Journal Club#5: Image reconstruction, H0 measurements and animated objects

CosmosClub: Antoine Labatie (11/04/2019)

Date: April 11th 2019, 11am

Speaker: Antoine Labatie

Title: Characterizing Well-behaved vs. Pathological Deep Neural Networks [paper]

Room: Kepler


Abstract

We introduce a novel approach, requiring only mild assumptions, for the characterization of deep neural networks at initialization. Our approach applies both to fully-connected and convolutional networks and easily incorporates the commonly used techniques of batch normalization and skip-connections. Our key insight is to consider the evolution with depth of statistical moments of signal and noise, thereby characterizing the presence or the absence of pathologies in the hypothesis space encoded by the choice of hyperparameters. We establish: (i) for feedforward networks with and without batch normalization, depth multiplicativity inevitably leads to ill-behaved moments and pathologies; (ii) for residual networks with batch normalization, on the other hand, skip-connections induce power-law rather than exponential behaviour, leading to well-behaved moments and no pathology.

CosmosClub: Adrien Picquenot (14/03/2019)

Date: March 14th 2019, 11am

Speaker: Adrien Picquenot (CEA Saclay)

Title: Applying the GMCA to extended sources in X-Ray Astronomy

Room: Kepler


Abstract

In high-energy astronomy, spectro-imaging instruments such as X-ray detectors allow investigation of the spatial and spectral properties of extended sources including galaxy clusters, galaxies, diffuse interstellar medium, supernova remnants and pulsar wind nebulae. In these sources, each physical component possesses a different spatial and spectral signature, but the components are entangled. Extracting the intrinsic spatial and spectral information of the individual components from this data is a challenging task. Current analysis methods in this field do not fully exploit the 2D-1D (x,y,E) nature of the data, as the spatial and spectral information are considered separately. Here we investigate the application of the GMCA, initially developed to extract an image of the Cosmic Microwave Background from Planck data, in an X-ray context. 
The performance of the GMCA on X-ray data is tested using Monte-Carlo simulations of supernova remnant toy models, designed to represent typical science cases. We find that the GMCA is able to separate highly entangled components in X-ray data even in high contrast scenarios, and can extract with high accuracy the spectrum and map of each physical component. A modification of the algorithm is proposed in order to improve the spectral fidelity in the case of strongly overlapping spatial components, and we investigate a resampling method to derive realistic uncertainties associated to the results of the algorithm. Applying the modified algorithm to the deep Chandra observations of Cassiopeia A, we are able to produce detailed maps of the synchrotron emission at low energies (0.6-2.2 keV), and of the red/blue shifted distributions of a number of elements including  Si and Fe K.
We also tested pGMCA, a new version of the GMCA taking Poisson noise into account, more adapted to the X-ray nature of the data. A first application on the Perseus galaxy cluster shows impressive results, retrieving components that the original GMCA could not find.

 

CosmosClub: Clément Leloup (28/02/2019)

Date: February 28th 2019, 11am

Speaker: Clément Leloup (CEA Paris-Saclay, DPhP)

Title: Observational status of the Galileon model from cosmological data and gravitational waves [slides]

Room: Cassini


Abstract

The Galileon model is a tensor-scalar theory of gravity which offers a theoretically viable explanation to the late acceleration of the Universe expansion and recovers General Relativity in the strong field limit. The main goal is to establish the status of the model from cosmological observations. Though, the multi-messenger observation of GW170817 and its consequences for the Galileon model will be briefly discussed, since most allowed Galileon scenarios have a gravitational wave speed different than the speed of light.
Most constraints obtained so far on Galileon model parameters from cosmological data were derived for the limited subset of tracker solutions and reported tensions between the model and data. We present here an exploration of the general solution of the Galileon model, which is confronted against recent cosmological data.
We find that, while the general solution provides a good fit to CMB spectra, it fails to reproduce cosmological data when extending the comparison to BAO and SNIa data. Tensions remain if the models are extended with an additional free parameter, such as the sum of active neutrino masses or the normalization of the CMB lensing spectrum.