CosmoStat Logo_GalxyMark

Learning in Astrophysics day

Learning in Astrophysics day

Date: January the 26th, 2017

Organizer:  Joana Frontera-Pons  <joana.frontera-pons@cea.fr>

Venue:

Local information

CEA Saclay is around 23 km South of Paris. The astrophysics division (DAp) is located at the CEA site at Orme des Merisiers, which is around 1 km South of the main CEA campus. See http://www.cosmostat.org/link/how-to-get-to-sap/ for detailed information on how to arrive.


On January the 26th, 2017, we organize the third day on machine learning in astrophysics at DAp, CEA Saclay. 

Program:

All talks are taking place at DAp, Salle Galilée (Building 713)

10:00 - 10:45h. Marc Duranton  (CEA Saclay)
10:45 - 11:15h. Rémi Flamary (Université Nice-Sophia Antipolis)
11:15 - 11:45h. Christoph Ernst René Schäfer  (EPFL)

12:00 - 13:30h. Lunch

13:30 - 14:00h. Emille Ishida  (Laboratoire de Physique de Clermont)
14:00 - 14:30h. Silvia Villa (Politecnico di Milano)                                                            
14:30 - 15:00h. Arthur Pajot (LIP6)
15:00 - 15:30h. Morgan Schmitz  (CEA Saclay - CosmoStat)

15:30 - 16:00h. Coffe break

16:00 - 17:00h. Round table

 


Deep Learning for Physical Processes:  Incorporating Prior Scientific Knowledge 

Arthur Pajot (LIP6)

We consider  the use of Deep Learning methods for modeling complex phenomena like those occurring in natural physical processes. With the large amount of data gathered on these phenomena the data intensive paradigm could begin to challenge more traditional approaches elaborated over the years in fields like maths or physics. However, despite considerable successes in a variety of application domains, the machine learning field is not yet ready to handle the level of complexity required by such problems. Using an example application, namely Sea Surface Temperature Prediction, we show how general background knowledge gained from physics could be used as a guideline for designing efficient Deep Learning models.


Wasserstein dictionary Learning

Morgan Schmitz (CEA Saclay - CosmoStat)

Optimal Transport theory enables the definition of a distance across the set of measures on any given space. This Wasserstein distance naturally accounts for geometric warping between measures (including, but not exclusive to, images). We introduce a new, Optimal Transport-based representation learning method in close analogy with the usual Dictionary Learning problem. This approach typically relies on a matrix dot-product between the learned dictionary and the codes making up the new representation. The relationship between atoms and data is thus ultimately linear. 

We instead use automatic differentiation to derive gradients of the Wasserstein barycenter operator, and we learn a set of atoms and barycentric weights from the data in an unsupervised fashion. Since our data is reconstructed as Wasserstein barycenters of our learned atoms, we can make full use of the attractive properties of the Optimal Transport geometry. In particular, our representation allows for non-linear relationships between atoms and data.

 


 

Screen Shot 2017-06-20 at 17.20.58

École Euclid de cosmologie 2017

Date: June 27 - July 8 2017

Venue: Fréjus, France

Website: http://ecole-euclid.cnrs.fr/programme-2017


Lecture ``Weak gravitational lensing'' (Le lentillage gravitationnel), Martin Kilbinger.

Find here links to the lecture notes, TD exercises, "tables rondes" topics, and other information.

  • Resources.
    • A great and detailed introduction to (weak) gravitational lensing are the 2005 Saas Fee lecture notes by Peter Schneider. Download Part I (Introduction to lensing) and Part III (Weak lensing) from my homepage.
    • Check out Sarah Bridle's video lectures on WL from 2014.
  • TD cycle 1+2, Data analysis.
    1.  We will work on a rather large (150 MB) weak-lensing catalogue from the public CFHTLenS web page. During the TD I will show instructions how to create and download this catalogue. For faster access, it will be available on the server during the school, and I will bring a few USB sticks.
      If you like, you can however download the catalogue on your laptop at home. Please have a look at the instructions (available soon).
    2. If you want to do the TD on your laptop, you'll need to download and install athena (the newest version 1.7).
    3.  For one of the bonus TD you'll need a new version of pallas.py (v 1.8beta). Download it here.
  • Lecture notes and exercise classes: