THE LEFT PANEL.





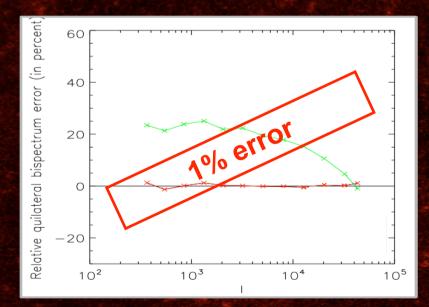
Equilateral bispectrum estimation



MEAN BISPECTRUM COMPUTED FROM - 100 COMPLETE MASS MAPS (BLACK) - 100 INPAINTED RECONSTRUCTED MAPS (RED)

- 100 INCOMPLETE MASS MAPS (GREEN) .

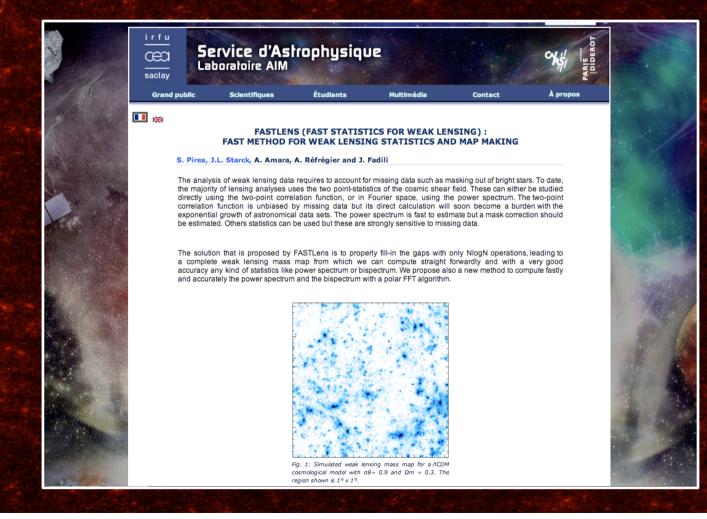
RELATIVE BISPECTRUM ERROR, I.E. THE NORMALIZED DIFFERENCE BETWEEN THE TWO UPPER CURVES OF THE LEFT PANEL.



FASTLens

(FAst STatistics for weak Lensing)

http://www-irfu.cea.fr/Ast/fastlens_software.php



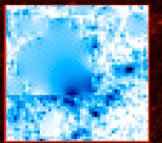
FASTLens (FAst STatistics for weak Lensing)

(Pires 2009, MNRAS)

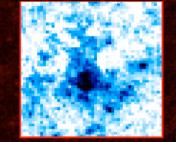
http://www-irfu.cea.fr/Ast/fastlens_software.php

✓ Inpainting method:

✓ Estimation of a complete dark matter mass map from incomplete shear maps

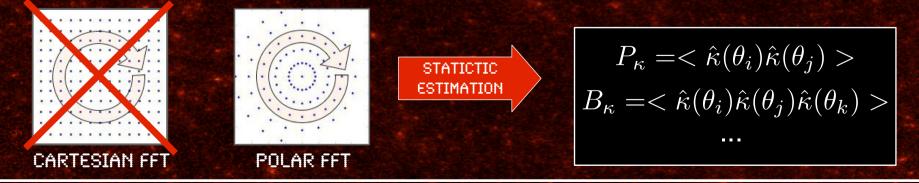


INPAINTING



✓ Polar FFT code:

✓ Fast and Exact estimation of the power spectrum and the bispetrum



Conclusion

A method to reconstruct a full Weak Lensing mass map from incomplete shear maps has been developed (FASTLens software)

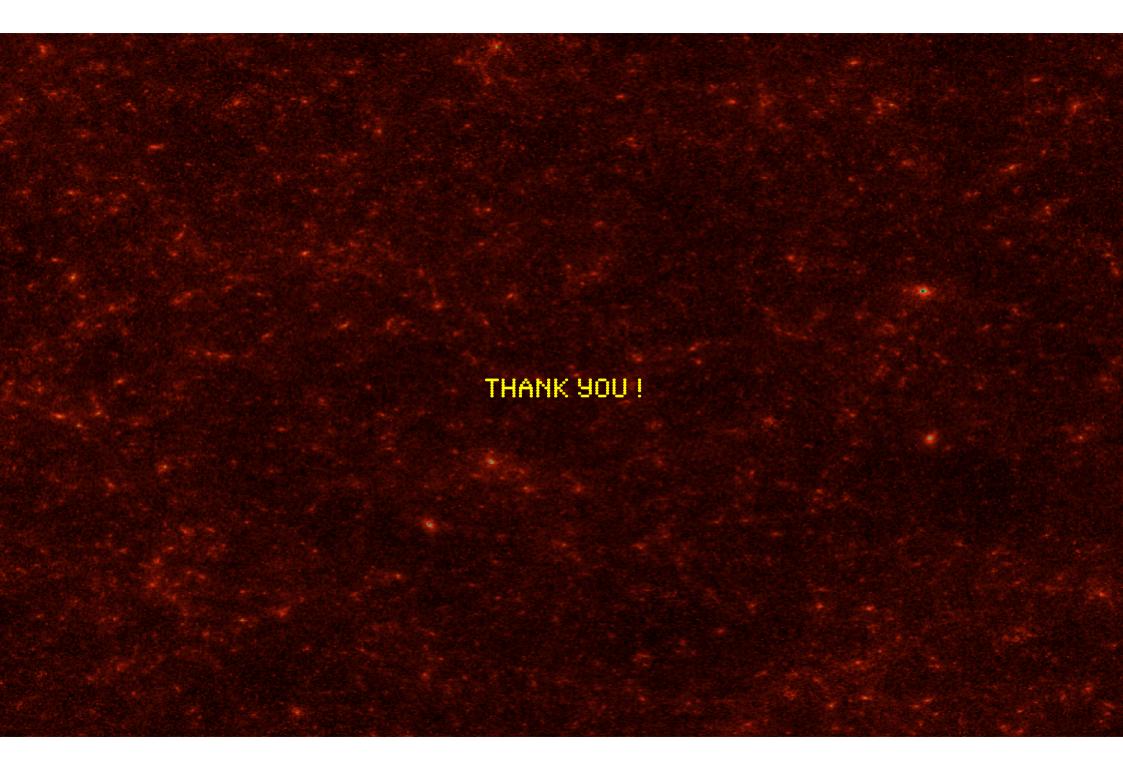
Make faster the estimation of statistics:

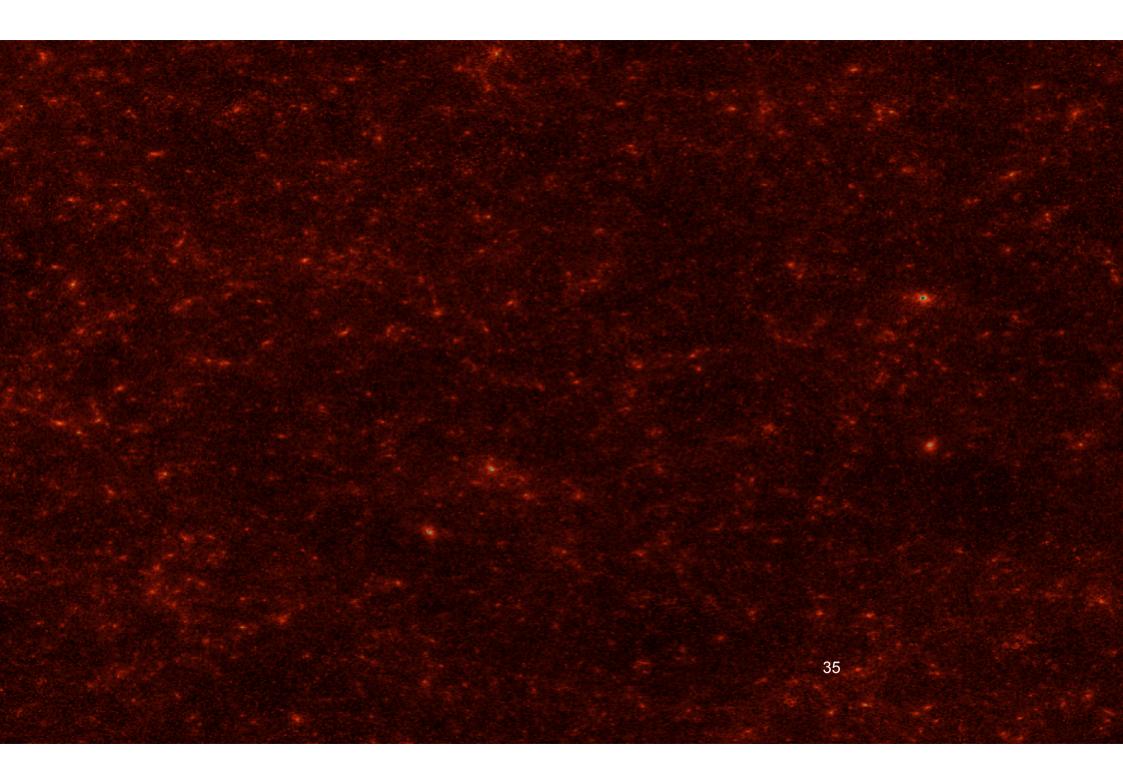
 The maximum error on power spectrum estimation is 1%
 The maximum error on bispectrum estimation is 3%

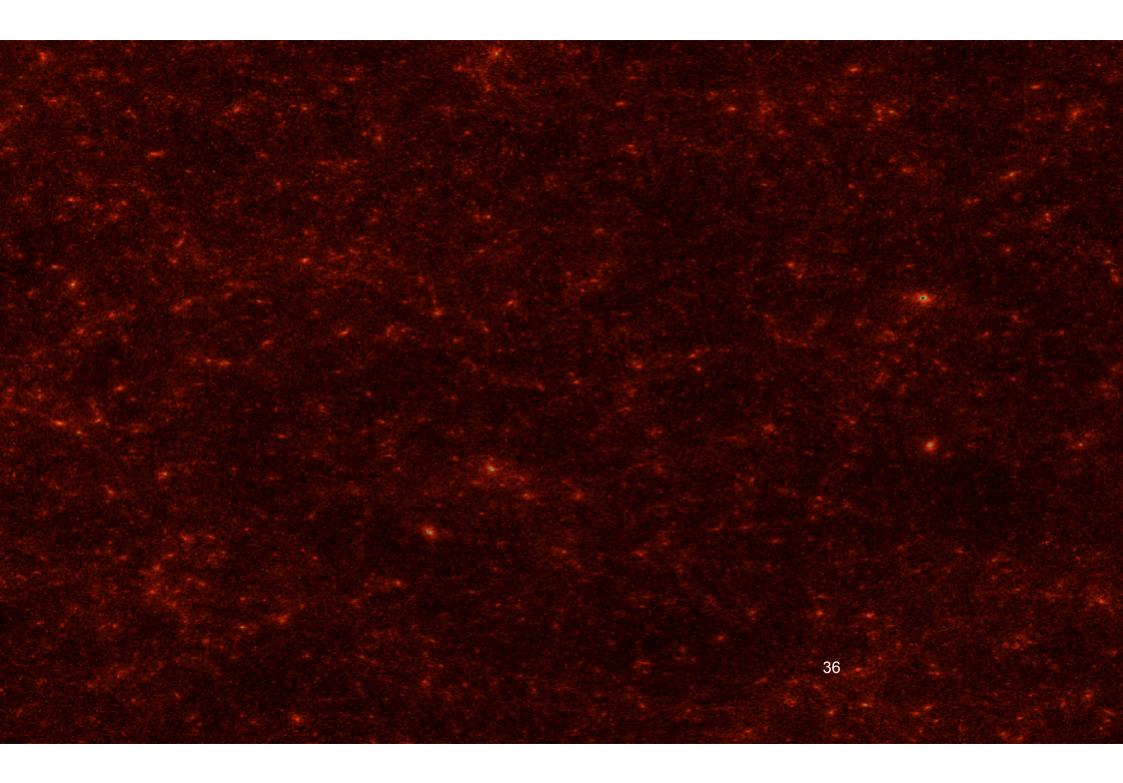
 Enables estimation of many statistics:

 Power spectrum, Bispectrum, Trispectrum...
 Dark matter statistics (cluster abundance, cluster correlations...)

 Enables unbiased filtering







$$Y = P_1 * \gamma_1^{obs} + P_2 * \gamma_2^{obs}$$

$$I_{max} = 100$$

$$\kappa^0 = 0$$

$$R^0 = Y$$

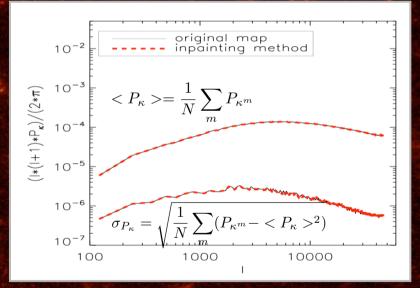
$$\lambda_{max} = max(|\alpha = \Phi^T Y|)$$

$$\lambda_{min} = 0$$

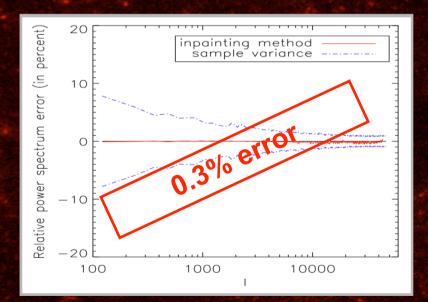
Inpainting algorithm from shear maps

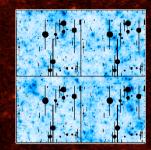
for n = 0 to I_{max} do begin $U = \kappa^n + MR^n(\gamma^{obs}) \ et$ $R^{n}(\gamma^{obs}) = P_{1} * (\gamma_{1}^{obs} - P_{1} * \kappa_{n}) + P_{2} * (\gamma_{2}^{obs} - P_{2} * \kappa_{n})$ Digital Cosine Transform (DCT) of U: $\alpha = \Phi^T U$ Threshold determination: λ_n Hard-thresholding of α with $\alpha_n : \tilde{\alpha} = S_{\lambda_n} \alpha$ $\kappa^{n+1} = \Phi \tilde{\alpha}$ n = n + 1 if $n < I_{max}(2)$

Power spectrum estimation



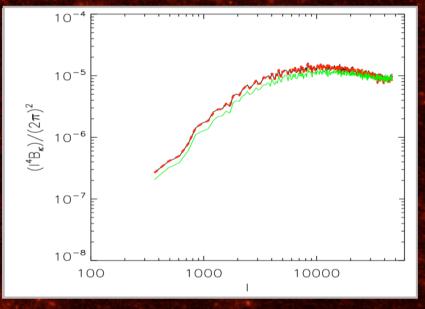
MEAN POWER SPECTRUM COMPUTED FROM - 100 COMPLETE MASS MAPS (BLACK) - 100 INPAINTED MAPS (RED). RELATIVE POWER SPECTRUM ERROR, I.E. THE NORMALIZED DIFFERENCE BETWEEN THE TWO UPPER CURVES OF THE LEFT PANEL.





Equilateral bispectrum estimation

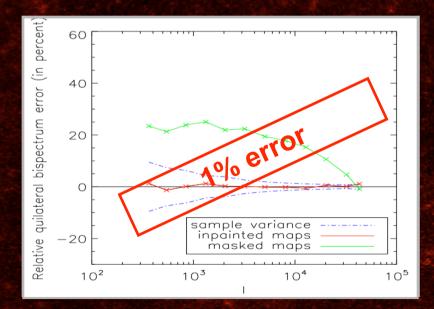
FASTLens, Pires et al 2008a



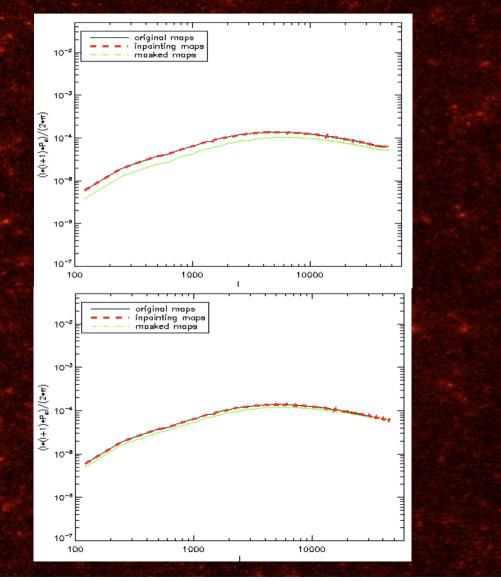
MEAN BISPECTRUM COMPUTED FROM - 100 COMPLETE MASS MAPS (BLACK),

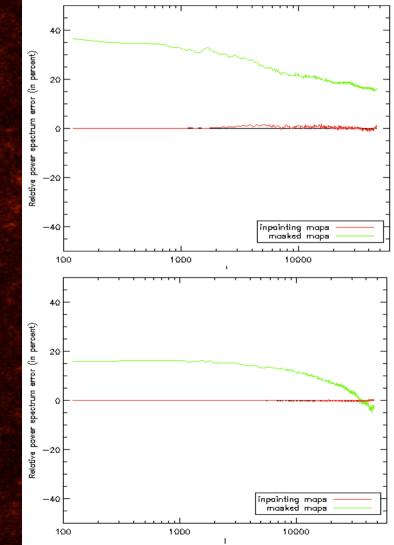
- 100 INPAINTED RECONSTRUCTED MAPS (RED)
- 100 INCOMPLETE MASS MAPS (GREEN) .

RELATIVE BISPECTRUM ERROR, I.E. THE NORMALIZED DIFFERENCE BETWEEN THE TWO UPPER CURVES OF THE LEFT PANEL.



Power spectrum estimation





Simulations numériques

- ✓ 3D N-body simulation by solving the hydrodynamic equations on a AMR grid (Ramses code)
- ✓ Dark matter mass maps simulation by projeting the density along the line of sight (using the Born approximation):

$$\kappa_e \approx \frac{3H_0^2 m L}{2c^2} \sum_i \frac{\chi_i(\chi_0 - \chi_i)}{\chi_0 a(\chi_i)} \left(\frac{n_p R^2}{N_t s^2} - \Delta r_{f_i}\right)$$